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Supplementary notes

Differentials

Reasoning with differentials

Most people reason informally using differentials when they work with differential equation models.
You need to understand this kind of reasoning, even if you don’t like it, because that’s the way most
people outside math departments think. To be concrete, consider the differential equation
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For this example, we take initial data
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We want to “solve” this initial value problem by writing a formula for x(¢):
1
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Although no derivation is given, you can check that the solution formula is correct. Differentiating
with respect to t shows that it satisfies . Taking t =0 in gives . This solution formula
is an any differential equations textbook. We now give a derivation using the informal language and
reasoning of differentials.

First, you think of ‘fi—f as a fraction and multiply both sides of by dt. This gives

dr =22 dt . (4)

You then “separate variables” by dividing both sides by 22, which leads to
dx
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= dt . (5)

Then you “integrate” both sides. The left side is the differential of —%:

The right side is the differential of ¢. Thus is equivalent to

d (—i) =dt . (6)

If the differentials of two quantities are equal, then the quantities themselves must be “equal up to a
constant”. The difference between them cannot change (is constant). Thus, the differential relation
@ implies that there is some constant C' so that
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Finally, you want to get x = % when t = 0, so you put those values into the “integrated” relation @
and find
-3=C.

This value of C' turns into

1
——=t—-3.
x
This is equivalent to our solution formula .

This reasoning is not rigorous, partly because differentials like dt or d(x~!) are not precisely
deﬁnedﬂ Informally, if @ is a quantity or expression, then the informal d@) means “the small change
in Q. If @ and R are related quantities and something happens to change both of them, then it is
common that the changes are approximately proportional:

dQ ~ CdR . (8)

For example, suppose @ is a measure of the color of liquid and dR is one drop of die (a small amount).
Then d@ measures how much the color changed, which also is small. It is natural that if you use two
drops instead of one then the color changes twice as much. This might be expressed as

(dR —2dR) = (dQ — 2dQ) .

That is, if dR is small, then the change in @ is (approximately) proportional to the change in R. The
constant of (approximate) proportionality may be expressed as a ratio

aQ
dR "~

The informal reasoning with differentials can be thought of as writing = for ~. Suppose L and M
are two quantities that are close enough that it does not matter, for some purpose, whether you use
L or M. Then you might write L = M even though they are not exactly equal. For example, you
could write m = 3.14 to mean that if you use 3.14 instead of the exact value 3.14315926535 - -, the
result is “the same” (the difference doesn’t matter). For example, you might be calculating the area
of a circular tabletop from its radius (4 = 772) and an error of less than 1% is too small to matter.

With differentials, the linear approximation might be so accurate that it doesn’t matter whether
you use d@ or C'dR in some formula. In this spirit, the formula might be taken to mean that if dt
and dx are small enough then the difference between z?dt and dz does not matter. The difference in
the x values, which we call dz, is (almost) the same as z? times the difference in the ¢ values, which
is dt. One mathematiciarﬂ joked that you have to distinguish between “small” and “tiny”. Small
differences like dz and dt matter, but tiny differences, like dz — 22dt don’t matter We put an = sign
between small terms when the difference between them is tiny.

Let us return to the the point made before that if two quantities have the same differentials then
they are equal, “up to a constant” (the difference between then does not change). The process of
adding together many small differential changes to get the overall change is integration. Suppose the
numbers dt; form a sequence of small changes in ¢, starting at ¢, and ending at at a final time ¢;.
Let the numbers dxj be the corresponding sequence of small x increments. These can be added up

1The pure math subject of differential geometry has “differentials”, also written with a d, but which mean something
different. There are calculus books that say, for example, du = u'(z)dz is the definition of du. These books claim this
is the basis for the change of variables formulas in integrals such as: [fdu = [fu/(z)dz. This is nonsense. Here, df
just means “a small change in f”, the same for dz, dt, etc.

21 believe it was Sir Michael Atiyah, winner of the Fields Medal, which is the mathematicians’ equivalent of a Nobel
Prize.
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These express the express the idea that you get the total change in some quantity between a starting
point and a final point by adding together a sequence of small changes along a path from start to final.
The informal relation (6)) says that the difference between d (—z~!) and dt is “tiny” in the sense that
it is so small that even when you add up all the little errors for each k, the total error goes to zero in
the limit dt — 0 and dz — 0. So, if we write
(5)
T/

for the change in % in the time interval dty, then @ means that
SSa() =S (9)
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The two sides in this informal “equation” are not exactly equal, but they “become equal” as the
increments dty and dxj become infinitely small. The sum of differences on the left side of @ becomes,
or “is” the total difference

The sum of differences on the right side is ¢ty — ¢;. Therefore

- [_é)] — (10)

Now, write ¢ for ¢; and keep the starting time ¢, fixed. This leads to
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This is a way to understand the relation between the “differential equations” (equations involving
differentials) @ and the integrated form .

Modeling with differentials

People often use informal reasoning with differentials to create differential equation models of physical
systems. For example, suppose N(t) is the number of bacteria in a dish. In a small interval of time
dt there the number of bacteria changes by dN. The simple growth model is that dN is proportional
to N and dt. The number of new bacteria is proportional to the number of bacteria already there
and proportional to the increment of time. We write g for the constant of proportionality (g is for
“growth rate”). The model is formulated as

dN = gN dt . (11)

3The integral sign J is a big “S”, which means “sum”. The big Greek letter “sigma” is ¥ and also means “sum”.



This is truly a “differential equation”, an equation involving differentials. It may be put in textbook
form by dividing both sides by dt to get N
pra gN . (12)

Little of this reasoning is exact in the mathematical sense. For one thing, bacterial are not
mathematical objects. The simple growth model ignores possible effects such as (maybe) bacteria
needing to be a certain age before they divide. Also the number of bacteria is an integer, which
means that dN cannot be less than one without being zero. The idea must be that N is so large that
dN = 10 (say) is small enough relative to N for the differential relation to be about right. The
differential equation model is only an approximate description of the real world.

The solution to the model equation, in either of the equivalent forms or , is

N(t) = N()@gt . (13)

Here Ny is the value of N when ¢ = 0, which we call “initial condition”. This formula may describe
results you could get in a biology lab, but it would not describe them exactly. One obvious reason
is that the model assumes N values are so large that the exact N, which is an integer, would be
impossible to measure exactly. If you had a very small experiment with N values as low as (say) 100,
then the differential equation model would be a crude approximation to the actual mechanism
that makes N increase over time.



