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Supplementary notes

Exact differentials

Introduction

These notes are a review of some parts of multi-variable calculus that are relevant to what we’re doing
in differential equations. One goal is to explain exact differentials. Another is to re-enforce the view
that thinking in terms of differentials makes calculus more intuitive and easier to understand and use.
The notation and calculations in this Introduction are explained in the following sections.

The exact differentials method for solving special ODEs depends on knowing when a pair of
functions f(x, y) and g(x, y) can be the partial derivatives of a potential function ψ(x, y). The necessary
and sufficient condition is that

∂f

∂y
=
∂g

∂x
. (1)

Being necessary means that unless (1) is satisfied, there can be no ψ with

f =
∂ψ

∂x
, g =

∂ψ

∂y
. (2)

Being sufficient means that if (1) is satisfied then there is a ψ that satisfies (2). The fact that (1) is
necessary comes from the fact that partial derivatives commute (see below).

The explanation of the fact that (1) is sufficient is constructive. The function ψ not only is shown
to exist, but there is a way to “construct” it. You just integrate. The function you get works if the
compatibility condition is satisfied. For example, suppose

f(x, y) = 2xy2 + y3 + 2x

g(x, y) = 2x2y + 3xy2 + 1 .

The compatibility condition (1) is (notation explained below)

f = 2xy2 + y3 + 2x
∂y−→ fy = 4xy + 3y2

g = 2x2y + 3xy2 + 1
∂x−→ gx = 4xy + 3y2 .

The calculation shows that (1) is satisfied in this example. Any ψ that satisfies ψx = f is an anti-
derivative with respect to x of f . Traditional informal calculus gives (integrating each term separately
and treating y as a constant in this x integration)

ψ(x, y) =

∫ x

f(x, y) dx =

∫ x (
2xy2 + y3 + 2x

)
dx = x2y2 + xy3 + x2 + C .

The constant of integration, C could be different for each y, so we should write this as

ψ(x, y) = x2y2 + xy3 + x2 + C(y) .

On the other hand, ψy = g(x, y) leads to (writing D(x) for the constant of integration, which may
depend on x)

ψ(x, y) =

∫ y (
2x2y + 3xy2 + 1

)
dy = x2y2 + xy3 + y +D(x) .
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This leads to two equations for ψ(x, y), if there is a ψ:

ψ(x, y) = x2y2 + xy3 + x2 + C(y) = x2y2 + xy3 + y +D(x) .

If the second equality is true, then C(y) must be equal to y (the only term on the right with no x
dependence) and D(x) must be equal to x2. This implies that

ψ(x, y) = x2y2 + xy3 + x2 + y .

To be absolutely correct, you could add a constant, independent of x and y, to ψ and still satisfy
ψx = f and ψy = g. Strictly speaking, we could only infer that C(y) = y + E (E being a constant
independent of x and y) and similarly for D(x).

Some classes explain these facts in vector form. The equations (2) are written in vector form (using
various notations) as

(f, g) = grad ψ = ∇⃗ψ = ∇ψ .

The condition (1) is expressed, in various notations, as

curl (f, g) = ∇⃗×(f, g) = ∇×(f, g) = ∂xg − ∂yf = 0 .

It is a fact of vector calculus, in 2D as here, or in 3D, that a vector field is the gradient of a scalar
(potential) field if and only if the curl of the vector field is zero. If you don’t know about grad and
curl, don’t worry about it.

Partial derivatives

Suppose1 ψ(x, y) is a function of two variables x and y. There are several common notations for
partial derivatives, including

∂ψ(x, y)

∂x
= ∂xψ(x, y) = ψx(x, y) = lim

h→0

ψ(x+ h, y)− ψ(x, y)

h

∂ψ(x, y)

∂y
= ∂yψ(x, y) = ψy(x, y) = lim

h→0

ψ(x, y + h)− ψ(x, y)

h

You can take partial derivatives of partial derivatives, which are called second partial derivatives.
These may be written in various ways, such as

∂

∂y

∂ψ

∂x
= ∂y∂xψ = ψyx

∂

∂x

∂ψ

∂x
= ∂x∂xψ = ∂2xψ = ψxx

We sometimes talk about partial derivative operators, such as ∂x or ∂x∂y, etc. A partial differential
operator “operates” on a function sort of in the way a matrix “operates” on a vector. For example,
the operator ∂x operates on the function ψ as

∂xψ = ψx .

We might say that the operator ∂x “acts on” the function ψ. This is sometimes written with arrows
to indicate the operation, such as

x2y2
∂y−→ 2x2y .

1This ψ is the Greek letter “psi”, which is pronounced “sigh” in the US (but not in Greece). Make sure you ψ is not
confused with your ϕ, which is the Greek letter “phi” pronounced like “fly” (without the “l‘’).
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The operator ∂x∂y means “first differentiate with respect to y, then differentiate with respect to x:

∂x∂yψ = ∂x ( ∂yψ ) .

You differentiate with respect to y to evaluate the quantity in parentheses, then differentiate the result
with respect to x. This is expressed with arrows as

ψ
∂y−→ ψy

∂x−→ ψxy .

This is a convenient way do practical calculations. For example

x2y2
∂y−→ 2x2y

∂x−→ 4xy .

The operator ∂x∂y acts on x2y2 to give 4xy. The order of a partial differential operator is the number
of partial derivatives it involves. Thus, ∂x is first order, and ∂2x and ∂x∂y are second order.

Partial derivatives commute. This is a term from algebra which means that the answer does not
depend on the order in which you apply the operators. For example

∂x∂yψ = ∂y∂xψ .

More simply,
ψxy = ψyx . (3)

For example, doing the y derivative first gives

sin(x)e2y
∂y−→ 2 sin(x)e2y

∂x−→ 2 cos(x)e2y .

Doing the x derivative first gives

sin(x)e2y
∂x−→ cos(x)e2y

∂y−→ 2 cos(x)e2y .

The intermediate results are different but the final result is the same.
You can understand the fact that partial derivatives commute by looking at finite difference ap-

proximations. The finite difference approximation to ψx is

∂xψ(x, y) ≈
ψ(x+∆x, y)− ψ(x, y)

∆x
. (4)

The finite difference approximation to ∂y( ∂xψ ) is

∂y( ∂xψ(x, y) ) ≈
ψx(x, y +∆y)− ψx(x, y)

∆y
. (5)

If you use ψx approximation (4) in the ∂yψx approximation (5), you get the complicated expression

∂y( ∂xψ(x, y) ) ≈

ψ(x+∆x, y +∆y)− ψ(x, y +∆y)

∆x
− ψ(x+∆x, y)− ψ(x, y)

∆x
∆y

.

This simplifies to

∂y( ∂xψ(x, y) ) ≈
ψ(x+∆x, y +∆y)− ψ(x, y +∆y)− ψ(x+∆x, y) + ψ(x, y)

∆x∆y
.

On the right are values of ψ evaluated at the four corners of the rectangle starting at (x, y) and going
to (x+∆x, y +∆y). You would get ψ evaluated at the same four points, with the same signs, if you
had done the partial derivatives in the other order ∂xψy. That’s why ∂xψy = ∂yψx.
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Integrating on lines in 2D

A line integral is a one dimensional integral along a path in two or more dimensions. There is a general
version of this you might see in vector calculus. We only need a simple version of the general theory
that integrates only in horizontal or vertical directions. Suppose a 2D path starts at (a, b) and ends
at (c, d). You can find the difference between ψ(c, d) and ψ(a, b) by integrating partial derivatives of
ψ along the path. We will use paths that have only horizontal and vertical pieces. You should draw
your own diagrams to follow the description. The diagrams may assume c > a and d > b so the end
point (c, d) is above and to the right of the starting point (a, b). The formulas are true even if the
geometry is not like this.

The fundamental theorem of calculus says that∫ x1

x0

f ′(x) dx = f(x1)− f(x0) . (6)

This can be applied to functions of two variables. Suppose y is constant and f(x) = ψ(x, y). Then
f ′(x) = ψx(x, y). The integral theorem (6) with x0 = a and x1 = c gives∫ x=c

x=a

ψx(x, y) dx = ψ(c, y)− ψ(a, y) .

This is a line integral along the (horizontal) line segment from (a, y) to (c, y). You can also integrate
on vertical segments (with x coordinate fixed), so∫ y=d

y=b

ψy(x, y) dy = ψ(x, d)− ψ(x, b) .

We write the limits of integration in the form x = a or y = d to indicate which variable is equal to a
or d, etc.

We consider two paths that go from (a, b) to (c, d) using one horizontal and one vertical segment.
One path moves first in the horizontal and then in the vertical directions. It goes from (a, b) to (c, b)
(horizontal) and then from (c, b) to (c, d) (vertical). The other path moves first in the y direction from
(a, b) to (a, d) and then in the x direction from (a, d) to (c, d). Of course, there are many other paths
from (a, b) to (c, d).

You can express the difference between ψ(c, d) and ψ(a, b) using line integrals along either of these
paths. Suppose you do the horizontal part first. The integral along this segment (where x goes from
a to c while y stays at b) gives

ψ(c, b)− ψ(a, b) =

∫ x=c

x=a

ψx(x, b) dx .

Then the vertical part (y goes from b to d while x stays at c) gives

ψ(c, d)− ψ(c, b) =

∫ y=d

y=b

ψy(c, y) dy .

We can put these together to get

ψ(c, d)− ψ(a, b) =

∫ x=c

x=a

ψx(x, b) dx+

∫ y=d

y=b

ψy(c, y) dy . (7)

The other path, which is vertical first then horizontal, gives (y = d on the horizontal part and x = a
on the vertical part)

ψ(c, d)− ψ(a, b) =

∫ x=c

x=a

ψx(x, d) dx+

∫ y=d

y=b

ψy(a, y) dy . (8)

We put the vertical integral after the horizontal one in the formula even though the vertical part
comes first in the path to make it easier to compare the two expressions (7) and (8).
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Two dimensional integrals

A two dimensional integral over a rectangle has the form

I =

∫ x=c

x=a

∫ y=d

y=b

f(x, y) dxdy .

There are several ways to think of this integral. You can interpret it as an iterated integral, which
means first integrating with respect to one of the variables and then integrating the result with respect
to the other variable. In this case, you could take the inner integral to be

u(x) =

∫ y=d

y=b

f(x, y) dy . (9)

Then the outer integral would be

I =

∫ x=c

x=a

u(x) dx . (10)

This is written in one line as

I =

∫ x=c

x=a

(∫ y=d

y=b

f(x, y) dy

)
dx . (11)

The integral may be evaluated in the other order, with the inner integration with respect to x and
the outer with respect to y. The result is the same

I =

∫ y=d

y=b

(∫ x=c

x=a

f(x, y) dx

)
dy . (12)

Finally, the integral can be written more abstractly without specifying an order of integration. Let
R be the rectangle with corners (moving in the counter-clockwise direction starting at the lower left)
(a, b), (c, b), (c, d), (a, d).

R = { (x, y) with a ≤ x ≤ c and b ≤ y ≤ d } .

Then

I =

∫∫
R

f(x, y) dxdy . (13)

The three expressions (11), (12), and (13) are different formulas for the same number, I. The question
is: Why do they give the same answer?

We saw that a one variable integral like ∫ b

a

f(x) dx

can be thought of as a sum of small contributions f(x)dx that you get by dividing the interval [a, b]
into small pieces of length dx. In the same way, the double integral (13) can be thought of as a sum of
small contributions f(x, y)dxdy, with each contribution corresponding to a small dx×dy rectangular
piece of the integration domain R.

There is more than one way to add up the contributions from the little patches. One way is to
divide R into vertical columns of rectangles ranging from y = b up to y = d. The x coordinates for
all the boxes in this column are the interval (x, x+ dx). Adding up the contributions from one tower
means adding up

f(x, y) dxdy
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over y values ranging from b to d. The result is (remember that the integral sign “
∫
” and the sum

sign “Σ” mean almost the same thing) ∫ y=d

y=b

f(x, y) dxdy .

You can factor out the common factor dx and use the definition of the vertical integral (9) to get∫ y=d

y=b

f(x, y) dxdy =

(∫ y=d

y=b

f(x, y) dy

)
dx = u(x)dx .

This result is small, proportional to dx because it’s the sum over a thin column whose width is dx. You
can now add up the contributions from all these towers to get the sum over all the boxes in R. The
result is what we called the “outer integral” (10). To summariae, you can add up the contributions
from the little boxes one column at a time and then sum over the columns. You get the nested integral
approach to the double integral, first (9) then (10).

You could add up the contributions by rows instead of columns. For each interval (y, y+dy) there
is a row of boxes with x values running from a to c. Adding up the boxes in this row gives∫ x=c

x=a

f(x, y) dxdy =

(∫ x=c

x=a

f(x, y) dx

)
dy .

The integral in parentheses depends on y, and we call it

v(y) =

∫ x=c

x=a

f(x, y) dx .

Adding up the contributions v(y)dy from all the rows gives the total sum/integral as

I =

∫ y=d

y=b

v(y) dy =

∫ y=d

y=b

(∫ x=c

x=a

f(x, y) dx

)
dy .

The conclusion is that the double integral (13) may be evaluated either “by columns” or “by rows”.
The results are the same. The fact that (13), (11), and (12) are equal is sometimes called changing the
order of integration. It is a useful trick both for theory, as in these notes, and for calculating multiple
integrals, which will come up later in this course. The integrals defining u and v may be thought of
as line integrals because they are one dimensional integrals in the two dimensional plane.

Green’s theorem

We put together the previous two sections to show that the criterion (1) is sufficient for there to be
a potential function ψ that satisfies (2). The reasoning is related to what is called Green’s theorem
in vector calculus. For this, we express the fundamental theorem of calculus in different notation.
Suppose f(x, y) is any function and

u(x, y) =

∫ x′=x

x′=x0

f(x′, y) dx′ .

The value of the starting point x0 is irrelevant here. The fundamental theorem of calculus gives

∂xu(x, y) = f(x, y) .
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Here, y is just a parameter. The integral and derivative are with respect to x. You can do the same
thing with x as the parameter and y as the integration and differentiation variable. If

v(x, y) =

∫ y′=y

y′=y0

g(x, y′) dy′ ,

then
∂yv(x, y) = g(x, y) .

If there is a potential function ψ that satisfies (2), then we express the value of ψ(x, y) in terms
of a base point, (a, b), and a line integral. For that, we form the rectangle with corners (a, b), (x, b),
(x, y), and (a, y). The integral expression (7) may be written in different notation, and with ψf and
ψy = g, as (first integrate along the bottom, then along the right side of the rectangle)

ψ(x, y) = ψ(a, b) +

∫ x′=x

x′=a

f(x′, b) dx′ +

∫ y′=y

y′=b

g(x, y′) dy′ . (14)

If we take this as the definition of ψ, then

∂yψ(x, y) = g(x, y) .

This is because the first two terms on the right of (14) do not depend on y and the the fundamental
theorem of calculus applies to the last term.

We could have used the other path and the representation (7) to define a possibly different function

ψ̃(x, y) = ψ(a, b) +

∫ x′=x

x′=a

f(x′, y) dx′ +

∫ y′=y

y′=b

g(a, y′) dy′ . (15)

The first integral on the right is over the top of the rectangle while the second integral (which represents
the first part of the path from (a, b) to (x, y)) is over the left side. Since the first and third terms do
not depend on x, we see that

∂xψ̃(x, y) = f(x, y) .

We will see (next paragraph) that, if the compatibility conditions (1) are satisfied, then (14) and (15)
define the same function. This ψ is what we want because it satisfies both ψy = g and ψx = f .

This argument is simple, but the notation could be unnecessarily involved. To make the notation
simpler, we go back to (a, b) and (c, d) and drop the primes. We also set ψ(a, b) = 0. If ψ(a, b) has

some other value, then the function defined would differ only by this value. Thus, showing that ψ̃ = ψ
is the same as showing that functions defined by the two path integrals have the same value at (c, d),
which can be any point. We need to show that∫ x=c

x=a

f(x, b) dx+

∫ y=d

y=b

g(c, y) dy =

∫ x=c

x=a

f(x, d) dx+

∫ y=d

y=b

g(a, y) dy . (16)

The x integral on the left has y = b, which puts it on the bottom of the rectangle. The x integral on
the right has y = d, which corresponds to the top of the rectangle. The y integrals are on the right
(x = c) and left (x = a) sides. The left and right expressions are equal when fy = gx, which is part
of Green’s theorem of multivatiate calculus.

The derivatives fy and gx get involved when you compare the integrals over the top and bottom
(fy) and over the left and right (gx). To start,

f(x, d) = f(x, b) =

∫ y=d

y=b

fy(x, y) dy .
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Thus the difference between the f integrals on the left and right in (16) may be expressed as a double
integral ∫ x=c

x=a

f(x, d) dx−
∫ x=c

x=a

f(x, b) dx =

∫ x=c

x=a

( f(x, d)− f(x, a) ) dx

=

∫ x=c

x=a

(∫ y=d

y=b

fy(x, y) dy

)
dx .

We can change the order of integration in the double integral to get∫ y=d

y=b

(∫ x=c

x=a

fy(x, y) dx

)
dy .

If fy = gx, this becomes ∫ y=d

y=b

(∫ x=c

x=a

gx(x, y) dx

)
dy .

The inner integral is ∫ x=c

x=a

gx(x, y) dx = g(c, y)− g(a, y) .

Therefore ∫ y=d

y=b

(∫ x=c

x=a

gx(x, y) dx

)
dy =

∫ y=d

y=b

( g(c, y)− g(a, y) ) dy

=

∫ y=d

y=b

g(c, y) dy −
∫ y=d

y=b

g(a, y) dy .

This is the difference between the left and right g integrals in (16). You can put these together to get

the equality in (16). This shows that ψ̃ = ψ.
To summarize, if the compatibility condition (1) is satisfied, then the two ways to define ψ given

the same ψ. One way shows that ψy = g and the other way shows that ψx = f . Thus, the two
integrals give a constructive proof that the compatibility condition implies that there is a potential
function.

A chain rule and differentials

If x and y are both functions of t, the chain rule for this situation is

d

dt
ψ(x(t), y(t)) = ψx ẋ+ ψy ẏ .

You can write this more formally as

d

dt
ψ(x(t), y(t)) = ψx(x(t), y(t))

dx

dt
+ ψy(x(t), y(t))

dy

dt
.

If you multiply both sides by dt you get the differential form

dψ = ψx dx+ ψy dy . (17)

This says that if you change x and y by small amounts dx and dy, then the change in ψ is the sum of
the change because x changed and the change because y changed, You could think of this as taking a
path from (x, y) to (x+dx, y+dy) that first voves in the x direction from (x, y) to (x+dx, y) and then
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moves in the y direction from (x + dx, y) to (x + dx, y + dy). The x move changes ψ by ψx dx. The
y move changes ψ by ψy dy. With both moves, you get the total differential (17). The parts ψx dx
and ψy dy are “partial differentials”, which is why ψx and ψy are called partial derivatives. You might
worry that in the path from (x, y) to (x + dx, y + dy), you evaluate ψx and ψy at slightly different
places. The answer is that, for example, the difference between ψy(x, y) dy and ψy(x + dx, y) dx) is
“tiny” in the sense that the difference is much smaller than the differential ψy dy itself.

In differential equations we often use this reasoning in reverse. We are given a differential expression

f(x, y) dx+ g(x, y) dy . (18)

The task is to “integrate” this differential expression by finding a function ψ so that

dψ(x, y) = f(x, y) dx+ g(x, y) dy .

That means finding a function ψ so that

ψx(x, y) = f(x, y) , ψy(x, y) = g(x, y) . (19)

The conditions (19) define ψ only “up to a constant of integration”. That means that if ψ is a solution,
then ψ+C is also a solution. The constant of integration, C would have to be determined from other
information about the problem. For example, if you know that x = a when y = b, then you know
that ψ(x, y) = ψ(a, b) for all x and y.
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