

Differential Equations

Jonathan Goodman, Fall, 2026

Schedule (tentative)

First order equations

Jan 20, Solving first order scalar equations

- Skim Chapter 1, we will return to points made there throughout the class.
- Sections 2.1 and 2.2
 - Calculus tricks for finding a solution formula
 - Working with differentials, intuition and theory
 - Understanding what a solution formula says about the qualitative behavior of a solution

Jan 22, Modeling with first order equations

- Section 2.3
 - Exponential growth and decay models
 - Nonlinear effects such as saturation and solution-dependent growth rates
 - Continuous time and space models of large but discrete systems

Jan 27, Qualitative behavior, fixed points (upload Assignment 1 by: **2 pm**)

- Section 2.5 (skip Section 2.4)
- Supplementary material on blow-up
 - Example, the logistic equation
 - Fixed points and their stability/instability
 - The “topology” of the real axis with fixed points
 - Finite time blow up

Jan 29, Summary and conclusions

- Section 2.6
- Skim Section 2.7 (We will do this material later)
- Section 2.8 (skim the proof)
 - Exact differentials (integrating factors + calculus tricks)
 - The initial value problem, short time vs. global existence
 - Lipschitz continuity, local Lipschitz vs. global Lipschitz

Second order linear equations

Feb 3, Basic math of solutions (upload Assignment 2 by: **2 pm**)

- Section 3.1
- Section 3.2 (skim)
- Section 3.3
- Section 3.4 (skim)
 - Formulation of second order equations and the initial value problem
 - The characteristic equation
 - Complex roots, exponential growth/decay (real part) oscillation rate (imaginary part)

Feb 5, Inhomogeneous equations, forcing

- Section 3.5
- Section 3.6
 - Formulation of the initial value problem with forcing
 - General and particular solutions
 - Guess the answer, “undetermined coefficients”
 - Express the answer as an integral “variation of parameters”

Feb 10, Linear oscillators(upload Assignment 3 by: **2 pm**)

- Section 3.7
 - $F = ma$, spring/mass systems, restoring force, mass, friction
 - The linearized pendulum (not covered in the chapter)
 - Dimensional analysis and scaling of the frequency and damping rate
 - Underdamped and overdamped systems

Feb 12, Forces oscillators and resonance

- Section 3.8 (challenging material, essential for applications)
 - Non-resonant periodic forcing
 - Resonant periodic forcing and linear growth of solutions
 - Resonance peaks and their widths for forced oscillators with friction

Linear systems of equations

Feb 19, Formulation and examples of linear constant coefficient systems

- **30 minute quiz**
- Section 7.1
- Section 7.2
 - Examples, coupled oscillators
 - Examples, electric circuits
 - Review of vectors and matrices, addition and multiplication
 - Formulation: a system of first order linear constant coefficient equations

Feb 24, Linear algebra review, role of eigenvalues and eigenvectors (upload Assignment 4 by: **2 pm**)

- Section 7.3
- Section 7.4 (don't worry about determinants and Wronskians)
- Section 7.5 (one of the most important of the course)
 - Eigenvalues and eigenvectors of matrices
 - Superposition of solutions
 - The vector space of solutions,
 - The solution corresponding to an eigenvalue/eigenvector pair
 - The general solution as a superposition of eigenvector solutions

Feb 26, Complex eigenvalues, growth, decay, oscillation

- Section 7.6 (main focus)
- Section 7.8 (be aware of this but do not focus on it)
 - Significance of the real and imaginary part of the eigenvalue
 - Behavior of solutions
 - Examples involving circuits and mechanical systems
 - Using Python and `numpy` to compute eigenvalues and eigenvectors

March 3, Fundamental solution, impulse response, forcing (upload Assignment 5 by: **2 pm**)

- Section 7.7
- Section 7.9
 - The fundamental solution matrix and matrix exponential
 - Solution with forcing using the fundamental solution
 - A bit about the Laplace transform

Nonlinear equations, phase plane and local behavior

March 5, First order systems of two equation systems

- Section 9.1 (mostly review)
- Section 9.2
 - Linear equations, kinds of behavior
 - Example: nonlinear pendulum,
 - Nonlinear problems, stationary/critical points
 - Behavior near critical points via linearization
 - Phase plane analysis of the nonlinear pendulum

March 10, Larger systems of nonlinear equations (upload Assignment 6 by: **2 pm**)

- Section 9.3
- Section 9.4
- Section 9.6 (skim)
 - Examples: double pendulum, chemical rate equations
 - Critical points and local behavior
 - Global behavior via phase plane, species competition models

March 12, Periodic solutions, limit cycles,

- Section 9.5
- Section 9.7
 - Predator/prey model via the phase plane
 - Poincaré Bendixson theorem
 - Super-critical bifurcation (lightly)
 - Vander Pol equation

March 24, Chaos (upload Assignment 7 by: **2 pm**)

- Section 9.9
- Supplementary notes
 - Sensitivity of solutions, Liapunov exponents
 - The Lorenz attractor
 - Other examples of chaos

Midterm exam, March 26

Power series in theory and practice

March 31, Power series

- Section 5.1
 - Convergence/non-convergence, “radius” of convergence
 - Examples of Taylor series, distance to complex singularities
 - Term by term differentiation and integration
 - Multiplication and substitution of series

April 2, Power series representation of differential equation solutions

- Section 5.2
- Section 5.3 (lightly)
 - Constructing the series term by term, recurrence relations
 - Assessing the radius of convergence
 - Assessing growth/decay of coefficients, analytical technique

April 7, Singular points of the differential equation, (upload Assignment 8 by: **2 pm**)

- Section 5.4 (pay attention to the goal: finding local power law behavior)
- Section 5.5 (don’t read the algebra in detail, see what they’re trying to accomplish)
- Section 5.6 (skim)
- Section 5.7 (pay attention to the technique, not the classification of Bessel functions)
 - Express the local solution as a “power law” with power series corrections
 - Find the behavior of solutions by finding formulas that satisfy the differential equation locally
 - Bessel functions are important for partial differential equations in 2D

April 9 Introduction to numerical computing in Python

- Supplementary notes
 - Computing and plotting solutions given by power series

- Environment, variables, control flow, loops
- Numpy arrays
- Plotting
- Goal: create plots like Figure 5.7.1, etc.

Numerical computing

April 14, Time stepping methods

- Section 8.1
- Section 8.2
- Section 8.3 (skim)
- Section 8.5 (important and easy)
 - Numerical time stepping methods for the initial value problem
 - Forward Euler method
 - Quantitative error analysis
 - More accurate multi-stage Runge Kutta methods
 - Time step methods in Python

April 16, Differential equation solving software in Python/numpy

- Supplementary notes
 - What fancy software does to reach a specified accuracy efficiently:
 - * Variable and high order methods
 - * Error estimation
 - * Variable and adaptive time step selection
 - Example: double and triple pendulum, convert second order to first order
 - Visualizing solution: movie

Fourier series, heat and wave equations

April 21, Fourier sine and cosine series

- Section 10.1 (pay attention to the goal: finding local power law behavior)
- Section 10.2 (don't read the algebra in detail, see what they're trying to accomplish)
- Section 10.3 (skim)
- Section 10.4 (easy but important)
 - Two point boundary value problems and eigenfunctions for ∂_x^2
 - Fourier sine and cosine series for periodic functions, orthogonality and formulas
 - Examples, piecewise constant and linear
 - Completeness (no proofs)
 - Gibbs phenomenon

Arpil 23 Fourier series and the heat equation

- Section 10.5
- Section 10.6
 - Derivation of the heat equation, energy flux, boundary conditions

- Separation of variables methods
- Qualitative behavior, smoothing, decay of Fourier coefficients

Arpil 28 The wave equation, modes of vibration

- Section 10.7
 - Derivation of the wave equation
 - Wave propagation
 - Wave reflection at boundaryes
 - Modes of vibration
 - Harmonics and superposition