Probability Limit Theorems, II, Homework

- **1.** Is it possible to have a continuous time continuous path martingale X(t) so that $X(0) \equiv 0$ but $E[X(T)^2] = \infty$ for some $T < \infty$?
- **2.** Let $f(t) = \sum_{n} \hat{f}_{n} e^{int}$, so that

$$\int_{0}^{2\pi} |f(t)|^2 dt = 2\pi \sum_{n} \left| \hat{f}_n \right|^2 < \infty .$$

Suppose independent random variables s_n have values $s_n = \pm 1$ and $E(s_n) = 0$. Define

$$g(t) = \sum_{n} s_n \hat{f}_n e^{int}$$

Let p be in the range $2 \le p < \infty$. Show that $g \in L^p$ with probability one. Note that there is no reason for f to be in any L^p with p > 2. Hint: try p of the form 2k.

3. A discrete time stochastic process, X_n , is a renewal process if there is an increasing family of stopping times, $\tau_1 < \tau_2 < \cdots$ with $\mathrm{E}[\tau_{k+1} - \tau_k \mid \mathcal{F}_{\tau_{\parallel}}] \leq \infty$ almost surely so that the process "starts over" at each τ_k . We can give the technical definition in terms of the k^{th} restarted process:

$$Y_n^k = X_{\tau_k + n}$$

The condition is that the joint distribution of any finite part: X_0, X_1, \dots, X_N is the same as the joint distribution of Y_0^k, \dots, Y_N^k , for each k and N, and that these finite parts are independent. Suppose that S is a finite or countable "state space" and that S_n is a positive recurrent indecomposable Markov chain on S. Let $X_n = f(S_n)$ for some function, f.

- **a.** If $S_0 = s^*$ is deterministic, show that X_n is a renewal process. Hint: look at the times when $S_n = s^*$.
- **b.** Use this to show that

$$\bar{f} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n} f(S_k) \tag{1}$$

exists, at least if f is bounded. Hint: break the sum into sums over independent epochs (times between consecutive renewals). This gives a proof of the ergodic theorem for discrete space Markov chains that is independent of the ergodic theorem.

c. Under the stronger assumption that $E[\tau_1^2] < \infty$, prove a central limit theorem for sums of the form (1).