Probability Limit Theorems, II, Homework 3,
Mehler formula and Hermite polynomials

The computations here revolve around the “velocity part” of the Ornstein
Uhlenbeck process
dX = -Xdt+dW . (1)

The normalization does not make physical sense but simplifies later computa-
tions. The PDE satisfied by the probability density for X (t) is

1
Ut = 5Usa + (zu), = Upe + Tuy +u = Lu . (2)
The backward equation, satisfied by expected values, is
ft+f;c;c_xfx:ft+[/*f:0' (3)

The operators Lu = %um + (zu), and L*f = %fmx — xf, are adjoint in the
sense that

(f, Lu) = (L"f,u) ,
with (-,-) being the L? inner product.
(1) We begin with a PDE approach to finding the fundamental solution. This is

the function, G(x,y,t), that satisfies (2) as a function of z and ¢, together
with initial conditions G(z,y,0) = §(x — y). In view of the formula

1 <
) = ig(z—y)
O I
we may write
Glaynt) = 5= [ e ula.t.€)de ()
T

where u satisfies (2) with initial data u(z,t, &) = €*®. This approach can
work because the geometric optics construction of plane wave solutions is
exact in this case. That is, (2) has exact solutions of the form

u(z,t) = A(t)e =

Find these solutions, and you will find that the integral (4) can be found in
closed form. Use this method to find a closed form expression for G(z,y, t),
which is the Mehler formula.

2. For a probabilist, a simpler approach may be to compute the probability
density for X (t) directly from (1). The solution of (1), with initial data
X (0) =y (corresponding to G(z,y,0) = é(x — y)) is (check this)

¢
X(t)=ey —|—/ e~ =) dW (s) .
0

From this it is obvious that X (¢) is Gaussian. The mean and variance are
easy to compute. Use this to get the density for X (¢). Check that this
agrees with your answer to question 1.



3. We express the solution of (2) as
u(z,t) = Z aneton(z) |
n

where the ¢,, and \,, are the eigenfunctions and eigenvalues of the operator
L:

1

We find the coefficients, a,, in the following way. A general function, g(x)
can be written
9(x) = Gntn(z) ,

where

%=/W@M@M=%w%

and the v, are the “adjoint eigenfunctions”, which satisfy

y 1
LY, = Ewnxx — TYnz = A¥n ,
subject to the normalization

We can find the ¢, by converting the eigenvalue problem (5) into the
harmonic oscillator eigenvalue problem. Write ¢, (x) = w(z)h,(x), with
w' /w+ x =0, and you get

1 -1 1
—Hh,, = <)\n — 5) h, , where Hg= 799591: + Eng . (6)
There is a similar trick for the adjoint eigenfunctions. Use this to write a
formula for the Green’s function kernel in terms of the ¢, and ), that
is, in terms of Hermite polynomials.

4. Suppose we solve (2) with “general” initial data, u(x,0) = p(z), that is a
probability density. This is the same as Taking initial data X (0) for (1)
from the density p. Use the results of part 3 to show that u(-,¢) converges
to the standard normal density exponentially fast with a rate that depends
on the number of Hermite polynomials that are orthogonal to p.



