
Probability Limit Theorems, II, Homework 3,
Mehler formula and Hermite polynomials

The computations here revolve around the “velocity part” of the Ornstein
Uhlenbeck process

dX = −Xdt+ dW . (1)

The normalization does not make physical sense but simplifies later computa-
tions. The PDE satisfied by the probability density for X(t) is

ut =
1
2
uxx + (xu)x = uxx + xux + u = Lu . (2)

The backward equation, satisfied by expected values, is

ft + fxx − xfx = ft + L∗f = 0 . (3)

The operators Lu = 1
2uxx + (xu)x and L∗f = 1

2fxx − xfx are adjoint in the
sense that

〈f, Lu〉 = 〈L∗f, u〉 ,
with 〈·, ·〉 being the L2 inner product.

(1) We begin with a PDE approach to finding the fundamental solution. This is
the function, G(x, y, t), that satisfies (2) as a function of x and t, together
with initial conditions G(x, y, 0) = δ(x − y). In view of the formula

δ(x − y) =
1
2π

∫ ∞

−∞
eiξ(x−y)dξ

we may write

G(x, y, t) =
1
2π

∫
e−iξyu(x, t, ξ)dξ , (4)

where u satisfies (2) with initial data u(x, t, ξ) = eiξx. This approach can
work because the geometric optics construction of plane wave solutions is
exact in this case. That is, (2) has exact solutions of the form

u(x, t) = A(t)eiξ(t)·x .

Find these solutions, and you will find that the integral (4) can be found in
closed form. Use this method to find a closed form expression forG(x, y, t),
which is the Mehler formula.

2. For a probabilist, a simpler approach may be to compute the probability
density for X(t) directly from (1). The solution of (1), with initial data
X(0) = y (corresponding to G(x, y, 0) = δ(x− y)) is (check this)

X(t) = e−ty +
∫ t

0

e−(t−s)dW (s) .

From this it is obvious that X(t) is Gaussian. The mean and variance are
easy to compute. Use this to get the density for X(t). Check that this
agrees with your answer to question 1.



3. We express the solution of (2) as

u(x, t) =
∑

n

ane
λntφn(x) ,

where the φn and λn are the eigenfunctions and eigenvalues of the operator
L:

Lφn =
1
2
φnxx + xφnx + φn = λnφn . (5)

We find the coefficients, an, in the following way. A general function, g(x)
can be written

g(x) =
∑

n

ĝnφn(x) ,

where
ĝn =

∫
ψn(x)g(x)dx = 〈ψn, g〉 ,

and the ψn are the “adjoint eigenfunctions”, which satisfy

L∗ψn =
1
2
ψnxx − xψnx = λnψn ,

subject to the normalization

〈ψn, φn〉 = δmn .

We can find the φn by converting the eigenvalue problem (5) into the
harmonic oscillator eigenvalue problem. Write φn(x) = w(x)hn(x), with
w′/w + x = 0, and you get

−Hhn =
(
λn − 1

2

)
hn , where Hg =

−1
2
gxx +

1
2
x2g . (6)

There is a similar trick for the adjoint eigenfunctions. Use this to write a
formula for the Green’s function kernel in terms of the φn and ψn, that
is, in terms of Hermite polynomials.

4. Suppose we solve (2) with “general” initial data, u(x, 0) = ρ(x), that is a
probability density. This is the same as Taking initial data X(0) for (1)
from the density ρ. Use the results of part 3 to show that u(·, t) converges
to the standard normal density exponentially fast with a rate that depends
on the number of Hermite polynomials that are orthogonal to ρ.


