
Probability Limit Theorems, II, Homework 4,
Hermite polynomials and Wiener chaos

Probabilists often use a different normalization for Hermite polynomials than
the one in homework 3. Adopting this, we define Hn(x) by

Hn(x)e−x2/2 = ∂xe−x2/2 . (1)

It is common to put in a factor of (−1)n so that Hn has the form xn + · · ·. Our
H3 is −x3 + 3x, not x3 − 3x.

1. The exponential generating function (as opposed to the “ordinary” generat-
ing function) for the Hn is

F (x, z) =
∞∑

n=0

zn

n!
Hn(x) .

The ordinary generating function is missing the factor 1/n!. Use the for-
mula (1) to find F (x, z) explicitly. Use this to find an integral formula
for Hn(x). This formula can be used to derive approximations to Hn(x)
when n and x are large.

2. With the notation g(x) = 1√
2π

e−x2/2, show that

∫
Hn(x)Hm(x)g(x)dx = 0 when m 6= n,

and evaluate ∫
Hn(x)2g(x)dx .

Hint: Show that xke−x2/2 ∼ Hk(∂x)e−x2/2 (e.g. using the Fourier trans-
form). Suppose that m < n and show that

Hm(x)∂n
x e−x2/2 = ∂n−m

x P (∂x)e−x2/2 ,

where P is some polynomial. For m = n this is almost true.

3. Show that the Hermite polynomials are a (complete) basis for the Hilbert
space L2

g, which has inner product

〈u, v〉g =
∫

u(x)v(x)g(x)dx .

Do do this, compute the Hermite polynomial expansion of eiξx (formula
(1) will be helpful here) and show explicitly that it converges to eiξx. Why
is this enough?



4. Suppose that X is a standard normal random variable and f(x) has
E(f2(X)) < ∞. Interpret the Hermite expansion of f as a representation
of the random variable f(X) as a linear combination of “Hermite” random
variables Hn(X).

5. Here is the extension to n variables. A multi-index is a list of n non negative
integers: α = (αn, · · · , αn). The notation xα means xα1

1 · · · · · xαn
n , and

∂α
x = ∂α1

x1
· · · · ·∂αn

xn
. The degree of a multi index is p = |α| = α1 + · · ·+αn.

The multidimensional Hermite polynomials are

Hα(x) = Hα1(x1) · · · · ·Hαn(xn) = e|x|
2/2∂α

x e−|x|
2/2 . (2)

Show that the Hilbert space L2
g(Rn) is a direct orthogonal sum of the

degree p subspaces

Sp = span of {Hα | |α| = p} .

6. For any orthogonal n × n matrix, Q, and any function f ∈ L2
g(R

n), define
Qf by (Qf)(x) = f(Qx). Clearly ‖Qf‖g = ‖f‖g.

a. Verify by direct calculation that the space S2 is invariant under the
action of Q for n = 2. That is, show that if x′ = x cos(θ) + y sin(θ)
and y′ = y cos(θ)− x sin(θ), then

H2(x′) = a(θ)H2(x) + b(θ)H1(x)H1(y) + c(θ)H2(y) ,

and find a similar representation for H1(x′)H1(y′).

b. Give a simpler proof that each Sp is invariant for any n. Hint: what
does Q do to ∂α

x ?

c. Compute fp(x, ξ) = Spe
iξ·x. Here, I have used S to denote the orthog-

onal projection onto the space S. Hint: the right Q can make this
easy.

7. Now let (Ω,F , µ) represent Wiener measure for Brownian motion on the
interval [0, 1] with W (0) = 0. Let FL ⊂ F be the algebra of sets generated
by the diadic interval differences

GL,k = W ((k + 1)2−L)−W (k2−L) , for k = 0, 1, . . . , 2L − 1.

For any f(W ) (I will use W instead of ω to represent the basic random
element of Ω: an element of Ω is a path.) with E[f2(W )] < ∞] define

fL,p(W ) = SpE [f | FL] .

Here, we use Sp, as in part 6c, to be the orthogonal projection onto the
space of order p in the space of functions of n = 2L independent gaussians.
Show that, for each p, fL,p is a martingale as a function of L. Show that
the limit

lim
L→∞

fL,p(W ) = fp(W )



exists, that f(W ) =
∑∞

p=0 fp(W ), and that

E
[
f2(W )

]
=

∞∑
p=0

E
[
f2

p (W )
]

.

8. Show that for each f and p there is a function ap(t1, . . . , tp) with

fp(W ) =
∫ 1

0

∫ t1

0

· · ·
∫ tp−1

0

ap(t1, . . . , tp)dW (tp) · · · dW (t1) .

Hint: Take a limit of approximations aL,p(t1, . . . , tp), which are martin-
gales (in L) for each p as functions of (t1, . . . , tp) (show this). Note that
in the limit, the energy in all terms involving H2(x) = x2 − 1 or higher
goes to zero. These spaces are the Wiener chaos spaces of degree p.


