Probability Limit Theorems, II, Homework 4,
Hermite polynomials and Wiener chaos

Probabilists often use a different normalization for Hermite polynomials than
the one in homework 3. Adopting this, we define H,(x) by

Hy(z)e ™ /2 = 9,e"/2 . (1)

It is common to put in a factor of (—1)™ so that H,, has the form 2™ 4 ---. Our
Hj is —23 + 3z, not x> — 3x.

1. The exponential generating function (as opposed to the “ordinary” generat-
ing function) for the H,, is

F(z,z)= Z
n=0

The ordinary generating function is missing the factor 1/n!. Use the for-
mula (1) to find F(x,z) explicitly. Use this to find an integral formula
for H, (x). This formula can be used to derive approximations to H,, ()
when n and x are large.
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2. With the notation g(x) = \/%e_‘czﬂ, show that

/Hn(x)Hm(x)g(x)dx =0  when m # n,
and evaluate
/Hn(x)Qg(x)dx.

Hint: Show that z¥e=*"/2 ~ Hk(am)e’””2/2 (e.g. using the Fourier trans-
form). Suppose that m < n and show that

Hy(2)00 e~ 12 = 927" P(9,)e /2,
where P is some polynomial. For m = n this is almost true.

3. Show that the Hermite polynomials are a (complete) basis for the Hilbert
space Lf], which has inner product

Do do this, compute the Hermite polynomial expansion of ¢** (formula
(1) will be helpful here) and show explicitly that it converges to e®*. Why
is this enough?



4. Suppose that X is a standard normal random variable and f(z) has
E(f*(X)) < oco. Interpret the Hermite expansion of f as a representation
of the random variable f(X) as a linear combination of “Hermite” random
variables H,, (X).

5. Here is the extension to n variables. A multi-index is a list of n non negative

1 . — 3 « (&5} (7%
integers: @ = (ay, -+, q,). The notation % means x{t -2, and

oF =0g1----- 0gr. The degree of a multi index is p = |a| = a1 4+ .
The multidimensional Hermite polynomials are

Ho(z) = Hy, (z1) - -+ - - Hy (2,) = e\x|2/23§e*|z\2/2 . (2)

Show that the Hilbert space LE(R") is a direct orthogonal sum of the
degree p subspaces

Sp =span of {H, | |a| =p} .

6. For any orthogonal n x n matrix, @, and any function f € L2(R"), define

Qf by (Qf)(@) = F(Qx). Clearly |Qf]l, = IIfIl, ’

a. Verify by direct calculation that the space Sy is invariant under the
action of @ for n = 2. That is, show that if 2’ = x cos(f) + ysin(6)
and y’ = ycos(f) — xsin(f), then

Hy(2') = a(0) Ha(x) + b(0) Hy(z) Hy(y) + c(6) Ha(y) ,

and find a similar representation for Hq(a')Hi (y').

b. Give a simpler proof that each S, is invariant for any n. Hint: what
does @ do to 957

c. Compute f,(x,&) = Spe’®®. Here, I have used S to denote the orthog-
onal projection onto the space §. Hint: the right ¢ can make this
easy.

7. Now let (Q,F,u) represent Wiener measure for Brownian motion on the
interval [0, 1] with W (0) = 0. Let Fr C F be the algebra of sets generated
by the diadic interval differences

Grr=W(k+1)2"5 -w(k2=F) , fork=0,1,...,2F - 1.

For any f(W) (I will use W instead of w to represent the basic random
element of Q: an element of (2 is a path.) with E[f2(W)] < oo] define

fop,W)=8,E[f| Fi] .

Here, we use Sp, as in part 6¢, to be the orthogonal projection onto the
space of order p in the space of functions of n = 2” independent gaussians.
Show that, for each p, fr , is a martingale as a function of L. Show that
the limit

LILH;O fL,p(W) = fp(W)



exists, that f(W) = 327" f,(W), and that
E[fPW)] =Y E[f(V)] .
p=0

8. Show that for each f and p there is a function a,(t1,...,t,) with

fp(W)z/Ol/Otl---/Otp_lap(tl,...,tp)dW(tp)---dW(tl).

Hint: Take a limit of approximations ar, »(t1,...,tp), which are martin-
gales (in L) for each p as functions of (¢1,...,t,) (show this). Note that
in the limit, the energy in all terms involving Ho(z) = 22 — 1 or higher
goes to zero. These spaces are the Wiener chaos spaces of degree p.



