
1. Brownian Motion as a Stochastic Process.

A stochastic process can be thought of in one of many equivalent ways. We can begin

with an underlying probability space (Ω, Σ , P ) and a real valued stochastic process can

be defined as a collection of random variables {x(t, ω)} indexed by the parametr set T.

This means that for each t ∈ T, x(t , ω) is a measurable map of (Ω ,Σ) → (R,B0) where

(R,B0) is the real line with the usual Borel σ-field. The parameter set usually represents

time and could be either the integers representing discrete time or could be [0 , T ], [0, ∞)

or (−∞ ,∞) if we are studying processes in continuous time. For each fixed ω we can view

x(t , ω) as a map of T → R and we would then get a random function of t ∈ T. If we

denote by X the space of functions on T, then a stochastic process becomes a measurable

map from a probability space into X. There is a natural σ-field B on X and measurability

is to understood in terms of this σ-field. This natural σ-field, called the Kolmogorov σ-

field, is defined as the smallest σ-field such that the projections {πt(f) = f(t) ; t ∈ T}
mapping X → R are measurable. The point of this definition is that a random function

x(· , ω) : Ω → X is measurable if and only if the random variables x(t , ω) : Ω → R are

measurable for each t ∈ T.

The mapping x(·, ·) induces a measure on (X ,B) by the usual definition

Q(A) = P
[
ω : x(· , ω) ∈ A]

(1.1)

for A ∈ B. Since the underlying probability model (Ω ,Σ , P ) is irrelevent, it can be replaced

by the canonical model (X, B , Q) with the special choice of x(t, f) = πt(f) = f(t). A

stochastic process then can be defined simply as a probability measure Q on (X ,B).

Another point of view is that the only relevent objects are the joint distributions of

{x(t1 , ω), x(t2 , ω), · · · , x(tk , ω)} for every k and every finite subset F = (t1, t2, · · · , tk) of

T. These can be specified as probability measures µF on Rk. These {µF } cannot be

totally arbitrary. If we allow different permutations of the same set, so that F and F ′ are

permutations of each other then µF and µF ′ should be related by the same permutation.

If F ⊂ F ′, then we can obtain the joint distribution of {x(t , ω) ; t ∈ F} by projecting the

joint distribution of {x(t , ω) ; t ∈ F ′} from Rk′ → Rk where k′ and k are the cardinalities

of F ′ and F respectively. A stochastic process can then be viewed as a family {µF } of

distibutions on various finite dimensional spaces that satisfy the consistency conditions. A
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theorem of Kolmogorov says that this not all that different. Any such consistent family

arises from a Q on (X ,B) which is uniquely determine by the family {µF }.
If T is countable this is quite satisfactory. X is the the space of sequences and the

σ-field B is quite adequate to answer all the questions we may want to ask. The set of

bounded sequences, the set of convergent sequences, the set of summable sequences are

all measurable subsets of X and therefore we can answer questions like ‘does the sequence

converge with probability 1 ?’. etc. However if T is uncountable like [0, T ], then the

space of bounded functions, the space of continuous functions etc, are not measurable

sets. They do not belong to B. Basically, in probability theory, the rules involve only a

countable collection of sets at one time and any information that involves the values of an

uncountable number of measurable functions is out of reach. There is an intrinsic reason

for this. In probability theory we can change the values of a single random variable on a

set of measure 0 and we have not changed anything of consequence. Since we are allowed

to mess up each function on a set of measure 0 we have to assume that each function has

indeed been messed up on a set of measure 0. If we are dealing with a countable number

of functions the ‘mess up ’has occured only on the countable union of these invidual sets of

measure 0, which by the properties of a measure is again a set of measure 0. On the other

hand if we are dealing with an uncountable set of functions, then these sets of measure 0

can possibly gang up on us to produce a set of positive or even full measure. We just can

not be sure.

Of course it would be foolish of us to mess things up unnecessarily. If we can clean

things up and choose a nice version of our random variables we should do so. But we

cannot really do this sensibly unless we decide first what nice means. We however face the

risk of being too greedy and it may not be possible to have a version as nice as we seek.

But then we can always change our mind.

Very often it is natural to try to find a version that has continuous trajectories. This is

equivalent to restricting X to the space of continuous functions on [0, T ] and we are trying

to construct a measure Q on X = C[0 , T ] with the natural σ-field B. This is not always

possible. We want to find some sufficient conditions on the finite dimensional distributions

{µF } that guarantee that a choice of Q exists on (X ,B).

Theorem 1.1 . Assume that for any pair (s, t) ∈ [0 , T ] the bivariate distribution µs,t
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satisfies ∫ ∫
|x− y|βµs,t(dx , dy) ≤ C|t− s|1+α (1.2)

for some positive constants β, α and C. Then there is a unique Q on (X ,B) such that it

has {µF } for its finite dimensional distributions.

Proof: Since we can only deal effectively with a countable number of random variables,

we restrict ourselves to valuse at diadic times. Let us for simplicity take T = 1. Denote

by Tn time points t of the form t = j
2n for 0 ≤ j ≤ 2n. The countable union ∪∞j=0Tj = T0

is a counatble dense subset of T. We will construct a probability measure Q on the space

of sequences corresponding to the values of {x(t) : t ∈ T0}, show that Q is supported

on sequences that produce uniformly continuous functions on T0 and then extend them

automatically to T by continuity and the extension will provide us the natural Q on C[0 , 1].

If we start from the set of values on Tn, the n-th level of diadics, by linear iterpolation we

can construct a version xn(t) that agrees with the original variables at these diadic points.

This way we have a sequence xn(t) such that xn(·) = xn+1(·) on Tn. If we can show

Q

[
x(·) : sup

0≤t≤1
|xn(t)− xn+1(t)| ≥ 2−nγ

]
≤ C2−nδ (1.3)

then we can conclude that

Q
[
x(·) : lim

n→∞ xn(t) = x∞(t) exists uniformly on [0 , 1]
]

= 1 (1.4).

The limit x∞(·) will be continuous on T and will coincide with x(·) on T0 thereby es-

tablishing our result. Proof of (1.3) depends on a simple observation. The difference

|xn(·) − xn+1(·)| achieves its maximum at the mid point of one of the diadic intervals

determined by Tn and hence

sup
0≤t≤1

|xn(t)− xn+1(t)| ≤ sup
1≤j≤2n

|xn(
2j − 1
2n+1

)− xn+1(
2j − 1
2n+1

)|

≤ sup
1≤j≤2n

max
{|x(2j − 1

2n+1
)− x(

2j
2n+1

)|, |x(2j − 1
2n+1

)− x(
2j − 2
2n+1

)|}
and we can estimate the left hand side of (1.3) by
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Q

[
x(·) : sup

0≤t≤1
|xn(t)− xn+1(t)| ≥ 2−nγ

]
≤ Q

[
sup

1≤i≤2n+1
|x( i

2n+1
)− x(

i− 1
2n+1

)| ≥ 2−nγ

]

≤ 2n+1 sup
1≤i≤2n+1

Q

[
|x( i

2n+1
)− x(

i− 1
2n+1

)| ≥ 2−nγ

]
≤ 2n+12nβγ sup

1≤i≤2n+1
EQ

[|x( i

2n+1
)− x(

i− 1
2n+1

)|β]
≤ C2n+1 2nβγ 2−(1+α)(n+1)

≤ C2−nδ

provided δ ≤ α− βγ. For given α, β we can pick γ < α
β and we are done.

An equivalent version of this theorem is the following.

Theorem 1.2 . If x(t , ω) is a stochastic process on (Ω ,Σ , P ) satisfying

EP
[|x(t)− x(s)|β] ≤ C|t− s|1+α

for some positive constants α, β and C, then if necessary , x(t, ω) can be modified for each

t on a set of measure zero, to obtain an equivalent version that is almost surely continuous.

As an important application we consider Brownian Motion, which is defined as a

stochastic process that has multivariate normal distributions for its finite dimensional

distributions. These normal distributions have mean zero and the variance covariance

matrix is specified by Cov(x(s), x(t)) = min(s, t). An elementary calculation yields

E|x(s)− x(t)|4 = 3|t− s|2

so that Theorem 1.1 is applicable with β = 4, α = 1 and C = 3.

To see that some restriction is needed, let us consider the Poisson process defined as

a process with independent increments with the distribution of x(t)− x(s) being Poisson

with parameter t− s provided t > s. In this case since

P [x(t)− x(s) ≥ 1] = 1− exp[−(t− s)]

we have, for every n ≥ 0,

E|x(t)− x(s)|n ≥ 1− exp[−|t− s|] ' C|t− s|
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and the conditions for Theorem 1.1 are never satisfied. It should not be, because after all

a Poisson process is a counting process and jumps whenever the event that it is counting

occurs and it would indeed be greedy of us to try to put the measure on the space of

continuous functions.

Remark. The fact that there cannot be a measure on the space of continuous functions

whose finite dimensional distributions coincide with those of the Poisson process requires a

proof. There is a whole class of nasty examples of measures {Q} on the space of continuous

functions such that for every t ∈ [0 , 1]

Q
[
ω : x(t , ω) is a rational number

]
= 1

The difference is that the rationals are dense, whereas the integers are not. The proof

has to depend on the fact that a continuous function that is not identically equal to some

fixed integer must spend a positive amount of time at nonintegral points. Try to make a

rigorous proof using Fubini’s theorem.

2. Garsia, Rodemich and Rumsey inequality.

If we have a stochastic process x(t , ω) and we wish to show that it has a nice version,

perhaps a continuous one, or even a Holder continuous or differentiable version, there are

things we have to estimate. Establishing Holder continuity amounts to estimating

ε(`) = P

[
sup
s,t

|x(s)− x(t)|
|t− s|α ≤ `

]
and showing that ε(`) → 1 as ` → ∞. These are often difficult to estimate and require

special methods. A slight modification of the proof of Theorem 1.1 will establish that

the nice, continuous version of Brownian motion actually satisfies a Holder condition of

exponent α so long as 0 < α < 1
2
.

On the other hand if we want to show only that we have a version x(t , ω) that is

square integrable, we have to estimate

ε(`) = P

[ ∫ 1

0

|x(t , ω)|2dt ≤ `

]
and try to show that ε(`) → 1 as `→ ∞. This task is somewhat easier because we could

control it by estimating

EP

[ ∫ 1

0

|x(t , ω)|2 dt
]
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and that could be done by the use of Fubini’s theorem. After all

EP

[ ∫ 1

0

|x(t , ω)|2 dt
]

=
∫ 1

0

EP
[ |x(t , ω)|2 ]

dt

Estimating integrals are easier that estimating suprema. Sobolev inequality controls

suprema interms of integrals. Garsia, Rodemich, Rumsey inequality is a generalization

and can be used in a wide variety of contexts.

Theorem 2.1 . Let Ψ(·) and p(·) be continuous strictly increasing functions on [0 ,∞) with

p(0) = Ψ(0) = 0 and Ψ(x) → ∞ as x → ∞. Assume that a continuous function f(·) on

[0 , 1] satisfies ∫ 1

0

∫ 1

0

Ψ
( |f(t)− f(s)|

p(|t− s|)
)
ds dt = B <∞. (2.1)

Then

|f(0)− f(1)| ≤ 8
∫ 1

0

Ψ−1
(4B
u2

)dp(u) (2.2)

The double integral (2.1) has a singularity on the diagonal and its finiteness depends

on f, p and Ψ. The integral in (2.2) has a singularity at u = 0 and its convergence requires

a balancing act between Ψ(·) and p(·). The two conditions compete and the existence of a

pair Ψ(·) , p(·) satisfying all the conditions will turn out to imply some regularity on f(·).
Let us first assume Theorem 2.1 and illustrate its uses by some examples. We will

come back to its proof at the end of the section. First we remark that the following

corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2 . If we replace the interval [0 , 1] by the interval [T1 , T2] so that

BT1,T2 =
∫ T2

T1

∫ T2

T1

Ψ
( |f(t)− f(s)|

p(|t− s|)
)
ds dt

then

|f(T2)− f(T1)| ≤ 8
∫ T2

T1

Ψ−1
(4B
u2

)dp(u)

For 0 ≤ T1 < T2 ≤ 1 because BT1,T2 ≤ B0,1 = B, we can conclude from (2.1), that

the modulus of continuity ωf (δ) satisfies

ωf (δ) = sup
0≤t≤1
0≤s≤1
|t−s|≤δ

|f(t)− f(s)| ≤ 8
∫ δ

0

Ψ−1
(4B
u2

)dp(u) (2.3)
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Proof of Corollary. If we map the interval [T1 , T2] into [0 , 1] by t′ = t−T1
T2−T1

and redefine

f ′(t) = f(T1 + (T2 − T1)t) and p′(u) = p((T2 − T1)u), then∫ 1

0

∫ 1

0

Ψ
( |f ′(t)− f ′(s)|

p′(|t− s|)
)
ds dt

=
1

(T2 − T1)2

∫ T2

T1

∫ T2

T1

Ψ
( |f(t)− f(s)|

p(|t− s|)
)
ds dt =

BT1,T2

(T2 − T1)2

and

|f(T2)− f(T1)| = |f ′(1)− f ′(0)|| ≤ 8
∫ 1

0

Ψ−1

(
4BT1,T2

(T2 − T1)2 u2

)
dp′(u)

= 8
∫ (T2−T1)

0

Ψ−1

(
4BT1,T2

u2

)
dp(u)

In particular (2.3) is now an immediate consequence.

Let us now turn to Brownian motion or more generally processes that satsfy

EP
[ |x(t)− x(s)|β ] ≤ C|t− s|1+α

on [0 , 1]. We know from Theorem 1.1 that the paths can be chosen to be continuous. We

will now show that the continuous version enjoys some additional regularity. We apply

Theorem 2.1 with Ψ(x) = xβ , and p(u) = u
γ
β . Then

EP

[ ∫ 1

0

∫ 1

0

Ψ
( |x(t)− x(s)|

p(|t− s|)
)
ds dt

]
=

∫ 1

0

∫ 1

0

EP

[ |x(t)− x(s)|β
|t− s|g

]
dsdt

≤ C

∫ 1

0

∫ 1

0

|t− s|1+α−γ dsdt

= C Cδ

where Cδ is a constant depending only on δ = 2 + α− γ and is finite if δ > 0. By Fubini’s

theorem, almost surely∫ 1

0

∫ 1

0

Ψ
( |x(t)− x(s)|

p(|t− s|)
)
ds dt = B(ω) <∞

and by Tchebechev’s inequality

P [ B(ω) ≥ B ] ≤ C Cδ

B
.
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On the other hand

8
∫ h

0

(
4B
u2

)
1
β du

γ
β = 8

γ

β
(4B)

1
β

∫ h

0

u
γ−2
β−1 = 8

γ

γ − 2
(4B)

1
β u

γ−2
β

We obtain Holder continuity with exponent γ−2
β

which can be anything less than α
β
. For

Brownian motion α = β
2
− 1 and therefore α

β
can be made arbitrarily close to 1

2
.

With probability 1 Brownian paths satisfy a Holder condition with any exponent less

than 1
2 .

It is not hard to see that they do not satisfy a Holder condition with exponent 1
2

Exercise. Show that

P

 sup
0≤s≤1
0≤t≤1

|x(t)− x(s)|√|t− s| = ∞
 = 1.

Hint: The random variables x(t)−x(s)√
|t−s| have standard normal distributions for any interval

[s, t] and they are independent for disjoint intervals. We can find as many disjoint intervals

as we wish and therefore dominate the Holder constant from below by the supremum of

absolute values of an arbitrary number of independent Gaussians.

Exercise: Precise modulus of continuity. The choice of Ψ(x) = expαx2 with α < 1
2

and p(u) = u
1
2 produces a modulus of continuity of the form

ωx(δ) ≤ 8
∫ δ

0

√
1
α

log
(

1 +
4B
u2

)
1

2
√
u
du

that produces eventually a statement

P

 lim sup
δ→0

ωx(δ)√
δ log 1

δ

≤ 16

 = 1

This is almost the final word, because the argument of the previous exercise can be tight-

ened slightly to yield

P

 lim sup
δ→0

ωx(δ)√
δ log 1

δ

≥
√

2

 = 1

Remark: It turns out that according to a result of Paul Levy

P

 lim sup
δ→0

ωx(δ)√
δ log 1

δ

=
√

2

 = 1
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Proof of Theorem 2.1. Define

I(t) =
∫ 1

0

Ψ
( |f(t)− f(s)|

p(|t− s|)
)
ds

and

B =
∫ 1

0

I(t) dt

There exists t0 ∈ (0 , 1) such that I(t0) ≤ B. We shall prove that

|f(0)− f(t0)| ≤ 4
∫ 1

0

Ψ−1

(
4B
u2

)
dp(u) (2.4)

By a similar argument

|f(1)− f(t0)| ≤ 4
∫ 1

0

Ψ−1

(
4B
u2

)
dp(u)

and combining the two we will have (2.2). To prove (2.4) we shall pick recursively two

sequences {un} and {tn} satisfying

t0 > u1 > t1 > u2 > t2 > · · · > un > tn > · · ·

in the following manner. By induction if tn−1 has already been chosen define

dn = p(tn−1)

and pick un so that p(un) = dn

2 . Then∫ un

0

I(t) dt ≤ B

and ∫ un

0

Ψ
( |f(tn−1)− f(s)|

p(|tn−1 − s|)
)
ds ≤ I(tn−1)

Now tn is chosen so that

I(tn) ≤ 2B
un

and

Ψ
( |f(tn)− f(tn−1)|

p(|tn − tn−1|)
)
≤ 2

I(tn−1)
un

≤ 4B
un−1 un

≤ 4B
u2

n
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We now have

|f(tn)− f(tn−1)| ≤ Ψ−1

(
4B
u2

n

)
p(tn−1 − tn) ≤ Ψ−1

(
4B
u2

n

)
p(tn−1).

p(tn−1) = 2p(un) = 4[p(un)− 1
2
p(un−1)] ≤ 4[p(un)− p(un+1)]

Then,

|f(tn)− f(tn−1)| ≤ 4Ψ−1

(
4B
u2

n

)
[p(un)− p(un+1)] ≤ 4

∫ un

un+1

Ψ−1

(
4B
u2

)
dp(u)

Summing over n = 1, 2, · · · , we get

|f(t0)− f(0)| ≤ 4
∫ u1

0

Ψ−1

(
4B
u2

)
p(du) ≤ 4

∫ u1

0

Ψ−1

(
4B
u2

)
p(du)

and we are done.

3. Convergence of random walks to Brownian Motion.

Let X1, X2, · · · be a sequence of independent identically distributed random variables with

mean 0 and variance 1. The partial sums Sk are defined by S0 = 0 and for k ≥ 1

Sk = X1 +X2 + · · ·+Xk

We rescale and interpolate to define stochastic processes Xn(t) : 0 ≤ t ≤ 1 by

Xn

(k
n

)
=

Sk√
n

for 0 ≤ k ≤ n and for 1 ≤ k ≤ n and t ∈ [k−1
n , k

n ]

Xn(t) = (nt− k + 1)Xn

(k
n

)
+ (k − nt)Xn

(k − 1
n

)
Let Pn denote the distribution of the process Xn(·) on X = C[0 , 1] and P the distribution

of Brownian Motion, or the Wiener measure as it is often called. We want to explore the

sense in which

lim
n→∞Pn = P

Lemma 3.1 . For any finite collection 0 ≤ t1 < t2 < · · · < tm ≤ 1 of m time points the

joint distribution of (x(t1), · · · , x(tm)) under Pn converges, as n→∞, to the corresponding

distribution under P .
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Proof: We are dealing here basically with the central limit theorem for sums independent

random variables. Let us define ki
n = [nti] and the increments

ξi
n =

Ski
n
− Ski−1

n√
n

for i = 1, 2, · · · , m with the convention k0
n = 0. For each n, ξi

n are m mutually independent

random variables and their distributions converge as n→∞ to Gaussians with 0 means and

variances ti− ti−1 respectively. We take t0 = 0. This is of course the same distribution for

these increments under Brownian Motion. The interpolation is of no consequence, because

the difference between the end points is exactly some Xi√
n
. So it does not really matter if

in the definition of Xn(t) if we take kn = [nt] or kn = [nt] + 1 or take the interpolated

value. We can state this convergensce in the form

lim
n→∞EPn [ f(x(t1), x(t2), · · · , x(tm)) ] = EP [ f(x(t1), x(t2), · · · , x(tm)) ]

for every m, any m time points (t1, t2, · · · , tm) and any bounded continuous function f on

Rm.

These measures Pn are on the space X of bounded continuous functions on [0 , 1]. The

space X is a metric space with d(f, g) = sup0≤t≤1 |f(t)− g(t)| as the distance between two

continuous functions. The main Theorem is

Theorem 3.2 . If F (·) is a bounded continuous function on X then

lim
n→∞

∫
X

F (ω)dPn =
∫
X

F (ω)dP

Proof: The main difference is that functions depending on a finite number of coordinates

have been replaced by functions that are bounded and continuous, but otherwise arbitrary.

The proof proceeds by approximation. Let us assume Lemma 3.3 which asserts that for any

ε > 0, there is a compact set Kε such that Pn[X−Kε] ≤ ε. From standard approximation

theory (i.e. Stone-Weierstrass Theorem) the continuous function F , which we can assume

to be bounded by 1, can be approximated by a function f depending on a finite number of

coordinates such that supω∈Kε
|F (ω)− f(ω)| ≤ ε. Moreover we can assume without loss

of generality that f is also bounded by 1. We can estimate

|
∫
X

F (ω)dPn −
∫
X

f(ω)dPn| ≤
∫

Kε

|F (ω)− f(ω)|dPn + 2Pn[Kc
ε ] ≤ 3ε
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as well as

|
∫
X

F (ω)dP −
∫
X

f(ω)dP | ≤
∫

Kε

|F (ω)− f(ω)|dPn + 2Pn[Kc
ε ] ≤ 3ε

Therefore

|
∫
X

F (ω) dPn −
∫
X

F (ω) dP | ≤ 6ε+ |
∫
X

f(ω) dPn −
∫
X

f(ω) dP |

and we are done.

Remark: We shall prove Lemma 3.3 under the additional assuption that the underlying

random variables Xi have a finite 4-th moment. See the exercise at the end to remove this

condition.

Lemma 3.3 . Let Pn, P be as before. Assume that the random variables Xi have a finite

moment of order four. Then for any ε > 0 there exists a compact set Kε ⊂ X such that

Pn[Kε] ≥ 1− ε

for all n and

P [Kε] ≥ 1− ε

as well.

Proof: The set

KB,α = {f : f(0) = 0, |f(t)− f(s)| ≤ B|t− s|α}

is a compact subset of X for each fixed B and α. Theorem 2.1 gives us an estimate on

Q[Kc
B,α which can be made small by taking B large enough. We need to check that (1.2)

holds for Pn with some constants β, α and C that do not depend on n. It clearly holds for

the Brownian motion P .

If {Xi} are independent identically distributed random variables with zero mean, an

elementary calculation yields

E[(X1 +X2 + · · ·+Xk)4] = kE[X4
1 ] + 3k(k − 1)

[
E[X2

1 ]
]2 ≤ C1k + C2k

2 (3.1)

Let us try to estimate E[(Xn(t)−Xn(s))4]. If |t− s| ≤ 2
n we can estiamte

|Xn(t)−Xn(s)| ≤M |t− s|
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where M is the maximum slope. There are atmost three intervals involved and

E[M4] ≤ n2E
[

[max |Xi|, |X2|, |X3|]4
] ≤ C n2

which implies that

E
[ |x(t)− x(s)|4 ] ≤ |t− s|4E[M4] ≤ C|t− s|2 (3.2)

If |t− s| > 2
n we can find t′, s′ such that ns′, nt′ are integers, |t− t′| ≤ 1

n and |s− s′| ≤ 1
n .

Applying the estimate 3.2 for the end pieces that are increments over incomplete intervals

and the estimate 3.1 for the piece |x(t′)− x(s′)|

E[|Xn(t)−Xn(s)|4] ≤ C n−2 +
C

n
|t′ − s′|+ C|t′ − s′|2

Since both |t− s| and |t′ − s′| are atleast 1
n we obtain (1.2).

Exercise : To extend the result to the case where only the second moment exists, we

do truncation and write Xi = Yi + Zi. The pairs (Yi, Zi) are independent identically

distributed Yi has mean 0, variance 1 and a finite fourth moment. Zi has 0 mean and

arbitrarily small variance σ2. We have Xn(t) = Yn(t) + Zn(t) and by Kolmogorov”s

inequality

P

[
sup

0≤t≤1
|Zn(t)| ≥ δ

]
≤ δ−2E

[
[Zn(1)]2

]
= δ−2σ2

which can be made small uniformly in n if σ2 is small enough. Complete the proof.
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4. Brownian Motion As a Martingale.

If P is the Wiener measure on (Ω = C[0, T ],B) and Bt is the σ-field generated by x(s) for

0 ≤ s ≤ t, then x(t) is a martingale with respect to (Ω,Bt, P ), i.e for each t > s in [0, T ]

EP {x(t)|Fs} = x(s) a.e. P (4.1)

and so is x(t)2 − t. In other words

EP {x(t)2 − t |Fs} = x(s)2 − s a.e. P (4.2)

The proof is rather straight forward. We write x(t) = x(s) +Z where Z = x(t)− x(s) is a

random variable independent of the past history Bs and is distributed as a Gaussian random

variable with mean 0 and variance t− s. Therefore EP {Z|Bs} = 0 and EP {Z2|Bs} = t− s
a.e P . Conversely,

Theorem 4.1 If P is a measure on (C[0, T ],B) such that P [x(0) = 0] = 1 and the the

functions x(t) and x2(t)− t are martingales with respect to (C[0, T ],Bt, P ) then P is the

Wiener measure.

Proof: The proof is based on the observation that a Gaussian distribution is determined

by two moments. But that the distribution is Gaussian is a consequence of the fact that

the paths are almost surely continuous and not part of our assumptions. The actual proof

is carried out by establishing that for each real number λ

Xλ(t) = exp
[
λx(t)− λ2

2
t

]
(4.3)

is a martingale with respect to (C[0, T ],Bt, P ). Once this is established it is elementary to

compute

EP [ exp [ λ(x(t)− x(s)) ] |Bs ] = exp
[
λ2

2
(t− s)

]
which shows that we have a Gaussian Process with independent increments with two

matching moments. The proof of (4.3) is more or less the same as proving the central limit

theorem. In order to prove (4.3) we assume with out loss of generality that s = 0 and will

show that

EP

[
exp

[
λx(t)− λ2

2
t

]
|Bs

]
= 1 (4.4)
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To this end let us define successively τ0,ε = 0,

τk+1,ε = min
[

inf
{
s : s ≥ τk, |x(s)− x(τk,ε)| ≥ ε

}
, t , τk,ε + ε

]
Then each τk,ε is a stopping time and eventually τk,ε = t by continuity of paths. The

continuity of paths also guarantees that |x(τk+1,ε)− x(τk,ε)| ≤ ε. We write

x(t) =
∑
k≥0

[x(τk+1,ε)− x(τk,ε)]

and

t =
∑
k≥0

[τk+1,ε − τk,ε]

To establish (4.4) we calculate the quantity on the left hand side as

lim
n→∞EP

 exp

 ∑
0≤k≤n

[
λ[x(τk+1,ε)− x(τk,ε)]− λ2

2
[τk+1,ε − τk,ε]

]  
and show that it equals 1. Let us cosider the σ-field Fk = Bτk,ε

and the quantity

qk(ω) = EP

[
exp

[
λ[x(τk+1,ε)− x(τk,ε)]− λ2

2
[τk+1,ε − τk,ε]

] ∣∣∣∣Fk

]
Clearly, if we use Taylor expansion and the fact that x(t) as well as x(t)2−t are martingales

|qk(ω)− 1| ≤ CEP

[ [
λ3|x(τk+1,ε)− x(τk,ε)|3 + λ2|τk+1,ε − τk,ε|2

] ∣∣∣∣Fk

]
≤ Cλ εE

P
[ [ |x(τk+1,ε)− x(τk,ε)|2 + |τk+1,ε − τk,ε|

] ∣∣Fk

]
= 2Cλ εE

P
[ |τk+1,ε − τk,ε|

∣∣Fk

]
In particular for some constant C depending on λ

qk(ω) ≤ EP
[

exp [ C ε [τk+1,ε − τk,ε] ]
∣∣Fk

]
and by induction

lim sup
n→∞

EP

 exp

 ∑
0≤k≤n

[
λ[x(τk+1,ε)− x(τk,ε)]− λ2

2
[τk+1,ε − τk,ε]

]  
≤ exp[C ε t ]
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Since ε > 0 is arbitrary we prove one half of (4.4). Notice that in any case supω |qk(ω)−1| ≤
ε. Hence we have the lower bound

qk(ω) ≥ EP

[
exp [ −C ε [τk+1,ε − τk ε] ]

∣∣∣∣Fk

]
which can be used to prove the other half. This completes the proof of the theorem.

Exercise: Why does the Theorem fail for the process x(t) = N(t)− t where N(t) is the

standard Poisson Process with rate 1?

Remark: One can use the Martingale inequality in order to estimate the probability

P{sup0≤s≤t |x(s)| ≥ `}. For λ > 0, by Doob’s inequality

P

[
sup

0≤s≤t
exp

[
λx(s)− λ2

2
s

]
≥ A

]
≤ 1
A

and

P

[
sup

0≤s≤t
x(s) ≥ `

]
≤ P

[
sup

0≤s≤t
[x(s)− λs

2
] ≥ `− λt

2

]
= P

[
sup

0≤s≤t
[λx(s)− λ2s

2
] ≥ λ`− λ2t

2

]
≤ exp[−λ`+

λ2t

2
]

Optimizing over λ > 0, we obtain

P

[
sup

0≤s≤t
x(s) ≥ `

]
≤ exp[−`

2

2t
]

and by symmetry

P

[
sup

0≤s≤t
|x(s)| ≥ `

]
≤ 2 exp[−`

2

2t
]

The estimate is not too bad because by reflection principle

P

[
sup

0≤s≤t
x(s) ≥ `

]
= 2P [ x(t) ≥ ` ] =

√
2
π t

∫ ∞

`

exp[−x
2

2 t
] dx

Exercise: One can use the estimate above to prove the result of Paul Levy

P

 lim sup
δ→0

sup 0≤s,t≤1
|s−t|≤δ

|x(s)− x(t)|√
δ log 1

δ

=
√

2

 = 1
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We had an exercise in the previous section that established the lower bound. Let us

concentrate on the upper bound. If we define

∆δ(ω) = sup
0≤s,t≤1
|s−t|≤δ

|x(s)− x(t)|

first check that it is sufficient to prove that for any ρ < 1, and a >
√

2

∑
n

P

[
∆ρn(ω) ≥ a

√
nρn log

1
ρ

]
<∞ (4.5)

To estimate ∆ρn(ω) it is sufficient to estimate supt∈Ij
|x(t)− x(tj)| for kερ

−n overlapping

intervals {Ij} of the form [tj , tj +(1+ε)ρn ] with length (1+ε)ρn. For each ε > 0, kε = ε−1

is a constant such that any interval [s , t] of length no larger than ρn is completely contained

in some Ij with tj ≤ s ≤ tj + ερn. Then

∆ρn(ω) ≤ sup
j

[
sup
t∈Ij

|x(t)− x(tj)|+ sup
tj≤s≤tj+ερn

|x(s)− x(tj)|
]

Therefore, for any a = a1 + a2,

P

[
∆ρn(ω) ≥ a

√
nρn log

1
ρ

]
≤ P

[
sup

j
sup
t∈Ij

|x(t)− x(tj)| ≥ a1

√
nρn log

1
ρ

]

+ P

[
sup

j
sup

tj≤s≤tj+ερn

|x(s)− x(tj)| ≥ a2

√
nρn log

1
ρ

]

≤ 2kερ
−n

[
exp[−a

2
1 nρ

n log 1
ρ

2(1 + ε)ρn
+ exp[−a

2
2 nρ

n log 1
ρ

2ερn
]

]

Since a >
√

2 we can pick a1 >
√

2 and a2 > 0. For ε > 0 sufficiently small (4.5) is easily

verified.
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5. What is a Diffusion Process?

When we want to model a stochastic process in continuous time it is almost impossible to

specify in some reasonable manner a consistent set of finite dimensional distributions. The

one exception is the family of Gaussian processes with specified means and covariances.

It is much more natural and profitable to take an evolutionary approach. For simplicity

let us take the one dimensional case where we are trying to define a real valued stochastic

process with continuous trajectories. The space Ω = C[0, T ] is the space on which we wish

to put down a measure P . We have the σ-fields Bt = σ{x(s) : 0 ≤ s ≤ t} defined for t ≤ T .

The total σ-field B = BT . We try to specify the measure P by specifying approximately

the conditional distributions P [x(t + h) − x(t) ∈ A|Bt]. These distributions are nearly

degenerate and and there mean and variance are specified as

EP
[
x(t+ h)− x(t)|Bt

]
= h b(t, ω) + o(h) (5.1)

and

EP
[
(x(t+ h)− x(t))2|Bt

]
= h a(t, ω) + o(h) (5.2)

as h → 0, where for each t ≥ 0 b(t, ω) and a(t, ω) are Bt measurable functions. Since we

insist on continuity of paths, this will force the distributions to be nearly Gaussian and

no additional specification should be necessary. We will devote the next few lectures to

anvestigate this.

(5.1) and (5.2) are infinitesimal diffrential relations and it is best to state them in

integrated forms that are precise mathematical statements.

bf Definition. We say that a function f : [0, T ]× Ω → R is progressively measurable

if, for every t ∈ [0, T ] the restiction of f to [0, t]× Ω is a measurable function of t and ω

on ([0, t]×Ω,B[0, t]× Bt) where B[0, t] is the Borel σ-field on [0, t].

The condition is a bit stronger than just demanding that for each t, f(t, ω) is Bt

measurable. The following facts are elementary and left as exercises.

1. If f(t, x) is measurable function of t and x, then f(t, x(t, ω)) is progressively meausrable.

2. If f(t, ω) is either left continuous (or right continuous) as function of t for every ω and

if in addition f(t o) is Bt measurable for every t, then f is progressively measurable.

3. There is a sub σ-field Σ = Σpm ⊂ B[0, T ]× BT ) such that progressive measurability is

just measurability with respect to Σpm. In particular standard operations performrd on

progreesively measurable functions yield progressively measurable functions.
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We shall insist that the functions b(· , ·) and be progressively measurable. Let us

suppose that they are bounded functions. The boundedness will be relaxed at a later

stage.

We reformulate conditions (5.1) and (5.2) as

M1(t) = x(t)− x(0)−
∫ t

0

b(s, ω)ds (5.3)

and

M2(t) = [M1(t)]2 −
∫ t

0

a(s , ω)ds (5.4)

are martingales with respect to (Ω,Bt, P ).

We can then define a Diffusion Process corresponding to a, b as a measure P on (Ω,B)

such that relative to (Ω,Bt, P ) M1(t) and M2(t) are martingales. If in addition we are

given a probability measure µ as the initial distribution, i.e.

µ(A) = P [x(0) ∈ A]

then we can expect P to be determined by a, b and µ.

We saw already that if a ≡ 1 and b ≡ 0, with µ = δ0, we get the standard Brownian

Motion. a = a(t, x(t)) and b = b(t, x(t)), we expect P to be a Markov Process, because the

infinitesimal parameters depend only on the current position and not on the past history.

If there is no explicit dependence on time, then the Markov Process can be expected to

have stationary transition probabilities. Finally if a(t, x) = a(t) is purely a function of t

and b(t, ω) = b1(t) +
∫ t

0
c(t , s)x(s)ds is linear in ω, then one expects P to be Gaussian, if

µ is so.

Because the pathe are continuous the same argument that we provided earlier can be

used to establish that

Zλ(t) = exp[λM1(t)−λ
2

2

∫ t

0

a(s , ω)ds] = exp[λ[x(t)−x(0)−
∫ t

0

b( , sω)ds−λ
2

2

∫ t

0

a(s , ω)ds]

(5.5)

is a martingale with respect to (Ω,Bt, P ) for every real λ. We can also take for

our definition of a Diffusion Process corresponding to a, b the condition that Zλ(t) be a

martingale with respect to (Ω,Bt, P ) for every λ. If we do that we did not have to assume

19



that the paths were almost surely continuous. (Ω,Bt, P ) could be any space suppporting

a stochastic process x(t , ω) such that the martingale property holds for Zλ(t). If C is an

upper bound for a, it is easy to check with M1(t) defined by (5.3)

EP [ exp[λ[M1(t)−M1(s] ] ≤ exp[
λ2C

2
]

The lemma of Garsia Rodemich and Rumsey will gurantee that the paths can be chosen

to be continuous.

6. Defining Diffusions (Continuation).

Let (Ω,F , P ) be a Probability space. Let T be the interval [0, T ] for some finite T or the

infinite interval [0,∞). Let FT ⊂ F be sub σ-fields such that Fs ⊂ Ft for s, t ∈ T with

s < t. We can assume with out loss of generality that F = ∨t∈TFt. Let a stochastic

process x(t , ω) with values in Rn be given. Assume that it is progressively measurable

with respect to (Ω ,Ft). We can easily gneralize the ideas described in the previous section

to diffusion processe with values in Rn. Given a positive semidefinite n×n matrix a = ai,j

and an n-vector b = bj , we define the operator

(La,bf)(x) =
1
2

n∑
i,j=1

ai,j
∂2f

∂xi∂xj
(x) +

n∑
j=1

∂f

∂xj
(x)

If a(t , ω) = ai,j(t , ω) and b(t , ω) = bj(t , ω) are progresssively measurable functions we

define

(Lt ,ωf)(x) = (La(t ,o),b(t ,ω)f)(x)

Theorem 5.1 . The following defintions are equivalent. x(t , ω) is a diffusion process

correponding to bounded progressively measurable functions a(· , ·), b(· , ·) with values in

the space of symmetric positive semidefinite n×n matrices, and n-vectors if par1). x(t , ω)

has an almost surely continuous version and

yi(t , ω) = xi(t , ω)− xi(0 , ω)−
∫ t

0

b(s , ω)ds

and

zi,j(t , ω) = yi(t , ω) yj(t , ω)−
∫ t

0

ai,j(s , ω)ds
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are (Ω,Ft, P ) martingales.

2). For every λ ∈ Rn

Zλ(t , ω) = exp
[
< λ , y(t , ω)− 1

2

∫ t

0

< λ, a(s , ω)λ > ds

]
is an (Ω,Ft, P ) martingale.

3). For every λ ∈ Rn

Xλ(t , ω) = exp
[
i < λ , y(t , ω) +

1
2

∫ t

0

< λ, a(s , ω)λ > ds

]
is an (Ω,Ft, P ) martingale.

4). For every smooth bounded function f on Rn with atleast two bounded continuous

derivatives

f(x(t , ω))− f((x(0 , ω))−
∫ t

0

(Ls,ωf)(x(s , ω))ds

is an (Ω,Ft, P ) martingale.

5). For every smooth bounded function f on T×Rn with atleast two bounded continuous

x derivatives and one bounded continuous t derivative

f(t , x(t , ω))− f(0 , (x(0 , ω))−
∫ t

0

(
∂f

∂t
+ Ls,ωf)(s , x(s , ω))ds

is an (Ω,Ft, P ) martingale.

6). For every smooth bounded function f on T×Rn with atleast two bounded continuous

x derivatives and one bounded continuous t derivative

exp[f(t , x(t , ω))−f(0 , (x(0 , ω))−
∫ t

0

(
∂f

∂t
+ Ls,ωf)(s , x(s , ω))ds

− 1
2

∫ t

0

< (∇f)(s , x(s , ω)), a(s , ω) (∇f)(s , x(s , ω))> ds]

is an (Ω,Ft, P ) martingale.

7). Same as 6) except that f is replaced by g of the form

g(t , x) =< λ, x > +f(t , x)
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where f is as in 6) and λ ∈ Rn is arbitrary.

Under anyone of the above definitions x(t , ω) has an almost surely continuous version

satifying

P

[
sup

0≤s≤t
|y(s , ω)− y(0 , ω)| ≥ `

]
≤ exp[

(`)2)
Ct

for some constant C depending only on the bound for a. Here

yi(t , ω) = xi(t , ω)− xi(0 , ω)−
∫ t

0

bi(s , ω)ds

Proof:

1) implies 2). This was essentially the content of Theorem and the comments of the previous

section. Also we saw that the exponential inequality is a consequence of Doob’s inequality.

2) implies 3). The condition that Zλ(t) is a martingale can be rewritten as a whole collec-

ction of identities ∫
A

Zλ(t , ω)dP =
∫

A

Zλ(s , ω)dP (5.6)

that is valid for every t > s, A ∈ Fs and λ ∈ Rn. Both sides of (5.6) are well defined when

λ ∈ Rn is replaced by λ ∈ Cn, with complex components and define entire functions of the

n complex variables λ. Since they agree when the values are real, by analyticcontinuation,

they must agree for all purely imaginary values of λ as well. This is just 3).

3) implies 4). This part of the requires a simple Lemma. Lemma 5.2 . Let M(t , ω)

be a martingale relative to (Ω,Ft, P ) which has almost surely continuous trajectories

and A(t , ω) be a progressively measurable process that is for almost all ω a continu-

ous function of bounded variation in t. Assume that for every t the random variable

ξ(t , ω) = sup0≤s≤t |M(t)|V ar[0,t]A(t , ω) has a finite expectation. Then

η(t) = M(t)A(t)−M(0)A(0)−
∫ T

0

M(s)dA(s)

is again a martingale relative to (Ω,Ft, P ).

Proof of Lemma:. We need to prove that for every s < t,

EP

[
M(t)A(t)−M(s)A(s)−

∫ t

s

M(u)dA(u)
∣∣Fs

]
= 0 a.e.
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We can subdivide [s, t] into subintervals with end points s = t0 < t1 < · · · < tN = t, and

approximate
∫ t

s
M(u)dA(u) by

∑N
j=1M(tj)[A(tj)−A(tj−1)]. The fact that A is continuous

and ξ(t) is integrable makes the approximation work in L1(P ) so that

EP

[∫ t

s

M(u)dA(u)
∣∣Fs

]
= lim

N→∞
EP

 N∑
j=1

M(tj)[A(tj)− A(tj−1)]
∣∣Fs


= lim

N→∞
EP

 N∑
j=1

[M(tj)A(tj)−M(tj)A(tj−1)]
∣∣Fs


= lim

N→∞
EP

 N∑
j=1

[M(tj)A(tj)−M(tj−1)A(tj−1)]
∣∣Fs


= EP [M(t)A(t)−M(s)A(s)]

and we are done. We used the martingale property in going from the second line to the

third when we replaced M(tj)A(tj−1) by M(tj−1)A(tj−1)

Now we return to the proof of the theorem. Let us apply the above lemma with

Mλ(t) = Xλ(t) and Aλ(t) = exp[i
∫ t

0
< λ , b(s) > ds − 1

2

∫ t

0
< λ , a(s)λ > ds]. Then a

simple computation yields

Mλ(t)Aλ(t)−Mλ(0)Aλ(0)−
∫ t

0

Mλ(s)dAλ(s)

= eλ(x(t)− x(0))− 1−
∫ t

0

(Ls,ωeλ)((x(s)− x(0))ds

where eλ(x) = exp[i < λ , x >]. Multiplying by exp[i < λ , x(0) >], which is essentially a

constant, we conclude that

eλ(x(t))− eλ(x(0))−
∫ t

0

(Ls,ωeλ)((x(s))ds

is a martingale. The above expression is just what we had to prove, except that our f

is special namely, the exponentials ελ(x). But by linear combinations and limits we can

easily pass from exponentials to arbitray smooth bounded functions with two bounded

derivatives. We first take care of infinitely diffrentiable functions with compact support

by Fourier integrals and then approximate twice differentiable functions with those.

4) implies 3). The steps can be retraced. We start with the martingales defined by 4) in

the special case of f being ελ and choose Aλ(t) = exp[−i ∫ t

0
< λ , b(s) > ds + 1

2

∫ t

0
<

λ , a(s)λ > ds] and do the computations to get back to the martingales of type 3).
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4) implies 5). This is basically a computation. If f(t , x) can be approximated by smooth

function and so we may assume with out loss of generality more derivatives.

EP [f(t , x(t))− f(s , x(s))|Fs]

= EP [f(t , x(t))− f(t , x(s))|Fs] +EP [f(t , x(s))− f(s , x(s))|Fs]

= EP [
∫ t

s

(Lu,ωf(t , ·))(x(u))du|Fs] + EP [
∫ t

s

∂f

∂u
(u , x(s))du|Fs]

= EP [
∫ t

s

(Lu,ωf(u , ·))(x(u))du|Fs] + EP [
∫ t

s

(Lu,ω[f(t , ·)− f(u , ·)])(x(u))]du|Fs]

+ EP [
∫ t

s

∂f

∂u
(u , x(u))du|Fs] +EP [

∫ t

s

[
∂f

∂u
(u , x(s))− ∂f

∂u
(u , x(u))]du|Fs]

= EP [
∫ t

s

[
∂f

∂u
+ (Lu,ωf)](u , x(u))du|Fs] + J

where

J = EP [
∫ t

s

(Lu,ω[f(t , ·)− f(u , ·)])(x(u))du|Fs] +EP [
∫ t

s

[
∂f

∂u
(u , x(s))− ∂f

∂u
(u , x(u))]du|Fs]

= EP [
∫ t

s

∫ t

u

(
∂

∂v
Lu,ωf)(v , x(u))du dv|Fs]−EP [

∫ t

s

∫ u

s

(Lv,ω
∂f

∂u
)(u , (x(v))du dv|Fs]

= EP

[ ∫ ∫
s≤u≤v≤t

(Lu,ω
∂f

∂v
)(v , (x(u))du dv−

∫ ∫
s≤v≤u≤t

(Lv,ω
∂f

∂u
)(u , (x(v))du dv

]
= 0.

The two integrals are identical, just the roles of u and v have been interchanged.

5) implies 4). This is trivial because after all in 5) we are allowed to taks f to be purely a

function of x.

5) implies 6). This is again the lemma on multiplying a martingale by a function of bounded

variation. We start with a function of the form exp[f(t , x)] and the martingale

exp[f(t , x(t))]− exp[f(0 , x(0))]−
∫ t

0

(
∂ef

∂s
+ Ls,ωe

f )(s , x(s))ds

and use

A(t) = exp
[−∫ t

0

(
∂f

∂s
+Ls,ωf)(s , x(s))ds−1

2

∫ t

0

< (∇f)(s , x(s)) , a(s)(∇f)(s , x(s))> ds
]

6) implies 5). This just again reversing the steps.

6) implies 7). The problem here that the function < λ , x > are unbounded. If we pick a

function h(x) of one variable to equal x in the interval [−1.1] then level off smoothly we get
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easily a smooth bounded function with bounded derivatives that agrees with x in [−1, 1].

Then the sequence h(x) = kh(x
k ) clearly converge to x, |hk(x)| ≤ |x| and more over |h′k(x)|

is uniformly bounded in x and k and |h′′k(x)| goes to 0 uniformly in k. We approximate

< λ , x > by
∑

j λjhk(xj) and consider the martingales

exp

 ∑
j

λjhk(xj(t))−
∑

j

λjhk(xj(0))−
∫ t

0

ψλ
k (s)ds


where

ψλ
k (s) =

∫ t

0

∑
j

λjbj(s , ω)h′k(xj(s))ds+
1
2

∫ t

0

∑
j

aj,j(s , ω)h′′k(xj(s))ds

+
1
2

∫ t

0

∑
i,j

ai,j(s , ω)λiλjh
′
i(xi(s)h′j(xj(s)ds

and converges to

ψλ(s) =
∫ t

0

∑
j

λjbj(s , ω)ds+
1
2

∫ t

0

∑
i,j

ai,j(s , ω)λiλjds

as k →∞. By Fatous’s lemma the limit of nonnegative martingales is always supermartin-

gale and therefore in the limit

exp
[
< λ , x(t)− x(0) > −

∫ t

0

ψλ(s)ds
]

is a supermartingale. In particular

EP

[
exp[< λ , x(t)− x(0) > −

∫ t

0

ψλ(s)ds]
]
≤ 1

If we now use the bound on ψ it is easy to obtain the estimate

EP [exp[< λ , x(t)− x(0) >] ≤ Cλ

This provides the necessary uniform integrability to conclude that in the limt we have

a martingale. Once we have the estimate we can approximate f(t , x)+ < λ , x > by

f(t , x) +
∑

j λjhk(xj) and pass to the limit, thus obtaining 7) from 6). Of course 7)

implies both 2) and 6). Also all the exponential estimates follow at this point. Once we

have the estimates there is no difficulty in obtainig 1) from 3). We need only take f(x) = xi

and xixj that can be justified by the estimates. Some minor manipulation is needed to

obtain the results in the form presented.
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7. Stochastic Integrals.

If y1, · · · , yn is a martingale relative to σ-fields Fj, and if ej(ω) are random functions

that are Fj measurable, the sequence

zj =
j−1∑
k=0

ek(ω)[yk+1 − yk]

is again a martingale with respect to the σ-fields Fj , provided the expectations are finite.

A computation shows that if

αj(ω) = EP [(yj+1 − yj)2|Fj ]

then

EP [z2
j ] =

j−1∑
k=0

EP
[
ak(ω)|ek(ω)|2]

or more precisely

EP
[
(zj+1 − zj)2|Fj

]
= aj(ω)|ej(ω)|2 a.e. P

Formally one can write

δzj = zj+1 − zj = ej(ω)δyj = ej(ω)(yj+1 − yj)

zj is called a martingale transform of yj and the size of zn measured by its mean square is

exactly equal to EP
[∑n−1

j=0 |ej(ω)|2 aj(ω)
]
. The stochastic integral is just the continuous

analog of this.

Theorem 5.3 Let y(t) be an almost surely continuous martingale relative to (Ω,Ft, P )

such that y(0) = 0 a.e. P , and

y2(t)−
∫ t

0

a(s , ω)ds

is again a martingale relative to (Ω,Ft, P ), where a(s , ω)ds is a bounded progressively

measurable function. Then for progressively measurable functions e(· , ·) satisfying, for

every t > 0,

EP

[ ∫ t

0

e2(s)a(s)ds
]
<∞
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the stochastic integral

z(t) =
∫ t

0

e(s)dy(s)

makes sense as an almost surely continuous martingale with respect to (Ω,Ft, P ), and

z2(t)−
∫ t

0

e2(s)a(s)ds

is again a martingale with respect to (Ω,Ft, P ). In particular

EP
[
z2(t)

]
= EP

[ ∫ t

0

e2(s)a(s)ds
]

Proof:

Step 1. The statements are obvious if e(s) is a constant.

Step 2. Assume that e(s) is a simple function given by

e(s , ω) = ej(ω) for tj ≤ s < tj+1

where ej(ω) is Ftj
measurable and bounded for 0 ≤ j ≤ N and tN+1 = ∞. Then we can

define inductively

z(t) = z(tj) + e(tj , ω)[y(t)− y(tj)]

for tj ≤ t ≤ tj+1. Clearly z(t) and

z2(t)−
∫ t

0

e2(s , ω)a(s , ω)ds

are martingales in the interval [tj , tj+1]. Since the definitions match at the end points the

martingale property holds for t ≥ 0.

Step 3. If ek(s , ω) is a sequence of uniformly bounded progressively measurable functions

converging to ε(s , ω) as k →∞ in such a way that

lim
k→∞

∫ t

0

|ek(s)|2a(s)ds = 0

for every t > 0, by the martingale property ♣

lim
k,k′→∞

EP

[
|zk(t)− zk′(t)|2

]
= lim

k,k′→∞
EP

[ ∫ t

0

|ek(s)− ek′(s)|2a(s)ds
]

= 0.
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Combined with Doob’s inequality, we conclude the existence of a an almost surely contin-

uous martingale z(t) such that

lim
k→∞

EP

[
sup

0≤s≤t
|zk(s)− z(s)|2

]
= 0

and clearly

z2(t)−
∫ t

0

e2(s)a(s)ds

is an (Ω,Ft, P ) martingale. medskipStep 4. All we need to worry now is about approx-

imating e(· , ·). Any bounded progressively measurable almost surely continuous e(s , ω)

can be approximated by ek(s , ω) = e( [ks]∧k2

k , ω) which is piecewise constant and levels off

at time k. It is trivial to see that for every t > 0,

lim
k→∞

∫ t

0

|ek(s)− e(s)|2a(s) ds = 0

Step 5. Any bounded progressively measurable e(s , ω) can be approximated by continuous

ones by defining

ek(s , ω) = k

s∫
(s− 1

k )∨0

e (u , ω)du

and again it is trivial to see that it works.

Step 6. Finally if e(s , ω) is un bounded we can approximate it by truncation,

ek(s , ω) = fk(e(s , ω))

where fk(x) = x for |x| ≤ k and 0 otherwise.

This completes the proof of the theorem.

If we have a continuous diffusion process x(t , ω) defined on (Ω,Ft, P ), corresponding to

coefficients a(t , ω) and b(t , ω), then we can define stochastic integrals with respect to x(t).

We write

x(t , ω) = x(0 , ω)) +
∫ t

o

b(s , ω)ds+ y(t , ω))

and the stochastic integral
∫ t

0
e(s)dx(s) is defined by∫ t

0

e(s)dx(s) =
∫ t

0

e(s)b(s)ds+
∫ t

0

e(s)dy(s)
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For this to make sense we need for every t,

EP
[ ∫ t

0

|e(s)b(s)|ds] <∞ and EP
[ ∫ t

0

|e(s)|2a(s)ds] <∞

If we assume for simplicity that e is bounded then eb and e2a are uniformly bounded

functions in t and ω. It then follows, that for any F0 measurable z(0), that

z(t) = z(0) +
∫ t

0

e(s)dx(s)

is again a diffusion process that corresponds to the coefficients be, ae2. In particular all of

the equivalent relations hold good.

Exercise: If e is such that eb and e2a are bounded, then prove directly that the exponen-

tials

exp
[
λ(z(t)− z(0))− λ

∫ t

0

e(s)b(s)ds− λ2

2

∫ t

0

a(s)e2(s)ds
]

are (Ω,Ft, P ) martingales.

We can easily do the mutidimensional generalization. Let y(t) be a vector valued

martingale with n components y1(t), · · · , yn(t) such that

yi(t)yj(t)−
∫ t

o

ai,j(s , ω)ds

are again martingales with respect to (Ω,Ft, P ). Assume that the progressively measurable

functions{ai,j(t , ω)} are symmetric and positive semidefinite for every t and ω and are

uniformly bounded in t and ω. Then the stochastic integral

z(t) = z(0) +
∫ t

0

< e(s), dy(s) = z(0) +
∑

i

∫ t

0

ei(s)dyi(s)

is well defined for vector velued progressively measurable functions e(s , ω) such that

EP
[ ∫ t

0

< e(s) , a(s)e(s) > ds
]
<∞

In a similar fashion to the scalar case, for any diffusion process x(t) corresponding to

b(s , ω) = {bi(s , ω)} and a(s , ω) = {ai,j(s , ω)} and any e(s , ω)) = {ei(s , ω)} which is

progressively measurable and uniformly bounded

z(t) = z(0) +
∫ t

0

< e(s) , dx(s) >
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is well defined and is a diffusion corresponding to the coefficients

b̃(s , ω) =< e(s , ω) , b(s , ω)> and ã(s , ω) =< e(s , ω) , a(s , ω)e(s , ω)>

It is now a simple exercise to define stocahstic integrals of the form

z(t) = z(0) +
∫ t

0

σ(s , ω)dx(s)

where σ(s , ω) is a matrix of dimensionm×n that has the suitable properties of boundedness

and progressive measurability. z(t) is seen easily to correspond to the coefficients

b̃(s) = σ(s)b(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy here is to linear transformations of Gaussian variables. If ξ is a Gaussian

vector in Rn with mean µ and covariance A, and if η = Tξ is a linear transformation from

Rn to Rm, then η is again Gaussian in Rm and has mean Tµ and covariance matrix TAT ∗.

Exercise. If x(t) is Brownian motion in Rn and σ(s , ω) is a progreessively measurable

bounded function then

z(t) =
∫ t

0

σ(s , ω)dx(s)

is again a Brownian motion in Rn if and only if σ is an orthogonal matrix for almost all s

(with repect to Lebesgue Measure) and ω (with respect to P )

Exercise. We can mix stochastic and ordinary integrals. If we define

z(t) = z(0) +
∫ t

0

σ(s)dx(s) +
∫ t

0

f(s)ds

where x(s) is a process corresponding to b(s), a(s), then z(t) corresponds to

b̃(s) = σ(s)b(s) + f(s) and ã(s) = σ(s)a(s)σ∗(s)

The analogy is again to affine linear transformations of Gaussians η = Tξ + γ.

Exercise. Chain Rule. If we transform from x to z and again from z to w, it is the same

as makin a single transformation from z to w.

dz(s) = σ(s)dx(s) + f(s)ds and dw(s) = τ(s)dz(s) + g(s)ds

can be rewritten as

dw(s) = [τ(s)σ(s)]dx(s) + [τ(s)f(s) + g(s)]ds
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8. Ito’s Formula.

The chain rule in ordinary calculus allows us to compute

df(t , x(t)) = ft(t , x(t))dt+∇f(t , x(t)).dx(t)

We replace x(t) by a Brownian path, say in one dimension to keep things simple and for

f take the simplest nonlinear function f(x) = x2 that is independent of t. We are looking

for a formula of the type

β2(t)− β2(0) = 2
∫ t

0

β(s) dβ(s). (8.1)

We have already defined integrals of the form∫ t

0

β(s) dβ(s) (8.2)

as Ito’s stochastic integrals. But still a formula of the type (8.1) cannot possibly hold.

The left hand side has expectation t while the right hand side as a stochastic integral with

respect to β(·) is mean zero. For Ito’s theory it was important to evaluate β(s) at the

back end of the interval [tj−1 , tj] before multiplying by the increment (β(tj) − β(tj−1)

to keeep things progressively measurable. That meant the stochastic integral (8.2) was

approximated by the sums ∑
j

β(tj−1)(β(tj)− β(tj−1)

over successive partitions of [0 , t]. We could have approximated by sums of the form∑
j

β(tj)(β(tj)− β(tj−1).

In ordinary calculus, because b(·) would be a continuous function of bounded variation in

t, the difference would be negligible as the partitions became finer leading to the same

answer. But in Ito calculus the differnce does not go to 0. The difference Dπ is given by

Dπ =
∑

j

β(tj)(β(tj)− β(tj−1)−
∑

j

β(tj−1(β(tj)− β(tj−1)

=
∑

j

(β(tj)− β(tj−1)(β(tj)− β(tj−1)

=
∑

j

(β(tj)− β(tj−1)2
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An easy computation gives E[Dπ] = t and E[(Dπ − t)2] = 3
∑

j(tj − tj−1)2 tends to 0 as

the partition is refined. On the other hand if we are neutral and approximate the integral

(8.2) by ∑
j

1
2
(β(tj−1) + β(tj))(β(tj)− β(tj−1)

then we can simplify and calculate the limit as

lim
∑

j

β(tj)2 − β(tj−1)2

2
=

1
2
(β2(t)− β2(0))

This means as we defined it (8.2) can be calculated as∫ t

0

β(s) dβ(s) =
1
2
(β2(t)− β2(0))− t

2

or the correct version of (8.1) is

β2(t)− β2(0) =
∫ t

0

β(s) dβ(s) + t

Now we can attempt to calculate f(β(t))− f(β(0)) for a smooth function of one variable.

Roughly speaking, by a two term Taylor expansion

f(β(t))− f(β(0)) =
∑

j

[f(β(tj))− f(β(tj−1))]

=
∑

j

f ′(β(tj−1)(β(tj))− β(tj−1))

+
1
2

∑
j

f ′′(β(tj−1)(β(tj))− β(tj−1))2

+
∑

j

O|β(tj))− β(tj−1)|3

The expected value of the error term is approximately

E
[∑

j

O|β(tj))− β(tj−1)|3
]

=
∑

j

O|t−tj−1| 32 = o(1)

leading to Ito’s formula

f(β(t))− f(β(0)) =
∫ t

0

f ′(β(s))dβ(s) +
1
2

∫ t

0

f ′′(β(s))ds (8.3)
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It takes some effort to see that∑
j

f ′′(β(tj−1)(β(tj))− β(tj−1))2 →
∫ t

0

f ′′(β(s))ds

But the idea is, that because f ′′(β(s)) is continuous in t, we can pretend that it is locally

constant and use that calculation we did for x2 where f ′′ is a constant.

While we can make a proof after a careful estimation of all the errors, in fact we do

not have to do it. After all we have already defined the stochastic integral (8.2). We should

be able to verify (8.3) by computing the mean square of the difference and showing that

it is 0.

In fact we will do it very generally with out much effort. We have the tools already.

Theorem 8.1 . Let x(t) be a Diffusion Process with values on Rd corresponding to [b, a],

a collection of bounded, progressively measurable coefficients. For any smooth function

u(t , x) on [0 ,∞)×Rd

u(t , x(t))− u(0 , x(0)) =
∫ s

0

us(s , x(s))ds+
∫ t

0

< (∇u)(s , x(s) , dx(s)>

+
1
2

∫ t

0

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))ds

(8.4)

Proof: Let us define the stochastic process

ξ(t) = u(t , x(t))− u(0 , x(0))−
∫ s

0

us(s , x(s))ds−
∫ t

0

< (∇u)(s , x(s) , dx(s)>

− 1
2

∫ t

0

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))ds

(8.5)

We define a d + 1 dimensional process y(t) = {u(t , x(t)), x(t)} which is also a diffusion,

and has its parameters [b̃, ã]. If we number the extra coordinate by 0, then

b̃i =

 [∂u
∂s + Ls,ωu](s , x(s)) if i = 0

bi(s , ω) if i ≥ 1

ãi,j =


< a(s , ω)∇u ,∇u > if i = j = 0

[a(s , ω)∇u]i if j = 0, i ≥ 1

ai,j(s , ω) if i, j ≥ 1
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The actuation computation is interesting and reveals the connection between ordinary

calculus, second order operators and Ito calculus. If we want to know the parametrs of

the process y(t), then we need to know what to subtract from v(t , y(t)) − v(0 , y(0)) to

obtain a martingale. But v(t, , y(t)) = w(t , x(t)), where w(t, x) = v(t , u(t , x) , x) and if

we compute

(
∂w

∂t
+ Ls,ωw)(t , x) = vt + vu[ut +

∑
i

biuxi
+

∑
i

bivxi
+

1
2

∑
i,j

ai,juxi,xj
]

+ vu,u
1
2

∑
i,j

ai,juxi
uxj

+
∑

i

vu,xi

∑
j

ai,juxj
+

1
2

∑
i,j

ai,jvxi,xj

= vt + L̃t,ωv

with

L̃t,ωv =
∑
i≥0

b̃i(s , ω)vyi
+

1
2

∑
i,j≥0

ãi,j(s , ω)vyi,yj

We can construct stochastic integrals with respect to the d + 1 dimensional process y(·)
and ξ(t) defined by (8.5) is again a diffusion and its parameters can be calculated. After

all

ξ(t) =
∫ t

0

< f(s , ω) , dy(s)> +
∫ t

0

g(s , ω)ds

with

fi(s , ω) =


1 if i = 0

−(∇u)i(s , x(s)) if i ≥ 1

and

g(s , ω) = −[∂u
∂s

+
1
2

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj

]
(s , x(s))

Denoting the parameters of ξ(·) by [B(s , ω), A(σ, , ω)], we find

A(s , ω) =< f(s , ω) , ã(s , ω)f(s , ω)>

=< a∇u ,∇u > −2 < a∇u ,∇u > + < a∇u ,∇u >
= 0

and

B(s , ω) =< b̃ , f > +g = b̃0(s , ω)− < b(s , ω) ,∇u(s , x(s))>

− [∂u
∂s

(s , ω) +
1
2

∑
i,j

ai,j(s , ω)
∂2u

∂xi∂xj
(s , x(s))

]
= 0
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Now all we are left with is the following

Lemma 8.2 If ξ(t) is a scalar process corresponding to the coefficients [0, 0] then

ξ(t)− ξ(0) ≡ 0 a.e.

Proof: Just compute

E[(ξ(t)− ξ(0))2] = E[
∫ t

0

0 ds] = 0

Exercise: Ito’s formula is a local formula that is valid for almost all pathe. If u is a

smooth function i.e. with one continuous t derivative and two continuous x derivatives

(8.4) must still be valid a.e. We cannot do it with moments, because for moments to exist

we need control on growth at infinity. But it should not matter. Should it?

Application: Local time in one dimension. Tanaka Formula.

If β(t) is the one dimensional Brownian Motion, for any path β(·) and any t, the occupation

meausre Lt(A , ω) is defined by

Lt(A, ω) = m{s : 0 ≤ s ≤ t & β(s) ∈ A}

Theorem 8.3 There exists a function `(t , y ω) such that, for almost all ω,

Lt(A, ω) =
∫

A

`(t , y , ω) dy

identically in t.

Proof: Formally

`(t , y , ω) =
∫ t

0

δ(β(s)− y)ds

but, we have to make sense out of it. From Ito’s formula

f(β(t))− f(β(0)) =
∫ t

0

f ′(β(s)) dβ(s) +
1
2

∫ t

0

f ′′(β(s))ds

If we take f(x) = |x−y| then f ′(x) = sign x and 1
2f

′′(x) = δ(x−y). We get the ‘identity’

|β(t)− y| − |β(0)− y| −
∫ t

0

sign β(s)dβ(s) =
∫ t

0

δ(β(s)− y)ds = `(t , y , ω)
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While we have not proved the identity, we can use it to define `(· , · , ·). It is now well

defined as a continuous function of t for almost all ω for each y, and by Fubini’s theorem

for almost all y and ω.

Now all we need to do is to check that it works. It is enough to check that for any

smooth test function φ with compact support∫
R

φ(y)`(t , y , ω) dy =
∫ t

0

φ(β(s))ds (8.6)

The function

ψ(x) =
∫

R

|x− y|φ(y) dy

is smooth and a straigt forward calculation shows

ψ′(x) =
∫

R

sign (x− y)φ(y) dy

and

ψ′′(x) = −2φ(x)

It is easy to see that (8.6) is nothing but Ito’s formuls for ψ.

Remark: One can estimate

E

[ ∫ t

0

[ sign (β(s)− y)− sign (β(s)− z)]dβ(s)
]4

≤ C|y − z|2

and by Garsia- Rodemich- Rumsey or Kolmogorov one can conclude that for each t,

`(t , y , ω) is almost surely a continuous function of y.

Remark: With a little more work one can get it to be jointly continuous in t and y for

almost all ω.

36



9. Diffusions as Stocahstic Integrals.

If (Ω ,Ft , P ) is a probability space and β(·) is a d dimensional Brownian Motion relative to

it, i.e. β(t) is a diffusion with parameters [0, I] relative to (Ω ,Ft , P ), a stochastic integral

x(t) of the form

x(t) =
∫ t

0

b(s , ω)ds+
∫ t

0

σ(s , ω)dβ(s) (9.1)

is a diffusion with parameters [b, σσ∗]. We want to show that the converse is true. Given

a diffusion x(t) on some (Ω ,Ft , P ) corresponding to [b, a] and given a progressively mea-

surable σ such that a = σσ∗], we want to show the existence of a Brownian motion β(·)
on (Ω ,Ft , P ) such that (9.1) holds. First let us remark that the converse as stated need

not be true. For example if (Ω ,Ft , P ) consists of a single point, P is the measure with

mass 1 at that point, x(t , ω) ≡ 0 definitely qualifies for a process corresponding to [0, 0].

No matter what Brownian Motion we take clearly

x(t)− x(0) = 0 =
∫ t

0

0 dβ(s) (9.2)

so the proposition must be trivially true. Except the space is too small to support anything

that is random, let alone a Brownian Motion. If we really need a Brownian Motion we

have to borrow it. The way we borrow is to take a standar model of the Brownian Motion

(X ,Bt , Q) and take its product with (Ω ,Ft , P ) as our new space. All the old previous

processes are still there and replacing Ft with Ft×Bt does not destroy any of the previous

martingale properties. But now we possess an extra Brownian Motion independent of

everything. With the new borrowed Brownian Motion (9.2) is clearly true. One has to be

careful with this sort of thing. We can only use such a totally arbitrary Brownian Motion

when it does not matter what we use.

Let us describe the proof in different cases. First we assume that a(s , ω) is invertible

almost surely and that σ is a square matrix with σσ∗ = a. Let us define

y(t) = x(t)−
∫ t

0

b(s , ω) ds

and

z(t) =
∫ t

0

σ−1(s , ω) dy(s)
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One can check that z(·) is well defined and has parameters [0, I]. This involves the calcu-

lation σ−1aσ = σ−1σσ∗σ−1∗ = I. z(·) is therefore Brownian Motion and

x(t) = x(0) +
∫ t

0

b(s , ω) ds+
∫ t

0

σ(s , ω) dz(s)

The next situation is when σ is a square matrix with σ =
√
a, with perhaps a singular

somewhere. We now have to borrow a Brownian Motion and ssume we have done it. Let

π(s , ω) be the orthogonal projection on to the range of a(s , ω). The range of σ(s , ω) is the

same as that of a(σ , ω) and we can construct the inverse τ(s , ω) such that σ(s , ω)τ(s , ω) =

τ(s , ω)σ(s , ω) = π(s , ω). We define y(·) as before. But we define z(t) by

z(t) =
∫ t

0

τ(s , ω) dy(s) +
∫ t

0

[I − π(s , ω)]dβ(s)

where β is the borrowed d dimensional Brownian motion. It is only sparingly used. We

note that σ(s , ω), τ(s , ω), π(s , ω) and [I − π(s , ω)] are all symmetric.

τ(s , ω)a(s , ω)τ(s , ω) + [I − π(s , ω)][I − π(s , ω)]

= τ(s , ω)σ(s , ω)σ(s , ω)τ(s , ω)+ [I − π(s , ω)][I − π(s , ω)]

= π(s , ω)π(s , ω)+ [1− π(s , ω)][1− π(s , ω)] = I

So z is again Brownian Motion. We can now see that

x(t) =
∫ t

0

b(s , ω)ds+
∫ t

0

σ(s , ω) dz(s)

We need to show that ∫ t

0

[τ(s , ω)dz(s)− I dy(s)] = 0

A mean square calculation leads to showing

(τ(s , ω)σ(s , ω)− I)a(s , ω)(τ(s , ω)σ(s , ω)− I) + τ(s , ω)(I − π(s , ω))τ(s , ω) = 0

which is identically true.

We can do the same thing when σ(s , ω) is given as an n × k matrix with σσ∗ = a

we now have to borrow a k dimensional Brownian Motion. We define a k × n matrix

τ(s , ω) by τ(s , ω) = σ∗(s , ω)a−1(s , ω), where a−1(s , ω) is such that a(s , ω)a−1(s , ω) =
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a−1(s , ω)a(s , ω) = π(s , ω) with π(s , ω) as before. We denote by π∗(s , ω) the orthogonal

projection on to the range of σ∗(s , ω). Now

z(t) =
∫ t

0

τ(s , ω)dy(s) +
∫ t

0

(I − π∗(s , ω))dβ(s)

The rest of the calculations go as follows.

τaτ∗ + (I − π) = σ∗a−1aa−1σ + (I − π∗) = σ∗a−1σ + (I − π∗) = I

and

[I − στ ]a[I − τ∗σ∗] + τ [I − π∗]τ∗ = 0

10. Diffusions as Markov Processes.

We will be intersted in defining Measures on the space Ω = C[[0, T ];Rd] with the property

that for some given x0 ∈ Rd

P [x(0) = x0] = 1 (10.1)

and

Zf (t , ω) = f(x(t))− f(x(0))−
∫ t

0

(Lsf)(x(s))ds (10.2)

is a martingale with respect to (Ω ,Ft , P ) for all smooth functions f , where

(Lsf)(x) =
1
2

∑
i,j

ai,j(s , x)
∂2f

∂xi∂xj
(x) +

∑
i

bi(s , x)
∂f

∂xi
(x) (10.3)

The data are the starting point x0 and the coefficients a = {ai,j(s , x)} and b = {bi(s , x)}.
We are seeking a solution P defined by these properties. In the earlier notation a(s , ω) =

a(s , x(s , ω)) and b(s , ω) = b(s , x(s , ω)). Instead of starting at time 0 we could start at

a different time s0 from the point x0 and then we would be seeking P , as a measure on

the space Ω = C[[s0, T ];Rd] with analogous properties. We expect to show that under

reasonable hypothese on the coefficients a and b, for each s0, x0, Ps0 ,x0 exists and is

unique. The solutions {Ps0 ,x0} will all be Markov Processes with continuous paths on Rd

with transition probabilities

p(s , x , t , A) = Ps,x[x(t) ∈ A]
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satisfying the Chapman-Kolmogorov equations

p(s , x , u , A) =
∫
p(s , x , t , dy)p(t , y , u , A)

for s0 ≤ s < t < u ≤ T . Moreover

Ps,x[x(t1) ∈ A1, · · · , x(tn) ∈ An] =
∫

A1

· · ·
∫

An

p(s, x, t1, dy1) · · ·p(tn−1, yn−1, tn, dyn)

(10.4)

Our goal is to find reasonably general conditions that guarantee the existence and

uniqueness. We will then study properties of the solution Ps0,x0 and how they are related

to the properties of the coefficients.

Martingales and Conditioning. Given Fs for some s ∈ [0, T ], we have the regular

conditional probability distribution Qs ,ω = P |Ft which has the following properties. For

each ω, Qs ,ω is a probability measure on Ω and for each A, Qs ,ω(A) is Fs measurable.

Moreover

Qs ,ω[ω′ : x(t , ω′) = x(t , ω) for 0 ≤ t ≤ s] = 1

and

P (A) =
∫
Qs ,ω(A)dP (ω)

for all A.Such a Q exists and is essentially unique, i.e any two versions agree for almost all

ω w.r.t P .

Lemma 10.1 If M(t) is a martingale relative to (Ω ,Ft , P ) then for almost all ω and times

t ∈ [0, T ], M(t) is a martingale with respect to (Ω ,Ft , Qs,ω).

Proof: We need to check that if A ∈ Ft1 , and t2 > t1 ≥ s,∫
A

M(t2)dQs,ω =
∫

A

M(t1)dQs,ω

for almost all ω. Since both sides are Fs measurable it suffices to check that∫
B

[ ∫
A

M(t2)dQs,ω

]
dP =

∫
B

[ ∫
A

M(t1)dQs,ω

]
dP

From the properties of rcpd this reduces to∫ [ ∫
A∩B

M(t2)dQs,ω

]
dP =

∫ [ ∫
A∩B

M(t1)dQs,ω

]
dP
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or ∫
A∩B

M(t2)dP =
∫

A∩B

M(t1)dP

Since A ∩B ∈ Ft1 this follows from the martingale property of M(t). Now all that is left

is some technical stuff involving sets of measure 0. As of now the null set depends on t1 , t2

and the set A. We take a countable set of rationals for t1 , t2 and a countable set of A′s

that generate the σ-field. One null set works for these. Any thing that works for these

works for every thing by the usual bag of tricks. If we have a family Mα(t) of martingales

indexed by α then the null set now may depend on α. If we can find a countable set of

α’s such that the corresponding set of Ma(t)’s can approximate every Mα(t), we can get

a single null set to work for all the martingales. The family Zf (t) indexed by smooth

functions f is clearly such a family.

Conditioning and Stopping Times. Let τ be a stopping time relative to the family

Ft of σ-fields. We can apply the same reasoning to infer that for any Martingale M(t) the

statement, that it remains a martingale with respect to the r.c.p.d. Qτ ,ω of P given Fτ

for times t ≥ τ(ω), is valid for almost all ω w.r.t. P .

Proof: The proof again requires the verification for almost all ω of the relation

∫
A

M(t2)dQτ ,ω =
∫

A

M(t1)dQτ ,ω

on the set {ω : t2 ≥ t1 ≥ τ(ω)}. Given B ∈ Fτ such that B ⊂ {ω : τ(ω) ≤ t1} we need to

check ∫
B

[ ∫
A

M(t2)dQτ ,ω

]
dP =

∫
B

[ ∫
A

M(t1)dQτ ,ω

]
dP

Since B ⊂ {ω : τ(ω) ≤ t1} and B ∈ Fτ it follows from the definition of Fτ that B ∈ Ft1

and it amounts to verifying ∫
A∩B

M(t2)dP =
∫

A∩B

M(t1)dP

which follows from the facts A ∩ B ∈ M(t1) and M(t) is a P -martingale. One has to

again do a song and dance regarding sets of measure zero. Ultimately, this reduces to the

question: is Fτ countably generated? The answer is yes, and in fact, it is not hard to prove

that

Fτ = σ {x(t ∧ τ(ω)) : t ≥ 0}
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which is left as an exercise.

Let us suppose that we are given some coefficients a(t , x) and b(t , x). For each (s, x) we

can define the class Ms0 ,x0 as the set of solutions to the Martingale Problem for [a, b], that

start from the intial position x0 at time xo. A restatement of the result described earlier

is that the r.c.p.d. Qτ ,ω of P |Fτ is again in the class Ms ,τ . In particular if there is a

unique solution Ps ,τ to the martingale problem, then the r.c.p.d. Qτ ,ω = Pτ,x(τ). This

implies that once we have proved uniqueness, the solutions are all necessarily Markov and

in fact strong Markov.

11. An easy example.

In Rd let us take a(t , x) = I and for I, b(t , x) let us try to construct a solution to the

martingale problem starting at (s0, x0). For simplicity let us assume that b(t , x) is bounded

uniformly. We can check that the expression

Rt(ω) = exp
[ ∫ t

s0

< b(s , x(s) , dx(s)> −1
2

∫ t

s0

‖b(s , x(s))‖2ds
]

is a martingale with repect to (Ω ,Fs0
t , Qs0,x0), where Qs0,x0 is the d-dimensional Brownian

motion starting from x0 at time 0. The same is true of

Rθ ,t(ω) = exp
[ ∫ t

s0

< θ + b(s , x(s) , dx(s)> −1
2

∫ t

s0

‖θ + b(s , x(s))‖2ds
]

for every θ ∈ Rd. We can write

Rθ ,t(ω) = Rt(ω)Zθ ,t(ω)

where

Zθ ,t(ω) = exp
[ ∫ t

s0

< θ , dx(s) > −
∫ t

s0

< θ , b(s , x(s)) > −1
2

∫ t

s0

‖b(s , x(s))‖2ds
]

We can define a measure Ps0,x0 such that for t ≥ s0

dPs0,x0

dQs0,x0

∣∣
Fs0

t

= Rt(ω)

Then clearly Ps0 ,x0 is a solution. Conversely if P is any solution, Q defined by

dQ = [Rt(ω)]−1dP on Fs0
t
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is a solution for [I , 0] and is therefore the unique Brownian motion Qs0,x0 . Therefore

P = Ps0 ,x0 defined above. So in this case we do have existence and uniqueness.

A second alternative is to try to solve the equation

y(t) = x(t) +
∫ t

s0

b(s , y(s))ds

for t ≥ s0 and for Brownian paths x(t) that start from x0 at time s0. If we can prove

existence and uniqueness, the solution will define a process which solves the martingale

problem. It is defined on perhaps a larger space but it is easy enough to map the Wiener

measure through y(·) and the transformed measure is a candidate for the solution of

the martingale problem. Since we have uniquenes, this must coincide with the earlier

construction. If b satisfies a Lipshitz condition in x this can be carried out essentially by

Picard iteration.

A third alternative is to try to solve the PDE

∂u

∂s
+

1
2
∆ +

∑
i

bi(s , x)
∂u

∂xi
= 0 (11.1)

for s ≤ t with the boundary condition u(t , x) = f(x). The fundamental solution p(s , x , t , y)

can be used as transition probabilities to construct a Markov Process which again is our old

P . To see this, we verify that if u is any solution of (11.1), then u(t , x(t)) is a martingale

with repect to any Ps0 ,x0 and therefore

u(s0 , x0) =
∫
f(y)p(s0 , x0 , t , y)dy = EPs0 ,x0

[
f(x(t)

]
Since this is true for any f the fundamental solution is the same as the transition probability

of the alraedy constructed Markov Process.
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12. Ito’s Theory of Stochastic Differential Equations.

Our goal in this lecture is to construct Markov Processes that are Diffusions in Rd cor-

responding to specified coefficients a(t , x) = {ai,j(t , x)} and b(t , x) = {bi(t , x)}. Ito’s

method consists of starting from any (Ω ,Ft , P ) and an adapted Brownian Motion β(t , ω) =

{βi(t , ω)} relative to (Ω ,Ft , P ), with values in Rd. That is to say β has almost surely

continuous paths and

exp
[
< θ , β(t) > − t‖θ‖

2

2

]
is a martingale with respect to (Ω ,Ft , P ) for all θ ∈ Rd.

The basic assumption on a and b are the following.

H1. The symmetric positive semidefinite matrix a(t , x) can be written as a(t , x) =

σ(t , x)σ∗(t , x) for some matrix σ(t , x) that satisfies a Lipschitz condition in x.

‖σ(t , x)− σ(t , y)‖ ≤ A|x− y|

H2. The coefficients bi(t , x) satisfy a similar condition.

‖b(t , x)− b(t , y)‖ ≤ A|x− y|

H3. Growth conditions. For simplicity we will assume that for some constant C

‖σ(t , x)‖ ≤ C and ‖b(t , x)‖ ≤ C

Note that the choice of σ is not unique. We only assume that there is a choice of σ that

satisfies the Lipschitz condition. The bounds of course are really bounds on a.

Theorem 12.1 Given s0 ≥ 0 and an Fs0 measurable, Rd valued square integrable function

ξ0(ω), there exists an almost surely continuous progressively measurable function ξ(t) =

ξ(t , ω) for t ≥ s0 that solves the equation

ξ(t) = ξ0 +
∫ t

s0

σ(s , ξ(s))dβ(s) +
∫ t

s0

b(s , ξ(s))ds (12.1)

The solution is unique in the class of progressively measurable functions.
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Proof: The existence and uniqueness follow very closely the standard Picard’s method for

constructing solutions to ODE. We define

ξ0(t) ≡ ξ0 for t ≥ s0

and define successively, for k ≥ 1,

ξk(t) = ξ0 +
∫ t

s0

σ(s , ξk−1(s))dβ(s) +
∫ t

s0

b(s , ξk−1(s))ds (12.2)

Let us remark that the iterations are well defined. They generate progressively measurable

almost surely continuous functions at each stage and by induction they are well defined. In

order to prove the convergence of the iteration scheme we estimate successive differences.

Let us assume with out loss of generality that s0 = 0 and pick a time interval [0, T ] in

which we will prove convergence. Since T is arbitrary that will be enough. If we denote

the difference ξk(t)− ξk−1(t) by ηk(t), we have

ηk+1(t) =
∫ t

0

[σ(s , ξk(s))− σ(s , ξk−1(s))]dβ(s) +
∫ t

0

[b(s , ξk(s))− b(s , ξk−1(s))]ds

=
∫ t

0

δk(s)db(s) +
∫ t

0

ek(s)ds

(12.3)

Because of the Lipschitz assumption

‖δk(s)‖ ≤ A‖ηk(s)‖ and ‖ek(s)‖ ≤ A‖ηk(s)‖ (12.4)

We can estimate

sup
0≤τ≤t

‖ηk(τ)‖ ≤ sup
0≤τ≤t

‖
∫ τ

0

δk(s)db(s)‖+
∫ t

0

‖ek(s)‖ds

By Doob’s inequality for martingales, the property of stochastic integrals and (12.4)

E

[
sup

0≤τ≤t
‖

∫ τ

0

δk(s)db(s)‖2
]
≤ C0E

[
‖

∫ t

0

δk(s)db(s)‖2
]

= C1

∫ t

0

E
[‖δk(s)‖2]ds

≤ A2C1

∫ t

0

E
[‖ηk(s)‖2]ds
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On the other hand we can also estimate for t ≤ T ,

E

[ (∫ t

0

‖ek(s)‖ds
)2

]
≤ TE

[ ∫ t

0

‖ek(s)‖2ds
]
≤ A2T

∫ t

0

E

[
‖ηk(s)‖2

]
ds

Putting the two pieces together, if we denote by

∆k(t) = E

[
sup

0≤τ≤t
‖ηk(τ)‖2

]

then, with CT = A2C1(1 + T ),

∆k(t) ≤ CT

∫ t

0

∆k−1(s)ds

Clearly

η1(t) =
∫ t

s0

σ(s , ξ0)dβ(s) +
∫ t

s0

b(s , ξ0)ds

and

∆1(t) ≤ CT t

By induction

∆k(t) ≤ Ck
T t

k

k!

From the convergence of
∑

k[Ck
T T k

k!
]
1
2 we conclude that

∑
k

E
[

sup
0≤t≤T

‖ηk(t)‖] <∞.

By Fubini’s theorem ∑
k

sup
0≤t≤T

‖ηk(t)‖ <∞ a.e. P.

In other words for almost all ω with respect to P ,

lim
k→∞

ξk(t) = ξ(t)

exists uniformly in any finite time interval [0, T ]. The limit ξ(t) is easily seen to be

progressively measurable solution of (12.1).
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Uniqueness is a slight variation of the same method. If we have two solutions ξ(t) and

ξ′(t), their difference η(t) satisfies

η(t) =
∫ t

0

[σ(s , ξ(s))− σ(s , ξ′(s))]dβ(s) +
∫ t

0

[b(s , ξ(s))− b(s , ξ′(s))]ds

=
∫ t

0

δ(s)db(s) +
∫ t

0

e(s)ds

with

‖δ(s)‖ ≤ A‖η(s)‖ and ‖e(s)‖ ≤ A‖η(s)‖

Just as in the proof of convergence, for the quantity

∆(t) = E

[
sup

0≤s≤t
‖η(s)‖2

]
we can now obtain

∆(t) ≤ CT

∫ t

0

∆(s)ds

We have the obvious estimate ∆(t) ≤ CT , we get by iteration

∆(t) ≤ (CT )k+1 t
k

k!

for every k. Therefore ∆(t) ≡ 0 implying uniqueness.

The uniqueness is a special form of uniqueness. If two solutions of (12.1) are con-

structed on the same same space for the same Brownian motion with the same choice of

σ then they are identical for almost all ω. This seems to leave open the possibility that

somehow different choices of σ or constructions in different probability spaces could pro-

duce different results. That this is not the case is easily established. Before we return to

this let us proceed with some comments.

Remark. We can start with a constant x for our initial value at some time s and construct

a solution ξ(t) = ξ(t ; s , x) for t ≥ s. If we define

p(s , x , t , A) = P
[
ξ(t ; s , x) ∈ A]

then our solutions are Markov processes with transition probability p(s , x , t , A).

The proof is based on the following argument. Because of uniqueness the solution

starting from time 0 can be solved upto time s and then we can start again at time s with
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the initial value equal to the old solution, and we should not get anything other than the

solution obtainable in a single step. In other words

ξ(t ; s , ξ(s , 0, x)) = ξ(t ; 0 , x)

Since the solution ξ(t ; s , ξ(s , 0, x)) only depnds on ξ(s , 0, x) which is Fs measurable and

increments dβ of the Brownian paths over [s, t] that are independent of Fs, the conditional

distribution
P [ ξ(t) ∈ A|Fs ] = P [ ξ(t ; s , ξ(s)) ∈ A|Fs ]

= P [ ξ(t ; s , z) ∈ A|Fs ]z=ξ(s)

= p(s , ξ(s) , t , A)

establishing the Markov property.

Remark. A similar argument will yield the strong Markov property. We use the fact

that the after a stopping time τ the future increments of the Brownian motion are still

independent of the σ-field Fτ . There are some details to check about restarting the SDE

at a stopping time. But this is left as an exercise.

Remark. If we have two solutions on two different spaces of the same equation with the

same constant (i.e. non random) initial value, i.e. with the same σ and b that satisfy our

assumptions, then they have the same distributions as stochastic processes. If we notice our

construction, each iteration ξk(t) was a well defined function of ξk−1 and the Brownian

incremets. The iteration scheme is the same in both. At each stage they are identical

functions of different Brownian motions. Therefore they have the same distribution. Pass

to the limit.

Remark. If ξ(t) is any solution anywhere for any choice σ̄ of the square root, then ξ is a

diffusion corresponding to the coefficients a = σ̄σ̄∗, b and can be represented, by enlarging

the space if necessary, as a solution of (12.1) with any arbitrary choice of the square root

σ. In particulat if one is available with the Lipschitz property and b is also Lipschitz we

are back in the old situation. Therefore if there is a Lipschitz choice available then the

distribution of any solution with any choice of the square root is identical to the one coming

from the Lipschitz choice. In particular the distribution of any two Lipschitz choices are

identical.
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13. Some Examples. A Discussion of Uniqueness.

Ornstein-Uhlenbeck Process. A stochastic differential equation of the form

dx(t) = σβ(t)− ax(t)dt ; x(0) = x0 (13.1)

has an explicit solution

x(t) = e−atx0 + σe−at

∫ t

0

easdβ(s)

which has a Gaussian distribution with mean e−atx0 and variance given by

σ2(t) = σ2e−2at

∫ t

0

e2asds =
σ2

2a
(1− e−2at)

This is a Markov Process with stationary Gaussian transition probablity densities:

p(t , x , y) =
1√

2π σ(t)
exp

[
−(y − etx)2

2σ2(t)

]
This is particularly interesting when a < 0, which is the stable case, and then

lim
t→∞σ2(t) = θ =

σ2

2a

and

lim
t→∞ p(t , x , y) =

1√
2πθ

exp
[− y2

2θ
]

Geometric Brownian Motion: The function x(t) = x0 exp
[
σβ(t)+µt

]
satisfies accord-

ing to Ito’s formula the equation

dx(t) = σ x(t)dβ(t) + (µ+
σ2

2
)x(t)dt ; x(0) = x0

so that a solution of

dx(t) = σ x(t)dβ(t) + µx(t)dt ; x(0) = x0

is provided by

x(t) = x0 exp
[
σβ(t) + (µ− σ2

2
)t

]
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Notice the behavior
1
t

logx(t) ' (µ− σ2

2
) a.e.

as well as
1
t

logE[x(t)] ' µ

The explanation is that the larger expectation is accounted for by certain very large values

with very small probabilities.

ODE and SDE. The solution x(t) = x0 exp
[
σβ(t) + (µ− σ2

2
)t

]
of

dx(t) = σ x(t)dβ(t) + µx(t)dt ; x(0) = x0

is nice smooth map of Brownian paths and makes sense for all functions f

x(t , f) = x0 exp
[
σf(t) + (µ− σ2

2
)t

]
and for smooth functions as well. If we replace β by a smooth path f , it solves

dx(t) = σ x(t)df(t) + (µ− σ2

2
)x(t)dt ; x(0) = x0

The Ito map satisfies the wrong equation on smooth paths. This is typical.

There are various ways of constructing a solution that correspond to a Diffusion with

coefficients a(t , x) = {ai,j(t , x)} and b(t , x) = {bi(t , x)}. For a square root σ satisfying

σσ∗ = a we can attempt to solve the SDE

dx(t) = σ(t , x(t))dβ(t) + β(t , x(t))dt ; x(0) = x0

on the Wiener space and get a map β(·) → x(·). Such a solution if it exists will be called

a strong solution. A Matingale Solution is a measure P on Ω = C[[0 ,∞) ;Rd] such

that P [x(0) = x0] = 1 and for each smooth f the expression

f(x(t))− f(x(0))−
∫ t

0

(Ls f)(x(s)ds

is a martingale with respect to (Ω ,Ft , P ). If we can construct on some probability space

(Ω ,Ft , µ) a Brownian motion β(·) and an x(·) that satisfy

x(t) = x0 +
∫ t

0

σ(s , x(s))dβ(s) +
∫ t

0

b(s , x(s))ds
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then we call x(·) a Weak Solution to the SDE. We make the following remarks.

Remark 1. A strong solution is a weak solution, and if σ is Lipschitz, then any weak

solution is a strong solution. In particular two weak solutions on the same space involving

the same Brownian Motion are identical.

Remark 2. The distribution P of any Weak Solution is a Martingale Solution and con-

versely any Martingale Solution is the distribution of some Weak Solution.

Remark 3. For a given square root σ if we deifine the 2d × 2d matrix ã as the 2 × 2

matrix of d× d blocks a , σ followed by σ∗ and I, and b̃ as b followed by the 0 vector, then

a weak solution of σ , b is the same as a Martingale Solution of ã , b̃.

Remark 4. Any two weak solutions on different probability spaces can be put on the

space space with the same Brownian Motion.

This needs an explanation. What we mean is the following: Let P1 and P2 be two

martingale solutions for ã , b̃. Then we can construct a Q which is a martingale solution

for the 3d dimensional problem with coordinates x , y , z for â , b̂ where in blocks of d × d

the rows of â reads a(t , x) , σ(t , x) σ∗(t , y) , σ(t , x); σ(t , y) σ∗(t , x) , a(t , y) , σ(t , y) and

σ∗(t , x) , σ∗(t , y) , I while b̂ raeds b(t , x) , b(t , y) , 0 which has the following two additional

properties:

1. The distribution of x, z coordinates is P1 and that of the y, z coordinates P2.

2. Given the z cordinate the x and y coordinates are conditionally independent.

We start with P the Wiener measure, Pω
i the conditional of ‘x’ given the Brownian

Motion under Pi and define

Q = P (dω)⊗ [Pω
1 × Pω

2 ]

i.e. we build in conditional independence. We can check that Q is a Martingale Solution

for the 3d dimensional problem.

This construction allows us to make the following remark.

Remark 5. If it is true that for some σ , b any two weak solutions on the same space with

the same Brownian Motion are identical, then any weak solution is a strong solution and

in such a context the Martingale solution is unique.
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14. Random Time Change and Uniqueness in One Dimension.

One of the properties of Martingales is Doob’s stopping theorem. If M(t) is a Martingale

with respect to (Ω ,Ft , P ) and 0 ≤ τ1 ≤ τ2 ≤ C are two bounded stopping times, with the

correspnding σ-fields Fτ1 ⊂ Fτ2 , then

EP [ M(τ2)|Fτ1 ] = M(τ1) a.e.

In particular if τt is a family of bounded stopping times with τs ≤ τt for s ≤ t, then with

N(t) = M(τt) and Gt = Fτt

N(t) is a martingale with respect to (Ω ,Gt , P ). If P is any Martingale solution on Ω =

C[[0 ,∞) , X ] that corresponds to some L, then

f(x(t))− f(x(0))−
∫ t

0

(Lf)(x(s))ds

is a martingale with respect to (Ω ,Ft , P ). We consider the functions {τt}, defined by,∫ τt(ω)

0

ds

V (x(s , ω))
= t

where V (·) is a positive measurable function on X , satisfying

0 < c ≤ V (x) ≤ C <∞ (14.1)

Then it is clear that τt is well defined for t ≥ 0 with τ0 = 0 and τs < τt for s < t and τt

continuous in t. We can use τt to define a map ΦV of Ω → Ω by

(ΦV ω)(t) = x(τt(ω) , ω)

Lemma 14.1 For any two functions U and V , satisfying (14.1)

ΦU oΦV = ΦUV

Proof: The proof depends on the simple calculation

dτt(ω)
dt

= V (x(τt(ω))) = V (y(t))
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where y(t) = x(τt(ω)) = (ΦV ω)(t). If σt solves∫ σt(ω)

0

ds

U(y(s))
= t

or
dτσt

dt
=
dτs
ds
|s=σt

· dσt

dt
= (V U)(y(σt)) = (V U)(x(τσt

))

proving the composition rule. In particular ΦV is invertible with Φ 1
V

= [ΦV ]−1. The

σ-field σ{y(s) : 0 ≤ s ≤ t} ⊂ Fτt
, and

f(y(t))− f(y(0))−
∫ τt

0

(Lf)(x(s))ds

is an (Ω ,Fτt
, P ) martingale. By change of variables∫ τt

0

(Lf)(x(s))ds =
∫ t

0

V (y(s))(Lf)(y(s))ds

Therefore

f(y(t))− f(y(0))−
∫ t

0

V (y(s))(Lf)(y(s))ds

is a martingale with respect to (Ω ,Fτ , P ). In particular Q = Φ−1
V P is a Martingale

solution for L̃ defined as

(L̃f)(x) = V (x)(Lf)(x)

The steps are reversible so that existence or uniqueness for a Martingale solution for L
and L̃ are equivalent so long as V satisfies (14.1).

Now when d = 1 we can prove existence and uniqueness of Martingale Solutions to

L =
a(x)

2
D2

x + b(x)Dx

so long as a , b are bounded measurable with 0 < c ≤ a(x) ≤ C < ∞. From Girsanov

Formula we can assume without loss of generality that b ≡ 0. By random time change we

can assume that a(x) ≡ 1. Now we are in the Brownian motion case, and we have existence

and uniqueness. Of course once we ave existence and uniqueness the Markov Property as

well as the Strong Markov Property follow.

In the time dependent case it is more complicated. In one dimension we can improve

the Lipschitz assumption on σ to Holder with exponent 1
2 .
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Theorem 14.2 Assume that b is Lipschitz but σ satifies

|σ(t , x)− σ(t, , y)| ≤ |x− y|
1
2

Then any two solutions

xi(t) = x0 +
∫ t

0

σ(s , xi(s))dβ(s) +
∫ t

0

b(xi(s))ds

are identical.

Proof: The proof involves the application of Ito’s formula for the function f(x1(t) , x2(t)) =

|x1(t)− x2(t)|. Formally

df(x1(t) , x2(t)) = [sig(x1(t)− x2(t))](σ(t , x1(t))− σ(t , x2(t)))dβ(t)

+ δ(x1(t)− x2(t))|σ(t , x1(t))− σ(t , x2(t))|2dt
+ [sig(x1(t)− x2(t))][b(t , x1(t))− b(t , x2(t))]dt

We will give an argument as to why the term with δ is zero. Granting that we have by the

Lipschitz condition on b,

E[|x1(t)− x2(t)|] ≤ C

∫ t

0

E[|x1(s)− x2(s)|]ds

and this implies uniqueness. Let us approximate |x| by fε(x) =
√

(ε2 + x2). Then

f ′′ε (x) =
ε2

(ε2 + x2)
3
2

and

|f ′′ε (x1 − x2)|σ(t , x1)− σ(t , x2)|2 ≤ Cε2|x1 − x2|
(ε2 + (x1 − x2)2)

3
2
≤ C sup

u

[
u

(1 + u2)
3
2

]
≤ C′

We can let ε→ 0. use the dominated convergence theorem and pass to the limit to show

that there is no contribution from the term with δ.
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15. General comments on existence and uniqueness of the martingale solutions.

If we are given a a(t , x) = {ai,j(t , x)} and b(t , x) = {bj(t , x)} and are interested in

proving uniqueness of martingale solutions, we specifically wish to show that the set Cs,x

of probability measures P on Ωs = C[[s ,∞) ;Rd ] such that

P [x(s) = x] = 1

and

Zf (t) = f(x(t))− f(x(s))−
∫ t

s

(Lsf)(x(s)ds (15.1)

are martingales with respect to (Ωs ,Fs
t , P ) for all smooth f consists of exactly one prob-

ability measure.

The existence part is simple under fairly general conditions. If a and b are smooth we

can have Lipschitz σ and b and Ito’s theory of SDE provides us, as we saw, both existence

and uniqueness. If we only assume that a and b are just bounded and continuous we can

prove existence along the following lines. We take s = 0 with out loss of generality and

approximate a, b by smoother an, bn that converge as n → ∞ to a, b. The convergence

can be assumed to be uniform over compact subsets of Rd, and we can also assume that

an as well as bn are uniformly bounded by some constant M . For some x let Pn,x be the

unique solution starting at time 0 from the point x, corresponing to an, bn. We will prove

that Pn,x is a totally bounded sequence of probability measures on Ω, and that if P is any

weak limit then P is a solution starting at time 0 from x for the limiting coefficients and

therefore we have existence.

Lemma 15.1 The sequence Pn satisfies the following. For any T < ∞ and any ε > 0,

there exists A(T , ε) depending only on the bound M such that

Pn

[
ω : sup

0≤s≤t

|x(s)− x(t)|
|t− s| 14 ≤ A(T , ε)

]
≥ 1− ε

In particular the sequence is totally boundeded.

Proof: Let P be a diffusion corresponding to some a, b that are bounded by M . We

remark that we can write

x(t) = y(t) +
∫ t

0

b(x(s))ds
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Clearly the difference |x(t)−y(t)| is uniformly Lipschitz with a bound ofM for the Lipschitz

constant and y(t) is such that

exp
[
< θ , y(t)− y(0) > −1

2

∫ t

0

< θ , a(s , ω)θ > ds

]
is a martingale with respect to (Ω ,Ft , P ). From this we deduce the following bound

EP [ exp[< θ , y(t)− y(s) >] ] ≤ exp[
M(t− s)

2
‖θ‖2]

or

EP

[
exp[< θ ,

y(t)− y(s)√
t− s

>]
]
≤ exp[

M

2
‖θ‖2].

It is easy to conclude now that

EP

[ |y(t)− y(s)|4
|t− s|2

]
≤ CM2

for a universal constant C. From Garsia-Rodemich-Rumsey lemma we get our estimte and

by Prohorov’s theorem we get the total boundedness of the sequence Pn of probability

measures.

We take a weak limit alomg a subsequence and call it P . We might as well assume

that Pn → P weakly.

Lemma 15.2 The limit P is a martingale solution for a, b.

Proof: With Zf (t) as in (15.1) we need to establish∫
A

Zf (t)dP =
∫

A

Zf (s)dP (15.2)

for A ∈ Fs. It is sufficient to prove∫
Φ(ω)Zf (t)dP =

∫
Φ(ω)Zf (s)dP

for bounded continuous (in the topology of uniform convergence on bounded time intervals)

functions Φ that are Fs measurable. For such a Φ clearly∫
Φ(ω)Zn

f (t)dPn =
∫

Φ(ω)Zn
f (s)dPn (15.3)
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where

Zn
f (t) = f(x(t))− f(x(s))−

∫ t

s

(Ln
s f)(x(s)ds (15.4)

and

Ln
s =

1
2

∑
i,j

an
i,j(s , x)

∂2

∂xi∂xj
+

∑
j

bnj (s , x)
∂

∂xj

We can let n → ∞ and from the weak convergence of Pn to P , the convergence of Zn
f (t)

to Zf (t), ( uniformly on compact subsets of Ω ), and the uniform boundedness of Zn
f (t)

we can let n→∞ in (15.3) to conclude that (15.2) holds. We are done.

Uniqueness is a much harder issue. Clearly we have it in the Lipschitz case. But the

uniqueness cannot be done by approximation. The following general Markovian Principle

works. Assume existence.

Lemma 15.3 If there exists a family µs ,x ,t(·) of probability measures such that, for any

P ∈ Cs,x,

P [x(t) ∈ A] = µs ,x ,t(A)

then P is a Markov Process with µs ,x ,t(A) as transition probabilities and is therefore

unique.

Proof: We proved a general princilpe that the conditional probabilty distribution Pt,ω of

any solution P ∈ Cs,x give Ft is in Ct,x(t) almost surely. Therefore for s < t < u

P [ x(u) ∈ A|Ft ] = µt ,x(t) ,u(A)

a.e. P , proving the Markov property and the lemma.

Determining P [x(t) ∈ A] for P ∈ Cs,x can be done through solving certain partial

differential equations. We know that

u(t , x(t))− u(s , x(s))−
∫ t

s

(
∂

∂σ
+ Lσu)(σ , x(σ))dσ

is a martingale. Therefore for any smooth u and P ∈ Cs,x,

u(s , x) = EP

[
f(x(t)) +

∫ t

s

g(σ , x(σ))dσ
]

(15.5)

where

g(σ , ·) = −(
∂u

∂σ
+ Lσu)(σ , ·) (15.6)
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and

u(t , ·) ≡ f(·) (15.7)

The relation holds for for every smooth u and every P ∈ Cs,x.

Lemma 15.4 If u satisfies (15.6) and (15.7) with g ≥ 0 and f ≥ 0, and Cs,x is nonempty

then the maximum principle holds, i.e. u(s , x) ≥ 0.

Proof: Obvious from (15.5).

We are actually interested in going in the reverse direction. Suppose either

1. (15.6) is solvable for sufficiently many g satisfying (15.7) with f ≡ 0

or

2. (15.6) is solvable with g ≡ 0 satsfying (15.7) for sufficiently many f , then

EP

[ ∫ t

s

g(σ , x(σ))dσ
]

or

EP [ f(x(t)) ]

are detrmined for sufficiently many g or f as the case may be. This can then be used

to determine P [x(t) ∈ A] for P ∈ Cs,x. What we mean by sufficiently many depends on

the circumstances. We need either enough g’s to recover the the measures {µσ} from the

integrals ∫ t

s

∫
Rd

f(y)µσ(dy)dσ

or enough f ’s to determine the measure from the integrals∫
Rd

f(y)µ(dy)

If we know some thing about P ∈ Cs,x, like for instance

µs ,x(dσ, dy) = Ps,x[x(σ) ∈ dy]dσ

is always in some Lp([s , t] × Rd), then sufficiently many can be just any dense set in

Lq([s , t]×Rd), where 1
p

+ 1
q

= 1. Similarly if we know that for any P ∈ Cs,x, the measure

P [x(t) ∈ dy] is in Lp[Rd] it is enough to solve f from a dense subset of Lq[Rd]. These

remarks are quite pertinent especially when the coefficients are discontinuous.

58



16. Time dependent diffusions in one dimension.

Let us look at d = 1 and consider the equation

∂u

∂σ
+

1
2
a(σ , y)

∂2u

∂y2
= g(σ , y)

If we insist on u being C1,2, and g being continuous ut , uyy and g are continuous and

unless u ≡ c, there will be no solutions. For nonsmooth coefficients we have to deal with

non-classical solutions.

Let us now illustrate the method with the problem of constructing solutions for the

one dimensional problem with 0 < c ≤ a(t , x) ≤ C <∞ and b ≡ 0. We start with

Theorem 16.1 Let us consider a stochastic integral with repect the Brownian Motion

on some probability space

ξ(t) = x0 +
∫ t

0

k(s , ω)dβ(s)

for some k(s , ω) satisfying

0 < c ≤ |k(s , ω)|2 ≤ C <∞

Then there is a constant M depending only on c, C and T such that∣∣∣∣∣E
[ ∫ T

0

g(s , ξ(s))ds

]∣∣∣∣∣ ≤M‖g‖L2([0,T ]×R)

Proof: The key estimate is the following: Consider a function g with compact support on

(−∞ ,∞)×R. Define

u(s, x) =
∫ ∞

s

∫
R

1√
2Cπ(t− s)

g(t , y) exp[− (x− y)2

2C(t− s)
]dtdy (16.1)

If g is smooth it is easy to verify that

∂u

∂s
+
C

2
uxx = −g(s , x)

Taking Fourier transform û of u in x and s,

iτ û(τ , η)− Cη2

2
û(τ , η) = −ĝ(τ , η)
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or

û(τ , η) =
1

Cη2

2
− iτ

ĝ(τ , η)

and

ûxx(τ , η) =
η2

iτ − C
2 η

2
ĝ(τ , η)

Therefore using the isometry of the Fourier transform

‖uxx‖L2 ≤
2
C
‖g‖L2

Now to prove the theorem there is no loss of generality in assuming that k is simple. With

uniform bounds we can pass to the limit. We define the linear functional

Λ(g) = E

[ ∫ T

0

g(s , ξ(s))ds

]

Clearly if k is simple, then ξ is piece wise Brownian Motion and the transition probability

pσ2(s , x , t , y) of the Brownian motion is in L2[[0 , T ]× R] uniformly in s and x provided

0 < c ≤ σ2 ≤ C <∞. It is now easy to get a bound

|Λ(g)| ≤M‖g‖L−2

with a constant M that depends on the number of intervals over which k is constant. We

want to improve our bound to make it depend only on c, C and T . If we take g that

vanishes for t ≥ T , construct u as in (16.1), then u(T , ·) ≡ 0 and by Ito’s formula

u(0 , x) = −EP

[ ∫ T

0

us +
k2(s , ω)

2
uxx(s , ξ(s))ds

]

= −EP

[ ∫ T

0

(us +
C

2
uxx)(s , ξ(s))ds

]
+EP

[ ∫ T

0

C − k2(s , ω)
2

uxx(s , ξ(s))ds

]

= EP

[ ∫ T

0

g(s , ξ(s))ds

]
+ EP

[ ∫ T

0

C − k2(s , ω)
2

uxx(s , ξ(s))ds

]

or

EP

[ ∫ T

0

g(s , ξ(s))ds

]
= u(0 , x)− EP

[ ∫ T

0

C − k2(s , ω)
2

uxx(s , ξ(s))ds

]
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and therefore

EP

[ ∫ T

0

g(s , ξ(s))ds

]
≤ |u(0 , x)|+ C − c

2
EP

[ ∫ T

0

|uxx(s , ξ(s))|ds
]

In other words

|Λ(g)| ≤ |u(0 , x)|+ Λ(|uxx|) (16.2)

Taking supremum in (16.2) over g with ‖g‖L2 ≤ 1, and denoting it by M , we get

M ≤ sup
g:‖g‖≤1

|u(0 , x)|+ C − c

2
2
C
M = sup

g:‖g‖≤1

|u(0 , x)|+ (1− c

C
)M

Since

sup
g:‖g‖≤1

|u(0 , x)| =
[ ∫ T

0

∫
R

[
1√

2πCt
exp[− y2

2Ct
]
]2

dydt

] 1
2

= A(T , C) <∞

we have

M ≤ C

c
A(T , C) = A(T , C , c)

and the theorem is proved.

Remark: An immediate consequence of the estimate is that any stochastic integral of the

form

ξ(t) =
∫ t

0

k(s , ω)dβ(s)

with

0 < c ≤ |k(s , ω)|2 ≤ C <∞

has a distribution q(t , dy) that has a density q(t , y)dy in y for almost all t, with the bound

∫ T

0

∫
R

|q(t , y)|2dtdy ≤ [A(T , C , c)]2

Remark: In particular if p(s , x , t , dy) is the transition probability for a diffusion with

smooth coefficients a = a(t , x), and b = 0, with

0 < c ≤ a(t , x) ≤ C <∞
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it has a density p(s , x , t , y) for almost all t and,

sup
x

s≤t

∫ T

t

|p(s , x , t , y)|2dtdy ≤ [A(T − t , C , c)]2

We will now use the above theorem to prove existence as well as uniqueness of mar-

tingale solutions. We assume 0 < c ≤ a(t , x) ≤ C < ∞. We can construct an satisfying

the same bounds that are smooth and we can have an → a almost everywhere in t and x.

We have from Lemma 15.1 the total boundeness of the measures Pn for the approximating

smooth coefficients. But now the expressions

Zn
f (t) = f(x(t))− f(x(0))−

∫ t

0

an(s , x(s))
2

fxx(x(s))ds

do not converge uniformly on compact subsets of Ω to

Zf (t) = f(x(t))− f(x(0))− 1
2

∫ t

0

a(s , x(s))fxx(x(s))ds

But, given any ε > 0, we can find aε
n and aε such that aε

n → aε uniformly on compact

subsets of [0 ,∞)×R and

∫ T

0

∫
|x|≤`

[|aε
n − an|2 + |aε − a|2]dx dt ≤ δε(T , `)

for some δε(T , `) such that δε(T , `) → 0 as ε→ 0 for each T and `. Now

Zn,ε
f (t) = f(x(t))− f(x(0))− 1

2

∫ t

0

aε
n(s , x(s))fxx(x(s))ds

converges nicely to

Zε
f (t) = f(x(t))− f(x(0))− 1

2

∫ t

0

aε(s , x(s))fxx(x(s))ds

and ∫
Φ(ω)Zn,ε

f (t)dPn →
∫

Φ(ω)Zε
f (t)dPn

for for smooth f and bounded continuous Fs measurable functons Φ. Since we now have

a bound of the form
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sup
n
|
∫

Φ(ω)[Zn,ε
f (t)− Zn

f (t)]dPn |

≤ C1 sup
n
EPn

[ ∫ T

0

|aε
n(t , x(s))− an(t , x(t))|dt

]

≤ 2CC1 sup
n
Pn

[
sup

0≤t≤T
|x(t)| ≥ `

]
+ C1

∫ T

0

∫ `

−`

|aε
n(t , x)− aε(t , x)|pn(0 , x , t , y)dy

≤ CC1∆(`) + C1

√
δε(T , `)A(T , C , c)

with the a similar estimate for Zε
f − Zf

|
∫

Φ(ω)[Zε
f(t)− Zf (t)]dP | ≤ CC1∆(`) + C1

√
δε(T , `)A(T , C , c)

We can now interchange n→∞ limit and ε→ 0 limit and we can conclude that

lim
n→∞

∫
Φ(ω)Zn

f (t)dPn =
∫

Φ(ω)Zf (t)dP

for all t ≥ s, and therefore, from∫
Φ(ω)Zn

f (t)dPn =
∫

Φ(ω)Zn
f (s)dPn

it follows that ∫
Φ(ω)Zf (t)dP =

∫
Φ(ω)Zf (s)dP

proving that P is a martingale solution for [a(· , ·), 0 ]

Now we turn to proving uniqueness. We will attempt to solve the equation (15.6) and

(15.7) with a function u of the form

u(s , x) =
∫ T

s

∫
R

h(t , y) pC(s , x , t , y)dy

Then as we saw earlier

us(s , x) +
a(s , x)

2
uxx(s , x) = us(s , x) +

C

2
uxx(s , x) +

a(s , x)− C

2
uxx(s , x)

= −g(s , x) + [Bg](s , x)

= −([I −B]g)(s , x)
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where

Bg(s , x) =
a(s , x)− C

2
uxx(s , x)

and

‖Bg‖L2 ≤ (1− c

C
)‖g‖L2

If we have two martingale solutions P i, i = 1, 2 in Cs ,x and µi
t are their marginal distri-

butions at times t ≥ s, then they have densities qi(t , y) for almost all t, and

u(s , x) =
∫ T

s

[(I −B)g](t , y) q1(t , y)dy =
∫ T

s

[(I −B)g](t , y) q2(t , y)dy

Since we know that ∫ T

0

∫
R

|qi(t , y)|2dtdy <∞

in order to establish that q1 ≡ q2, it sufficient to show that the set of functions of the form

(I −B)g as g ranges over C∞ functions is dense. Because ‖B‖ < 1 this is indeed true.

17. Brownian Motion on the Halfline.

It is not possible to construct the Brownian on the halfline [0 ,∞). Sooner or later it will

hit 0 and then immeditely would turn negative as the following lemmas show.

Lemma 17.1 For any x ∈ R, for the Brownian motion on R,

Px [ τ0 <∞ ] = 1

Proof: From the reflection principle for any x > 0,

Px [ τ0 ≤ t ] = 2Px [ x(t) ≤ 0 ] → 1 as t→∞.

Lemma 17.2 (Blumenthal’s 0-1 Law). If P0,x is any diffusion constructed as the

unique martingale solution starting from x, and A ∈ F0+ = ∩s > 0Fs, then P0,x(A) = 0

or 1.

Proof: Assume that P0,x(A) > 0. Then QA(·) defined by

QA(E) =
P0,x(A ∩E)
P0,x(A)
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is easily seen to be again a martingale solution and so must coincide with P0,x. Hence

P0,x(A ∩E) = P0,x(E)P0,x(A)

In particular A and E are independent. Taking E to be A, we get P (A) = 1.

Lemma 17.3 For the Brownian Motion Px starting from 0, for any δ > 0,

Px [ ω : x(t) ≥ 0 for 0 ≤ t ≤ δ ] = 0

Proof: For any δ > 0

Px [ ∪δ>0{ω : x(t) ≥ 0 for 0 ≤ t ≤ δ} ] = lim
δ→0

Px [ ω : x(t) ≥ 0 for 0 ≤ t ≤ δ ]

≤ lim
δ→0

Px [ ω : x(δ) ≥ 0 ] ≤ 1
2

The set A = ∪δ>0{ω : x(t) ≥ 0 for 0 ≤ t ≤ δ} is in F0+ and by Lemma 17.2, Px(A) = 0.

We have to do something drastic to the Brownian Motion to keep it on the halfline.

We want to characterize what we could do. We want to characterize all strong Markov

families {Px} that have continuous paths, live on the half line and behave like a normal

Brownian Motion away from 0. The last property is described by the following. For any

smooth f that vanishes in a neighborhood of 0,

Xf (t) = f(x(t))− f(x(0))−
∫ t

0

1
2
f ′′(x(s))ds

is a Martingale with respect to (Ω ,Ft , Px). By approximation we can easily extend the

property to functions f which are quadratic near ∞ while still vanishing near the origin.

Hence such processes have two moments and in fact as many moments as we need. Any

function with f(0) = f ′(0) = f ′′(0) can be approximated in the C2 topology by functions

that vanish in a neighborhood of 0. Constants are no problem. Therefore the martingale

property is valid for all smooth functions f , that satisfy f ′(0) = f ′′(0) = 0.

Lemma 17.4 . The function x(t) is a submartingale with respect to any Px and can be

written as

x(t) = A(t) +M(t) (17.1)

where M(t) is a martingale and A(t) is a continuous nondecreasing function of t that

increases only when x(t) is at 0.
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Proof: Approximate x by

fε(x) = x− ε arctan
x

ε

Because
1
2
f ′′ε (x) = gε(x) =

εx

(ε2 + x2)2
≥ 0

fε(x(t)) is a submartingale and in the limit so is x(t). Existence of moments provides

enough uniform integrability. Although a general theorem wil tell us that a decomposition

of the form (17.1) holds, we will do it by hand in this case. We obviously want to take

A(t) = lim
ε→0

Aε(t) = lim
ε→0

∫ t

0

ge(x(s))ds

Let us try to control

E
[
[Aε(t)]2

]
= 2E

[ ∫ ∫
0≤t1≤t2≤t

ge(x(t1))ge(x(t2))dt1dt2

]
= 2E

[ ∫
0≤t1≤t

ge(x(t1))[fe(x(t))− fε(x(t1))]dt1

]
If we define

qε(t) = sup
0≤s≤t

sup
x
EPx [ fε(x(s))− fε(x(0)) ]

Then

E
[
[Aε(t)]2

] ≤ 2 [qε(t)]2

Or more generally,

E
[
[Aε(t)]k

] ≤ k! [qε(t)]k

We next estimate qε(t).

qε(t) = sup
0≤s≤t

sup
x
EPx

[
(x(t)− ε arctan

x(t)
ε

)− (x− ε arctan
x

ε
)

]
≤ sup

0≤s≤t
sup

x
EPx [ |x(t)− x| ]

≤ sup
0≤s≤t

sup
x

√
EPx [ |x(t)− x|2 ]

We saw that x(t) is a submartingale. By a similar argument one can show easily that

x2(t)− t is a supermartingale. If we approximate x2 by hε(x) = [x− ε arctan x
ε
]2

h′′ε (x) → χ(0,∞)(x)
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and is uniformly bounded. Therefore

x2(t)− x2(0)−
∫ t

0

χ(0,∞)(x(s))ds

is a martingale. Therefore

EPx
[ |x(t)− x|2 ]

= EPx
[
x2(t)− 2x(t)x(0) + x2(0)

]
≤ EPx

[
x2(0) + t− 2x2(0) + x2(0)

]
= t

Providing us the estimate

qε(t) ≤ k!t
k
2

18. Brownian Motion on the Halfline (Continued).

We will develop two methods for the construction of Brownian motions on the halfline

with sticky boundary condition. The reflected Brownian motion exists as the family of

distributions {P 0
x} obtained from the Brownian motion measures {Px}, by the map P 0

x =

PxΦ−1 where Φ maps C[[0 ,∞);R] into C[[0 ,∞);R+] by β(·) → |β(·)|. Relative to any

(Ω+ ,Ft , P
0
x ) there is a local time A(t) with the following properties:

1. A(t) is nondecreasing and the support of the measure dA(t) is contained in the set

{t : x(t) = 0}.

2. For any smooth function f

f(x(t))− f(x(0))−
∫ t

0

1
2
f ′′(x(s))ds− f ′(0)A(t) (18.1)

is a martingale relative to (Ω+ ,Ft , P
0
x ).

3. The process x(t) spends no time on the boundary 0, i.e. for anr x ∈ R+,∫ t

0

χ{0}(x(s))ds = 0 a.e. P 0
x (18.2)

We define a new increasing function

B(t) = λ−1A(t) + t
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where λ > 0 is a positive constant. B(t) is a continuous strictly increasing function of t

for any choice of λ > 0. For almost all ω the decomposition of B into

dB = λ−1 dA+ dt

is its Lebesgue decomposition.

support dA = {t : x(t) = 0}

and, because of (18.2) we can take

support dt = {t : x(t) > 0}

We now conclude that the Radon-Nikodym derivatives are given by

dA

dB
= λχ{0}(x(s))

and

dt

dB
= χ(0,∞)(x(s))

We define τt as the solution of

B(τt) = t

and define

y(t) = x(τt).
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Then

f(y(t))−f(y(0))−
∫ t

0

1
2
f ′′(y(s))χ(0,∞)(y(s))ds− λf ′(0)

∫ t

0

χ{0}(y(s))ds

= f(x(τt))− f(y(0))−
∫ t

0

1
2
f ′′(x(τs))χ(0,∞)(x(τs))ds

− λf ′(0)
∫ t

0

χ{0}(x(τs))ds

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(τB(s)))χ(0,∞)(x(τB(s)))dB(s)

− λf ′(0)
∫ τt

0

χ{0}(x(τB(s)))dB(s) (by cahange of variables s→ B(s) )

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))χ(0,∞)(x(s))dB(s)

− λf ′(0)
∫ τt

0

χ{0}(x(s))dB(s)

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))ds− λf ′(0)

∫ τt

0

dA(s)

= f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))ds− λf ′(0)A(τt)

is a martingale with respect to (Ω ,Fτt
, P 0

x ). Since the σ-field σ{y(s) : 0 ≤ s ≤ t} ⊂ Fτt

we conclude that the distributions {Pλ
x } of y(·) have the property:

f(y(t))− f(y(0))−
∫ t

0

1
2
f ′′(y(s))χ(0,∞)(y(s))ds− λf ′(0)

∫ t

0

χ{0}(y(s))ds

are (Ω+ ,Ft , P
λ
x ) martingales. Speeding up the clock at the boundary so that the local

time at the boundary turns into real time converts the reflected case to the sticky case.

Conversely if we stop the clock when the process is at the boundary, any sticky case will

become the reflected case.

Let us cosider the sticky case and define the function

B(t) =
∫ t

0

χ(0,∞)(x(s))ds.

We then define τt by

B(τt) = t

and y(·) by

y(t) = x(τt)
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To begin we need a lemma.

Lemma 18.1 Relative to any Pλ
x , the function B(t) is almost surely strictly increasing

in t. In other words, although the process sticks at the boundary it never spends a positive

‘interval ’of time at the boundary.

Proof: The proof amounts to showing that if we start at the boundary, then

Pλ
0 [ inf{t : x(t) > 0} = 0 ] = 1

Let us define

τ = inf{t : x(t) > 0}

Although τ is not quite a stopping time, it almost is, in the sense that τ + ε is a stopping

time for every ε > 0. By working with τ + ε and letting ε go to 0 at the end the strong

Markov property is seen to hold for τ . By Blumenthal’s 0− 1 law,

Px [ τ = 0 ] = 0 or 1

If it is 1 we are done. If it is 0, at the end of this time τ , the process is still at 0 but now

‘knows’ that it should get out. Clearly a violation of the strong Markov property.

Now we return to our main goal. We know that

f(x(t))− f(x(0))−
∫ t

0

1
2
f ′′(x(s))χ(0,∞)(x(s))ds− λf ′(0)

∫ t

0

χ{0}(x(s))ds

is a martingale. with respect to (Ω ,Ft , P
λ
x ). Therefore for f satisfying the boundary

condition f ′(0) = 0,

f(x(τt))− f(x(0))−
∫ τt

0

1
2
f ′′(x(s))χ(0,∞)(x(s))ds

= f(y(t))− f(x(0))−
∫ t

0

1
2
f ′′(y(s))ds

is a martingale and we are done.

Calculation: Let us try to calculate

pλ(t) = Pλ
0 [ x(t) = 0 ]
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We try to calculate

pλ(x , t) = Pλ
x [ x(t) = 0 ]

by solving the equation
∂u

∂t
=

1
2
∂2u

∂x2

with the boundary condition

λux(0) =
1
2
uxx(0)

and the initial condition

u(0 , x) = χ{0}(x)

The Laplace transform

v(σ , x) =
∫ ∞

0

e−σtu(t , x)dt

solves

σv − 1
2
vxx = 0 for x > 0

with the boundary condition

σv(0)− λvx(0) = 1

Clearly

vσ(x) = a exp[−
√

2σ x]

with

a
[
σ + λ

√
2σ

]
= 1

or

α = a(σ , λ) =
[
σ + λ

√
2σ

]−1

Hence ∫ ∞

0

pλ(t)e−σtdt =
[
σ + λ

√
2σ

]−1

This can be explicitly inverted to yield

pλ(t) =
∫ ∞

0

√
2
πt
e−

x2
2t −2λxdx =

∫ ∞

0

√
2
π
e−

x2
2 −2λx

√
tdx

Let P 0
0 be the reflected Brownian Motion starting from 0. The distribution of the

local time process A(t) can be found exactly.
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Theorem 18.2 The process A(t) has the same distribution as that of the process

M(t) = sup
0≤s≤t

β(t)

of the maximum of a Brownian motion starting from 0.

Proof: By Tanaka formula

x(t) = |β(t)| =
∫ t

0

sign (β(s))dβ(s) + A(t) = z(t) + A(t)

where z(·) is again a Browninan Motion process and A(t) is the local time process. We

will establish that

A(t) = − inf
0≤s≤t

z(s) = sup
0≤s≤t

[−z(s)]

In fact let f, g and A be arbitrary continuous functions with f(t) ≡ g(t) + A(t), f(0) =

g(0) = A(0) = 0, f ≥ 0 and A(·), nondecreasing and increasing only when f(t) = 0, i.e.

support of dA is contained in {t : f(t) = 0}. Then f and A are uniquely determined by g

and

A(t) = sup
0≤s≤t

[−g(s)] (18.3)

It is easy to see that with the choice (18.3) for A(t), and f(t) = g(t)+A(t) we get f(t) ≥ 0

as well as {support of dA} ⊂ {t : f(t) = 0}. We will now prove uniqueness. Let

fi(t) = g(t) + Ai(t); i = 1, 2

with

{support of dAi} ⊂ {t : fi(t) = 0} i = 1, 2. (18.4)

We have

f1(t)− f2(t) = A1(t)−A2(t).

Since A1(t)− A2(t) is a function of bounded variation, using (18.4)

[A1(t)− A2(t)]2 =
∫ t

0

[f1(s)− f2(s)][dA1(s)− dA2(s)]

= −
∫ t

0

f1(s)dA2(s)−
∫ t

0

f2(s)dA1(s)

≤ 0
giving us uniqueness.

In particular we have

P 0
0 [ A(t) ≥ ` ] = P0

[
sup

0≤s≤t
β(s) ≥ `

]
=

∫ ∞

`

√
2
πt

exp[−x
2

2 t
]dx
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19. Convergence of Markov Chains and markov Processes.

Let f(t) be a right continuous function with left limits on [0, T ]. The modulus of continuity

of f is the function

ωf (h) = sup
0≤s≤t≤T
|s−t|≤h

|f(s)− f(t)|

Then ωf (h) is ↓ as h ↓ and δf = ωf (0+) = limδ↓0 ωf (δ) is the size of the largest jump of

f . For any ε > 0 let us define successive times {τj}, j = 0, 1, · · · , N = Nf (ε), as

τ0 = 0, τj = {inf t : t ≥ τj−1& |f(t)− f(τj−1)| ≥ ε}

We get a finite sequence 0 = τ0 < τ1 < · · · < τN and τN+1 exceeds T . Let us define

∆f (ε) = inf
1≤j≤N

[τj − τj−1]

If |s− t| ≤ ∆f (ε), then s and t are in some pair of adjacent intervals [τj−2, τj−1], [τj−1, τj]

and it is easily seen that

|f(s)− f(t)| ≤ |f(τj−2)− f(s)|+ |f(τj−2)− f(τj−1 − 0)|
+ |f(τj−1 − 0)− f(τj−1)|+ |f(τj−1)− f(t)|

≤ 3ε+ δ

In particular if ∆f (ε) ≥ h then ωf (h) ≤ 3ε+ δ. If f is random then

P [ ωf (h) ≥ 3ε+ δ ] ≤ P [ ∆f (ε) ≥ h ]

If P is a strong Markov Process such that there is an estimate of the form

Ps ,x

[
sup

s≤t≤s+h
|x(t)− x| ≥ ε

]
≤ φε(h)

with φe(h) → 0 as h ↓ 0, then

sup
j,ω

P
[
τj − τj−1 ≤ h |Fτj−1

] ≤ φε(h).

We now get an estimate on N .

sup
j ,ω

EP
[
e−(τj−τj−1) |Fτj−1

]
≤ e−h(1− φe(h)) + φe(h)

= 1− (1− φe(h))e−h ≤ ρε < 1
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by choosing h sufficiently small.

EP
[
e−τkχτk<T

] ≤ ρk
ε

and therefore

P [N ≥ k] ≤ P [ τk ≤ T ] ≤ eT ρk
ε

Finally we have

P
[

∆x(·)(ε) ≤ h
] ≤ inf

k≥1
[kφe(h) + ρk

ε ] = ψε(h)

where ψe(h) → 0 as h→ 0 for any fixed ε. We have proved the following theorem.

Theorem 19.1 In order to prove that a family of Markov Process {P (n)} with values in

Rd having right continuous paths with left limits is compact relative to weak convergence

in the uniform topology wih the limit being supported on the set of continuous functions,

the following estimates are sufficient:

lim
A→∞

lim sup
n

P (n)[ |x(0)| ≥ A ] = 0 (19.1)

lim
h→0

lim sup
n→∞

sup
s ,x

P (n)
s ,x

[
sup

s≤t≤s+h
|x(s)− x| ≥ ε

]
= 0 (19.2)

The maximum jump goes to zero, i.e. for any δ > 0,

lim
n→∞P (n)

[
δx(·) ≥ δ

]
= 0 (19.3)

We will illustrate by considering some examples. Let us construct an approximation

to the reflected or sticky Brownian Motion by moving the trajectory to a > 0 after waiting

for an exponential time at 0, with b being the expected value of the exponential time. This

way we get a process {P a,b
x }. Let us assume that a→ 0 and b → 0 in such a way that

lim
a→0
b→0

a

b
= ρ

for some 0 ≤ ρ ≤ ∞. Then

Theorem 19.2 The limit

lim
a→0
b→0

P a ,b
x = P ρ

x
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exists and is the following process. If ρ = 0 we get the process where the Brownian motion

is absorbed at 0. If ρ = ∞ we get the reflected Brownian Motion. If 0 < ρ < ∞ we get

the sticky case with the boundary condition 1
2uxx(0) = ρ ux(0).

Proof: The starting point is fixed at x. Therefore (19.1) is trivially valid. The size of

the maximum jump is a that goes to 0 so that (19.3) is also trivial. Let us concentrate on

(19.2). Since the process is homogeneous in time we can always take s = 0. Let ε > 0 be

given. For any x and ε let τ be the exit time from (x− ε, x+ ε)∩ [0 ,∞). We need to show

that for each ε > 0,

lim sup
h→0

lim sup
a→0
b→0

sup
x
P a,b

x [ τ ≤ h ] = 0

We can assume that a ≤ ε. We consider two cases.

Case 1. x ≥ ε
2
. Consider a function fε which is 0 at x and 1 outside (x− ε

4
, x+ ε

4
) and

is smooth. Then

f(x(t))−
∫ t

0

1
2
f ′′(x(s))ds

is a martingale and if we take τ ′ ≤ τ to be the exit time from (x− ε
2
, x+ ε

2
)

EP a ,b
x [f(x(τ ′ ∧ h))− Cε(τ ′ ∧ h)] ≤ 0

where Cε is a bound on f ′′ that can be made to depend only on ε.

P a ,b
x [ τ ≤ h ] ≤ P a ,b

x [ τ ′ ≤ h ] ≤ EP a ,b
x [ f(x(τ ′ ∧ h)) ] ≤ CεE

P a ,b
x [ τ ′ ∧ h ] ≤ Cεh

Case 2. x ≤ ε
2 . In this case τ is the same as the exit time from [0 , x+ε) and τ ≥ τ ′ where

τ ′ is the exit time from [0 , ε). Since x ≤ ε
2 , before it can exit from [0 , x+ ε ) it must reach

ε
2 and exit again from the interval (0 , ε) which is an interval of the form (x − ε

2 , x + ε
2)

with x = e
2 . For the last event, we have already estimated the probability under case 1.

Therefore even in this case

P a ,b
x [ τ ≤ h ] ≤ Cεh

and we are done.

Now we turn to the identification of the limits. We deal with the three cases seper-

artely.

Case 1. ρ = 0. It suffices to show that for any t <∞ and ` > 0,

P a ,b
0 [ inf{s : x(s) ≥ `} ≤ t ] → 0
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proving that the limiting process never gets out of 0. We can infact try to calculate

P a ,b
0 [ inf{s : x(s) ≥ `} ≤ t ] = F (a , b , ` , t)

exactly. If ` ≤ a, we need just one jump and

F (a , b , ` , t) = 1− e−
t
b

If ` > a we can solve it by computing the Laplace transform∫ ∞

0

e−λtF (a , b , ` , dt) = ψ(a , b , ` , λ)

as the value at 0 of solution to
1
2
ψ′′(x) = λψ(x)

with the ‘boundary’ conditions

1
2
ψ′′(0) =

1
b
[ψ(a)− ψ(0)] ;ψ(`) = 1

Clearly

ψ(x) = Ae
√

2λx +Be−
√

2λx

for some constants A and B to be determined so that

Ae
√

2λ` +Be−
√

2λ` = 1

and

λb(A+B) = A(e
√

2λ a − 1) +B(e−
√

2λ a − 1) (19.4)

With out actually solving, we can pass to the limit and obtain in the limit

A+B = 0 (19.5)

if a
b
→ 0. Since ψ(a , b , ` , λ) = A+B this proves that

lim
a
b→0

ψ(a , b , ` , λ) = 0

and this implies

lim
a
b→0

F (a , b , ` , t) = 0
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for all ` > 0 and t <∞.

Case 2. ρ = ∞. The crucial step in this case is to prove that for any t <∞,

lim
`→0

lim sup
a
b→∞

EP a ,b
x

[ ∫ t

0

χ[0 ,`)(x(s))ds
]

= 0, (19.6)

guaranteeing that the process in the limit does not spend any time at 0. Let us construct

a test function f(x) on [0 ,∞) with these properties.

f(0) = 0 ; f ′(0) > 0 ; f ′′(0) = ∞ ; f ′′(x) ≥ −1 ; 0 ≤ f ≤ 1

The function f can be easily constructed and can be approximated by smooth functions

by changing the function slightly near 0. The processes

fn(x(t))− fn(x(0))−
∫ t

0

f ′′n (x(s))χ(0 ,∞)(x(s))ds− fn(a)− fn(0)
b

∫ t

0

χ{0}(x(s))ds

are martingales, providing a uniform bound

EP a ,b
x

[ ∫ t

0

f ′′n (x(s))χ(0 ,∞)(x(s))ds+
fn(a)− fn(0)

b

∫ t

0

χ{0}(x(s))ds
]
≤ 1

If we let n→∞ and use Fatou’s lemma, we get

EP a ,b
x

[ ∫ t

0

f ′′(x(s))χ(0 ,∞)(x(s))ds+
f(a)− f(0)

b

∫ t

0

χ{0}(x(s))ds
]
≤ 1

Since f ′(0) > 0, f ′′(0) = ∞ and b
a →∞ it is not hard to see that

lim
`→0

lim inf
a
b→∞

inf
0≤x≤`

[
f ′′(x)χ(0 ,∞)(x) +

f(a)− f(0)
b

χ{0}(x)
]

= ∞

and this is enough to establish (19.6)

We now complete the argument in case 2. Let f(x) be a smooth function satisfying

the boundary condition f ′(0) = 0. We want to prove that with respect to any limit Q

f(x(t))− f(x(0))−
∫ t

0

1
2
f ′′(x(s))ds (19.7)

is a Martingale. It is enough to prove that it is a submartingale, because we can change

the sign and show that it is a supermartingale as well. We can replace f by f + εg with
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g′(0) > 0 and let ε→ 0. We can therefore assume with out loss of generality that f ′(0) > 0

and try to establish that the expression in (19.7) is a submartingale. We know that

f(x(t))− f(x(0))−
∫ t

0

1
2
f ′′(x(s))χ(0 ,∞)(x(s))ds− f(a)− f(0)

b

∫ t

0

χ{0}(x(s))ds (19.8)

is a martingale. Because f ′(0) > 0, f(a)−f(0)
b > 0 for small a and we can assert that

f(x(t))− f(x(0))−
∫ t

0

1
2
f ′′(x(s))χ(0 ,∞)(x(s))ds

is a submartingale with respect to P a ,b
x . The estimate (19.6) allows us to pass to the limit

and conclude that the above expression remains a submartingale in the limit and the same

estimate allows us to repalce χ(0 ,∞) by 1.

Case 3. 0 < ρ < ∞. We start with f satisfying 1
2f

′′(0) = ρf ′(0). In the expression for

(4.1) if we replace

1
2
f ′′(x(s))χ(0 ,∞)(x(s)) +

f(a)− f(0)
b

χ{0}(x(s))

by 1
2f

′′(x(s)) the error is[
f(a)− f(0)

b
− ρf ′(0)

] ∫ t

0

χ{0}(x(s))ds ≤ t

[
a

b

f(a)− f(0)
a

− ρf ′(0)
]

= o(1)

as a→ 0 and b→ 0 with a
b
→ ρ.

We now turn to the general question of approximating Markov Processes by Markov

Chains. Let us for simplicity consider the one dimensional case with time homogeneous

transitions. Assume that for h > 0 we have a transition probability πh(x , dy) from R→ R.

h is the time step and we have a Markov Chain X
(h)
n with πh as transition probabilities.

We make a process out of it by defining Xh(t) = X
(h)

[ t
h ]

so we get a continuous parameter

process moving only by jumps at times that are integral multiples of h. Let us make the

assumption that

lim
h→0

1
h

∫
R

[f(y)− f(x)]πh(x , dy) = (Lf)(x) (19.9)

exists for all smooth functions with compact support, with the limit being uniform for x

in any compact subset of R. L is assumed to be an operator of the form

(Lf)(x) =
1
2
a(x)f ′′(x) + b(x)f ′(x)
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with continuous coefficients a(x) and b(x), that may be unbounded. We assume that for

the coefficients a(·) , b(·) there is a unique martingale solution Px starting from any point x

at time 0. In particular, it is assumed that although the coefficients are unbounded, there

is no explosion. Let P (h)
x denote the distribution of X(h)(t) that starts from x. We want

to prove that P h
x → Px weakly as h→ 0. First we prove a lemma.

Lemma 19.3 The condition (19.9) is equivalent to the following set of conditions:

lim
h→0

1
h
πh(x , {y : |x− y| ≥ ε}) = 0 (19.10)

lim
h→0

1
h

∫
|y−x|≤1

(y − x)πh(x , dy) = b(x) (19.11)

lim
h→0

1
h

∫
|y−x|≤1

(y − x)2πh(x , dy) = a(x) (19.12)

with all limits holding uniformly over x in compact subsets of R.

Proof: Assuming (19.10) the domain of integration in (19.11) and (19.12) can be limited

to {y : |y − x| ≤ ε} for any ε > 0, and Taylor expansion of f(y) around x is all that

is needed to go from (19.11) and (19.12) to (19.9). If we pick f = 1 in a small interval

and zero outside a slightly larger interval then (Lf)(x) is zero in the small interval. The

convergence implied by (19.9) is seen to imply (19.10). The choices of f(y) = y and

f(y) = y2 in a neighbourhood of x are easily seen to imply (19.11) and (19.12).

Theorem 19.4 Under the assumption that (19.9) holds P (h)
x → Px as h→ 0.

Proof: Step 1. Let us construct a smooth cutoff function φ(x) which is equal to 1 on

|x| ≤ 1 and 0 on |x| ≥ 2 and 0 ≤ φ ≤ 1 everywhere. Consider

π`
h(x , dy) = φ(

x

`
)πh(x , dy) + (1− φ(

x

`
))δx(dy)

where δx is the degenerate measure at x. Then

lim
h→0

∫
[f(y)− f(x)]π`

h(x , dy) = φ(
x

`
)(Lf)(x) (19.13)

uniformly in x for smooth functions f . In particular for any smooth function f

f(x(nh))− f(x(0))−
n∑

j=1

g`
h(x((j − 1)h))
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is a martingale with respect to P h,`
x which is the process corresponding to the Markov

Chain with transition probabilities π`
h. Here

g`
h(x) =

∫
[f(y)− f(x)]π`

h(x , dy),

and from (19.13) we obtain a bound

|g`
h(x)| ≤ C`

fh

implying that

f(x((nh))− f(x(0)) + nhC`
f

is a submartingale. Consider a smooth function satisfying f(y) = 1 for |y| ≤ 1
2 , f(y) = 0

for |y| ≥ 1 and 0 ≤ f(y) ≤ 1 for all y. Let τ be the exit time from the interval (−1 , 1).

Then for any path with |x(0)| ≤ 1
2
,

inf{t : |x(t)− x(0)| ≥ 2} ≥ τ.

From the submartingale property we have

E
[
f(x((nh ∧ τ))− 1 + nhC`

f

] ≥ 0

or

E [ 1− f(x((nh ∧ τ)) ] ≤ nhC`
f

Therefore

P [ inf{t : |x(t)− x(0)| ≥ 2} ≤ kh ] ≤ P [ τ ≤ kh ]

≤ P [ 1− f(x(((kf ∧ τ)) = 1 ]

≤ khC`
f

where P refers to the chain starting from any point inside |x| ≤ 1
2 . Using a finite number

of such functions, for any x inside |x| ≤ 2`, we can get a uniform bound on the exit time

from an interval (x− 2 , x+ 2) around x. On the other hand if we start from any x with

|x| ≥ 2` the path does not move. Therefore we have the following estimate

sup
x
P h,`

x

[
sup

0≤s≤t
|x(s)− x| ≥ 2

]
≤ C` t h
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We can modify the argument be rescaling the function f and we will get

sup
x
P h,`

x

[
sup

0≤s≤t
|x(s)− x| ≥ ε

]
≤ C`

ε t h

The size of the larges jump is easily estimated.

P

[
sup

0≤j≤n−1
|x((j + 1)h)− x(jh)| ≥ δ

]
≤ n sup

x
π`

h(x , {y : |x− y| ≥ δ})

≤ n o(h) = o(1)

provided nh = O(1). This proves the compactness of the family {P h,`
x } as h→ 0 for fixed

` and x.

Step 2. If Q is any limit point of P h,`
x as h → 0, we now show that Q is a martingale

solution for

L` = φ(
x

`
)L = φ(

x

`
)
[
a(x)

2
D2

x + b(x)Dx

]
This is relatively simple. We consider the functionals

Zh
f (nh) = f(x(nh))− f(x(0))− h

n−1∑
j=0

1
h

∫
[f(y)− f(x(jh))]π`

h(x(jh , dy)

that are P h,`
x martingales and converge as h→ 0 to

Zh
f (t) = f(x(t))− f(x(0))−

∫ t

0

(L`f)(x(s))ds

proving that Q is a martingale solution for L`.

Step 3. We may not have uniqueness for L`. But in any case until exit from the interval

|x| ≤ ` there is no difference between L and L`. Therefore any weak limit Q of P h,`
x as

h→ 0 must coincide with Px the unique soulution to L starting from x on the σ-field Fτ`

that corresponds to stopping time τ`, which is the exit time from the interval |x| ≤ `. The

set

B`
t =

{
x(·) : sup

0≤s≤t
|x(s)| ≥ `

}
is a closed set and therefore

lim sup
h→0

P h,`
x

[
B`

t

] ≤ Q
[
B`

t

]
= Px

[
B`

t

]
From the assumption that the solution to L does not explode, we can now assert

lim sup
`→∞

lim sup
h→0

P h,`
x

[
B`

t

] ≤ lim sup
`→∞

Px

[
B`

t

]
= 0

allowing us to interchange the order of the two limits `→∞ and h→ 0 and we are done.
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20. Reflected Processes in Higher Dimensions.

We will quickly describe some multidimensional generalizations of reflected Brownian Mo-

tion. Let G be a smooth region in Rd and a = {ai,j(x)}, b = {bi(x)}, coefficients that

are ‘nice ’, i.e. a is smooth and positive definite and b is smooth. We want to construct

a solution and we need to describe what happens when the path reaches the boundary.

We will deal exclusively with the the reflected case and just make some comments at

the end regarding other possibilities. Reflection is a bad choice for the name, but in re-

ality the process gets kicked in, in some direction pointing to the interior as soon as it

reaches the boundary. So we have a direction J(b) pointing to the interior at every point

b ∈ B = ∂G. We want to show that given a, b, G and J , there is a unique family of solutions

{Px : x ∈ G ∪B} on Ω = C[[0 ,∞);G∪B] with the following properties.

1. Px[x(0) = x] = 1

2. Px

[ ∫ t

0
χB(x(s))ds = 0

]
= 1

3. For any smooth function f that satisfies < J(b) , (∇f)(b) >≥ 0 on B,

f(x(t))− f(x(0))−
∫ t

0

(Lf)(x(s))ds

is a submartingale with respect to (Ω ,Ft , Px).

The question of existence is a question of nonexplosion as well. To avoid the problem

of dealing with this issue let us assume that our domainG is bounded. Then the question is

purely local. If we start from x ∈ G we know what happens until we reach the boundary.

We do not see it. Px is just the same as the solution with no boundary until the exit

time from G. We therefore need to construct local solutions when we start on or near the

boundary. This is carried out in several steps.

Step 1. Make a change of coordinates so that a boundary point b becomes 0 and the

boundary becomes x1 = 0, a straightline near that point. This will reduce the prob-

lem to a half space. The direction J on B = {x : x1 = 0} can be described by

(1, J2(x2, · · · , xd), · · · , Jd(x2, · · · , xd)).

Step 2. Now make another change of coordinates of a special type, x1 → x1, xi →
xi − x1 Ji(x2 , · · · , xd) for 2 ≤ i ≤ d. The bounadry remains the same, but the new

direction J is just (1, 0, · · · , 0), the inward normal.

Step 3. By a Girsanov formula which can be extended to this case we can assume that

b = 0.
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Step 4. In the current coordinate system a1,1(x) is a strictly positive function and we can

do a random time change using τt defined by∫ τt

0

a1,1(x(s))ds = t

to reduce it to a1,1 ≡ 1. At this point if f = f(x1) is a function of x1 only then

(Lf)(x) =
1
2
f ′′(x1)

so that the process x1(t) is in fact the one dimensional reflected Brownian Motion.

Step 5. We can find a square root σ(x) for a(x) such that a(x) = σ(s)σ∗(x) with σ1,1(x) ≡
1 and σ1,j(x) ≡ 0 for 2 ≤ j ≤ d. The stochastic differential equations for x(t) now look

like

dx1(t) = dβ(t) +A(t)

which is the decomposition of the reflected one dimensional Brownian motion and is already

solved.

dxj(t) = σj,1(x1(t), x2(t), · · · , xd(t))dx1(t) +
∑

2≤k≤d

σj,k(x1(t), x2(t), · · · , xd(t))dxj(t)

which can be solved by iteration for x2(·), · · · , xd(·) because the boundary has no effect on

them directly.

Comments: We may try to stick to the boundary a little bit. This is dealt the same way

as in one dimension. We can obtain it by random time change from the reflected case using

the local time on the boundary. The holding rate ρ can now be a function ρ(b) defined on

B. The local time A(t) in the reflected case can be used to construct the time change∫ τt

0

λ(x(s))dA(s) + τt = t

where λ(b) = [ρ(b)]−1. Finally a new phenomenon that can happen is that the path might

diffuse on the boundary which amounts to kick having a random tangential component.

Imagine in the case of a halfspace, being kicked form the boundary point (0, y), to the

interior point (δ , y + δJ(y) +
√
δξ) where ξ is a gaussian random vector with mean 0 and

covariance matrix D(y). The boundary condition then becomes

(Bf)(b) =
∂f

∂x1
+

d∑
j=2

Jj(y)
∂f

∂xj
+

1
2

d∑
i,j=1

Di,j(y)
∂2f

∂xi∂xj
= 0
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at b = (0, y) ∈ B. Here y refers to the cordinates x2 through xd. Of course this can happen

in the sticky situation as well and the boundary condition then is

(Lf)(b) = ρ(b)(Bf)(b)

THE END
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