Midterm exam, October 28 (small errors corrected)

Instructions:

- Explain your reasoning. Points may be subtracted even for correct answers otherwise.
- Cross out anything you think is wrong. Points may be subtracted for wrong answers even if the correct answer also appears.
- You will receive 20% credit for a blank answer. You may have points deducted from this for a wrong answer.
- Answer each question in the space provided.
- You are allowed one "cheat sheet", which is a standard size piece of paper with whatever you want written on it.

1. Explain how to replicate a put option with strike price K using a portfolio that contains call options on the same underlier with the same strike price, the underlier itself, and a risk free asset. Draw a diagram to illustrate your construction. The diagram should contain the put payout, the call payout, and the underlier.

- 2. The quadratic form $f(x_1, x_2) = x_1^2 + (x_2 x_1)^2$ may be written in the form $f(x_1, x_2) = x^t A x$, where $x = (x_1, x_2)^t$, and A is a 2×2 symmetric matrix.
 - (a) Find A.
 - (b) Determine whether A is positive definite.
 - (c) The n variable version of this function is

$$f(x_1,...,x_n) = x_1^2 + (x_2 - x_1)^2 + \dots + (x_n - x_{n-1})^2$$
.

This can be represented using n n component vector $x = (x_1, \ldots, x_n)^t$, and a symmetric $n \times n$ matrix as $f(x_1, \ldots, x_n) = x^t A x$. Is this A also positive definite? Explain your reasoning without necessarily giving the form of A.

3. Supose $X \sim \mathcal{N}(\mu, \sigma^2)$ and $S = e^{rX}$.

- (a) Write an integral that represents the E[S] as a function of the parameters r, μ , and σ^2 . This expression should be an integral over x involving the PDF of X. Do not evaluate the integral for this part.
- (b) Evaluate the integral to get an explicit formula for E[S]. Hint: The integral involves an exponential that involves x^2 and x. Complete the square to put this in the form

$$e^{\frac{-(x-a)^2}{2\sigma^2}+b},$$

where a and b depend on the parameters but not on x.

(c) Show that the formula from part (b) has the limit as $\sigma^2 \to 0$.

- 4. Consider a simple mortgage loan with the following features
 - The holder of the mortgage (the one who lent the money) receives continuous coupon payments with rate c up to a prepayment time T.
 - At time T, the holder receives the principal, P.
 - The prepayment time is an exponential random variable with intensity parameter λ . A payment at time t is discounted by the factor e^{-rt} .
 - (a) Determine the continuous interest rate, μ , under which a payment of c dt for a time interval dt on principal P leaves the principal unchanged. Normally, the outstanding principal at time t + dt would be the outstanding principal at time t plus the interest for time dt minus the amount paid at time t for interval dt.
 - (b) Determine the expected value of the total discounted value of all the payments.
 - (c) Under what circumstances (what combinations of μ and r) would the holder prefer that the prepayment intensity is lower?

5. Suppose X_1 , X_2 , and X_3 are three assets with means $E[X_j] = \mu_j$ and covariances $cov(X_j, X_k) = C_{jk}$. Suppose w is a set of proposed portfolio weights. Specifically, take

$$\mu = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \quad , \qquad C = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 6 \end{pmatrix} \quad , \qquad w = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} .$$

- (a) Use vector and matrix notation to give expressions for the portfolio expected value, μ , and the portfolio variance, σ^2 .
- (b) Show that the proposed portfolio weights are not efficient.
- (c) Consider perturbations of the portfolio weights Δw_1 , Δw_2 , Δw_3 . Let $\Delta \mu$ and $\Delta \sigma^2$ be the corresponding perturbations in the portfolio expected value and variance. Write approximate expressions for $\Delta \mu$ and $\Delta \sigma^2$ that are accurate to first order in Δw . Hint: It may be easier to work with the vector of perturbations

$$\Delta w = \begin{pmatrix} \Delta w_1 \\ \Delta w_2 \\ \Delta w_3 \end{pmatrix} .$$

(d) Find specific small values of Δw_1 , Δw_2 , Δw_3 that satisfy the budget constraint exactly and do not change μ , but, to first order approximation, reduce σ^2 .

6. Suppose there are three assets, A (a bond), S (a stock), and C (a call). The price of each asset today is 1. There are three possible states "tomorrow", and the corresponding prices are in the table.

	asset	A	S	C
state				
1		2	1	0
2		2	2	0
3		2	3	10

- (a) Show that this a complete and arbitrage free market.
- (b) Calculate the risk neutral probabilities, $q_1,\ q_2,\ {\rm and}\ q_3$ of the three states.
- (c) Find the price today of the option P that pays 1 "tomorrow" if S=1, and 0 if S>1.

7. Suppose X and Y are two correlated random variables that take values $\{1,\ldots,n\}$. Suppose $p_{ij}=\Pr(X=i\,.\,Y=j)$. Assume the numbers p_{ij} are already stored in a matrix p, whose values are p[i,j]. Write a program in R that computes $\operatorname{cov}(X,Y)$. Use one or more double loops.