Mathematics of Finance, Courant Institute, Fall 2015
http://www.math.nyu.edu/faculty/goodman/teaching/mathFin/index.html

30 minute quiz, October 7

Instructions:

- Explain your reasoning. Points may be subtracted even for correct answers otherwise.
- Cross out anything you think is wrong. Points may be subtracted for wrong answers even if the correct answer also appears.
- Answer each question in the space provided.

Questions:

1. Suppose assets A and S have price 1 today and the prices in the table tomorrow.

	asset	A	S
state			
1		1	2
2		1	3

What is the price today of an option that pays $V=0$ tomorrow in state 1 and $V=1$ tomorrow in state 2 . Note that the risk free rate (the return on asset 1) is zero.
(a) Explain how to replicate asset V with a combination of assets A and S.
(b) What is the price of asset V today?
2. A continuously compounded account increases the initial investment by a factor $e^{t r}$. Without compounding, the initial investment increases only by a factor of $1+r t$. Suppose the interest rate is $r=.05 \% /$ year and the initial investment is $\$ 100$. Estimate the time until the account with compounding is worth $\$ 2$ more than the account without compounding. Use Taylor series approximation of the exponential up to the appropriate order.
3. Suppose T is an exponential random variable with rate parameter λ. Calculate the covariance $C_{T, T^{2}}=\operatorname{cov}\left(T, T^{2}\right)$ You may use the fact that:

$$
\mathrm{E}\left[T^{n}\right]=\frac{n!}{\lambda^{n}} \quad \text { for any } n \geq 0
$$

4. Suppose X is a Gaussian random variable with mean $\mu=10$ and variance $\sigma^{2}=4$. Suppose Y is a put on X with strike price $K=10=\mu$.
(a) Draw a graph of the payout Y as a function of X for X in the range $0 \leq X \leq 20$.
(b) Calculate the expected value of the payout and get a number. You may use the approximation $\frac{1}{\sqrt{2 \pi}} \approx .4$, or $\frac{1}{\sqrt{2 \pi}} \approx .399$, or $\frac{1}{\sqrt{2 \pi}} \approx$. 39894 (you choose).
5. Write an R script that calculates the sum S below. Do not use the formula $S=\frac{1}{3} n^{3}+\cdots$.

$$
S=\sum_{k=1}^{n} k^{2} .
$$

