Mathematics of Finance, Courant Institute, Fall 2015
http://www.math.nyu.edu/faculty/goodman/teaching/mathFin/index.html
Always check the class message board before doing any work on the assignment.

Sample questions for October 7, 30 minute quiz

Corrections: (None yet. See message board)

1. Does the following represent an arbitrage opportunity? Why or why not? This table it the prices of three assets at time $T=1$ (tomorrow) Each asset has price 1 today ($T=0$).

	asset	1	2	3
state				
1		1.2	.9	.9
2		1.2	1.1	1.2
3		1.2	.8	1.4

2. Suppose both assets have price 1 today and the prices in the table tomorrow. Calculate the risk neutral probabilities of states 1 and 2 tomorrow.

	asset	1	2
state			
1		1.2	1
2		1.2	1.5

3. Write an R script that calculates $S=1+2+\cdots+n$ and prints the result.
4. Write an equation that determines the yield to maturity of a bond that had coupon payments c once a year starting in year 1 and continuing until year $n=1$ and then has a principal payment of size P. The price today of the bond is $P_{0}=1$. Do not solve the equation.
5. Let V_{n} be the value of an asset after one year (starting with value 1 today) with interest rate r compounded n times. Write an approximate formula for $e^{r}-V_{n}$ that is valid when n is large.
6. Suppose T is an exponential random variable with rate parameter λ.
(a) What is $\operatorname{Pr}(T>1)$?
(b) What is the PDF of T ?
(c) What is the CDF of T ?
(d) What is $\mathrm{E}(T)$?
(e) What is $\operatorname{Pr}(T<0)$?
(f) Suppose $S=T^{2}$. What is the PDF of S ?
7. Calculate the correlation of the two assets in the table.

	probability	asset1	asset2
state			
1	$\frac{1}{2}$	0	2
2	$\frac{1}{4}$	4	0
3	$\frac{1}{4}$	8	4

8. In each case state whether the statement is true or false and explain your answer in a few words or sentences.
(a) $\mathrm{Xf} X$ is a random variable and $Y=a X+b$, then the correlation coefficient between Y and X is $\rho_{X Y}= \pm 1$.
(b) If X is a random variable and $Y=f(X)$, then $\rho_{X Y}= \pm 1$.
(c) In the two state model of the table, as long as $p \neq 1$ and $q \neq 1$ and $a \neq b$, then $\rho_{X Y}= \pm 1$.

	probability	X	Y
state			
1	p	2	a
2	$q=1-p$	3	b

(d) If random variables X and Y are independent, then they are uncorrelated.
(e) If random variables X and Y are uncorrelated, then they are independent.

