
Mathematics of Finance, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/mathFin/index.html

Always check the class message board before doing any work on the assignment.

Assignment 8, due Monday, November 30

Corrections: (none yet. See message board)

1. (Please do this by Monday, November 23. Do not hand it in then) The
binomial tree model is based on the random dynamics

S −→

 uS , u = 1 + σ
√

∆t , prob = qu = 1
2

(
1 + r

σ

√
∆t
)

dS , d = 1− σ
√

∆t , prob = qd = 1
2

(
1− r

σ

√
∆t
) (1)

This is what happens in an interval of time of size ∆t. We have not
emphasized it, but every step in the tree is independent of every other
step. Steps in the future, whether to go up or down, are not influenced
by decisions in the past. The parameters are chosen so that

ERN[St+∆t − St] = rSt∆t
varRN(St+∆t − St) = σ2St∆t .

}
(2)

Here, t could be any of the discrete times tk = k∆t, and then t+∆t = tk+1.
We sometimes abuse notation by writing Sk to mean Stk = Sk∆t. The
binomial tree log process is Xt = log(St/S0). When we do the binomial
tree, we write Xk = log(Sk/S0). The log is always the natural log, which
is the log base e with log(e) = 1.

(a) Calculate the expected value and variance in (2) exactly using the
probability rules (1). Show that the formulas (2) are not exact, but
are correct but up to order ∆t as given.

(b) Show that Xk+1 = Xk + Yk, where the Yk is a random variable with
two possible values. These values and probabilities are the same for
every k. What are those values and the probabilities of getting those
values?

(c) Calculate the Taylor series of the log function up to second order:
log(1 + ε) = aε + bε2 + higher order. There is no constant term
because log(1) = 0. Find a and b. (We need this because we will
take ε =

√
∆t, or something like that, and we need the result correct

up to order ∆t.)

(d) Calculate the mean, ERN[Yk]. Do not give the exact result, but give
it only up to order ∆t.

(e) Show that varRN[Yk] = σ2∆t, at least up to order ∆t.

1

(f) Find an approximate formula form = ERN[Xn] and for v = varRN[Xn].
Use the approximations of parts (d) and (e) to do this. Hint: For
the variance, use the fact that the Yk are independent. We write v
for the variance, instead of the usual σ2, because σ is the volatility
of S, which is not the same thing as the variance of Xn.

(g) A more accurate formula for the variance has the form

varRN[Yk] = σ2∆t+ a∆t2 .

Show that the value of a does not change the result of (f). That is,
as ∆t → 0, there is a limiting value of v which does not depend on
a. (This is why we calculate the results of (d) and (e) to include
the ∆t term but not ∆t2 and higher terms, which do not effect the
important result (f).)

(h) The central limit theorem states that if random variable Xn is the
sum of a large number of independent random variables Yk that have
the same distribution, then Xn is approximately Gaussian. Use the
central limit theorem to write an approximate formula for the PDF
of Xn for large n. Hint: A Gaussian distribution is determined by
the mean, m, and the variance, v.

2. Suppose X is a normal random variable with mean µ and variance σ2,
which we write X ∼ N (µ, σ2). Suppose S = S0e

X Calculate E[S] and
var[S] in terms of µ and σ. Some hints to make the calculations quicker:
X has the same density as µ + σZ, where Z is a standard normal with
PDF f(z) = 1√

2π
e−

1
2 z

2

. You can write the expectation as an integral over

z. You can do it by completing the square in the exponent, and then using
the fact that ∫ ∞

−∞
e−

1
2 (z−a)2 dz =

√
2π ,

for any value of a. For the variance, note that S2 = S2
0e

2X . Therefore
E
[
S2
]

involves a Gaussian with mean 2µ and variance 4σ2. (The Black
Scholes formula uses these calculations.)

3. (Extra credit) A function f(x) is convex if the graph “bends upward”.
That means, the slope increases as you go right, which means that the
second derivative is positive so the first derivative is increasing. That’s the
calculus point of view. The geometric point of view is that the line (more
properly, line segment) connecting two points on the graph lies above
the graph. Two points on the graph, in (x, y) coordinates, are (a, f(a))
and (b, f(b)). Suppose t is a number in the interval [0, 1]. A point on
the line segment has x−coordinate xt = ta + (1 − t)b, and y−coordinate
yt = tf(a)+(1−t)f(b). This point is above the graph if the y−coordinate
on the line is larger than the y−coordinate on the graph:

yt = tf(a) + (1− t)f(b) > f(xt) = f(ta+ (1− t)b) . (3)

2

The probability point of view looks at this inequality using probability.
The numbers t and 1−t are both positive and they add up to 1. Therefore,
we may call them probabilities, pa = 1, and pb = 1 − t. We think of pa
as the probability that x = a and pb as the probability that x = b. Then
the y−coordinate on the line is the expected value of the random variable
f(X):

E[f(X)] = f(a)Pr(X = a) + f(b)Pr(X = b)

= f(a)pa + f(b)pb

= tf(a) + (1− t)f(b)

= yt .

In the same way, the x−coordinate is the expected value of X. The
geometric inequality (3) is equivalent to the inequality of expected values:

E[f(X)] > f(E[X]) . (4)

This is called Jensen’s inequality. It is true for any random variable X
with any PDF. If f(x) is a convex function of x, the inequality (4) applies.
We didn’t give the proof here, but it isn’t hard.

We call the numbers in a binomial tree “convex” if they satisfy the ge-
ometric inequality (3) as much as possible. Show that the binomial tree
prices for a European call are a convex function of X = log(S) in this
sense. This essentially means that qufk,j+1 + qdfk,j−1 > fkj . Hint: at the
expiration time k = n this is true because the payout is related to eX . It’s
true at stage k if it’s true at stage k + 1.

4. Forward pricing works as follows (see Chapter 4). You agree today to do a
transaction at time T . No money changes hands today. At time T , party
A will produce a risky asset and receive payment F (the forward price,
which is the price of the forward contract). Party B will take delivery
of the risky asset and pay F . The spot price of the risky asset today
is S0 and is known today. The price at time T is ST and is not known
today. There is a fixed continuous interest rate r. Party A can hedge
today by borrowing S0 and using the money today to buy the risky asset.
At time T , party A will deliver the risky asset and receive F . Party A
owes S0e

rT . If F = S0e
rT , then party A has exactly the right amount

of cash to repay the loan. If F > S0e
rT , then party A has an arbitrage

opportunity, because she will have F − S0e
rT > 0 left, and without risk.

(This is the cash and carry argument for pricing forward contracts. A
forward contract is often just called a “forward”. The price F = S0e

rT is
the forward price.)

(a) Show that if F < S0e
rT , then party B has an arbitrage.

(b) Suppose the risky asset is delivered at time T but the cash is delivered
at a different time t 6= T . What should F be so that neither party
has an arbitrage opportunity?

3

(c) Suppose it’s a layaway1 contract in which party B pays a continuous
“coupon” with rate c (that is, there is a payment c dt for each time
interval dt) up to time T , when party B stops paying and A delivers
the risky asset. What should the payment rate be so that neither
party has an arbitrage?

5. The program this week illustrates modularity, which is a principle of all
computer programming, and scientific visualization, which is a principle
of scientific computing. You can’t do any but the most basic programming
if your codes aren’t modular. You can’t know what answer you got if you
can’t graph it.

Modularity means identifying sub-tasks and writing separate pieces of code
called functions (in R, procedures in C++, methods in Java) for them.
Typically, the code that defines a function will be in a different file. There
is an interface that defines how information is transferred into and out
of the function. The calling code has two ways to transfer information to
the function. One way is through function arguments. When the calling
code calls the function, it copies the values of the calling arguments in the
calling code to the corresponding variables in the function. (The other way
is not mentioned here.) One way for the function to transfer information
back to the calling code is by giving a return value.

The code in CallingCode.R calls functions defined in the file CalledCode.R.
The line c = add(a, b) calls the function add with arguments a and b.
The R interpreter copies the first argument in the calling code, which is a
to the first argument in the function definition, which is x. It also copies
the value of second argument, b, to to y. It then executes the function
definition, which is the code in lines 10 through 14 in CalledCode.R. You
can see that a has the value 5, which becomes the value of x inside the
function add. The last line of add is just sum. The R interpreter takes this
to be the return value of the function. It brings that value back as the
value of add in the calling program. The interpreter than passes control
back to the calling program and does the next line, which is cat(" the

sum of ", a,.... The control in the calling program was passed to the
function and then is passed back to the calling program when the function
reaches its last close curley. The line d = 7*add(a*b, 1) shows that a
user defined function (that’s one you give the code for, not a builtin
function like exp) can be used in the ways a builtin function is used. You
can do arithmetic in defining the arguments, and you can do arithmetic
on the return value.

The line add = function(x, y){ defines add as an object in R whose
value is the function definition. An object in R can be a number, a char-
acter string, a list, or even a function. Every object has a name (such as
add or x) and a definition. A definition could be something like: “I’m a
floating point number and my value is 2.71828.”. Or, it could be: “I’m a

1This is a real thing that you can find on the web.

4

list with 8 elements, which are ... ”. Or, it could be: “I’m a function with
two arguments and the following code...”. The line sad = add creates an
object whose name is sad and whose value is the value of the object add.
In this case, that makes value of sad the function that adds x and y. The
rest of the file defines a function called BirthdayWish. You can see that
it has comments saying what it does. Every function needs comments like
that. It has one argument, which should be a string.

The script PlotScript.R is an example of plotting in R. It calls a function
called mod wave to evaluate f(x). The function depends on a parameter
k, which is fixed but has to be communicated to the code that evaluates f .
The function given is a modulated wave f(x) = x sin(kx). The wave num-
ber is k. Modulated means that the amplitude, A, of the wave Asin(kx)
is slowly changing (modulating). The comments in the code say how the
plot function works.

Programming assignment: Write an R script to plot the option price
of a European call as a function of the spot price S0. Put the pricer in
a separate file that defines a function CallPrice(S 0, T, sig, r, K).
The number of binomial tree steps, n, should be defined in the function.
It should be large enough that the price is reasonably accurate (try some
values to find a good one). Draw on the same plot the intrinsic value.
Choose a range of S0 on both sides of K so that you can see: (1) the
option price is below the intrinsic value for deep in-the-money option, (2)
the option price goes to zero for deep out-of-the-money options.

Here are some requirements for the code:

(a) It should be well commented, particularly the part that says what the
pricer function does. The comments should say what the arguments
to the pricer are. When a new variable is introduced, there is usually
a comment saying what it’s for.

(b) There should be white space to make the code easy to read.

(c) Variable names should be meaningful, not too long and not too short
(unless they are mathematical variables like S, t, k, etc.).

(d) The plot titles should contain information about the option so that
you can tell what you’re looking at when looking at the plot.

(e) Hand in a couple of plots (at least two but maybe a few more, not too
many) showing something interesting about the computation (sug-
gestions: how the result depends on one or more parameters, or on
the number of steps in the binomial tree.).

5

