
Mathematics of Finance, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/mathFin/index.html

Always check the class message board before doing any work on the assignment.

Loops with R

Corrections: (check the class message board)

A loop in a program is a piece of code that gets executed many times. Much
of the numerical computing applied mathematicians do consists of loops. For
example, consider the rectangle rule approximation to an integral∫ b

a

f(x) dx ≈
n−1∑
i=0

∆xf(xi) . (1)

Here ∆xf(xi) is the area of a little rectangle whose length is ∆x and height is
f(xi). The evaluation points are x0 = a, x1 = a + ∆x, x2 = a + 2∆x, etc. The
length, ∆x, is chosen so that n intervals of length ∆x exactly fill the integration
interval [a, b]. That means ∆x = (b − a)/n. We would use a formula like (1)
because we want to know the answer, the number, and we cannot find a formula
for the it. All those integrals you did in calculus were exceptions to the general
rule that most integrals cannot be done by formula. An R script to evaluate the
sum in (1) probably uses a loop, which is some lines of code that evaluate the
rectangle area ∆xf(xi), add this area to the total, and increment xi.

Download the code Loops.R and run it: > source("Loop.R"). Open Source.R

in your editor. It has some examples of loops. Each example loop has a code
block that is to be executed many times, and control statement that determines
how is code block is executed. A code block in R is a sequence of statements con-
tained in curley braces, often called curlies. The code block in the first example
is

{

sum = sum + i

cat("sum is ", sum, " and i is ", i, "\n")

}

It starts with the open curley brace “{”, and ends with the close curley “}”.
These open and close the code block. There are two lines of code that form
the body of the code block. These are indented three spaces to make the code
block easy to spot in the code. Indention is not required by the language R,
but the rules of programming style require it. You will lose points on coding
assignments if you do not indent code blocks. The programming style links on
the course web page have more discussion of this.

The control statement for this loop comes before the code block that is the
body of the loop. It is for( i in 1:n). The open curley of the loop body
is on the same line as the control statement. Some people say this is bad

1



programming style. Other people do it, as I do. You have to decide which style
you will use, it’s a fashion choice. This control statement defines a for loop.
The body of the for loop will be executed with the variable i having values 1,
2, . . ., n. More precisely, the expression “1:n” defines an R list, which is the
sequence (1, 2, . . . , n). The body of the loop will be executed once for every
element in the list, with i equal to that element. The order is the order of
the elements in the list. The output shows what happens. Also pay attention
to the comments in the R code. A common bug is to forget to initialize the
variable sum. The statement cat("sum is ", s... is a print statement. Good
programmers put print statements into the body of a loop to find programming
mistakes, bugs. Print statements let you “watch” the program execute and check
that it does what you wanted it to do. Once the program is correct, you can
remove print statements you used for debugging. It is common to comment out
print statements, which means putting a hashtag # before the statement, which
makes it a comment. If you want the print statement back, you just edit away
the hashtag.

The second example concerns lists in R. The first print cat("lis... shows
that 1:n produces a list. The second one shows that the list has changed. These
are lists of numbers, but any R objects can be in lists.

Example 3 has an if test and a break out of the loop. Inside the if is a
logical expression that evaluates to TRUE or FALSE. Here, the conditional is sum

> target. If the value of sum is greater than the value of target, this evaluates
to TRUE. Otherwise it evaluates to FALSE. If it evaluates to TRUE, then the next
statement is executed. Otherwise it is not. In this case, the next statement
is break, which means: stop executing the loop and start executing at the
statement after the end of the code block, the statement after the close curley.
Here, that is cat( i, " t... .

Example 4 has if and else. The else part is executed if the conditional
expression evaluates to FALSE. These are two branches of the if test. Here, the
else branch is executed if the value of sum is not larger than the value of target.
The output shows this in action. Notice that Examples 3 and 4 compute the
same thing, the number 36. But the code of Example 3 is simpler, shorter and
easier to understand, therefore better.

2


