
Mathematics of Finance, Courant Institute, Fall 2015

http://www.math.nyu.edu/faculty/goodman/teaching/mathFin/index.html

Always check the class message board before doing any work on the assignment.

Getting started with R

Corrections: (check the class message board)

This is a rapid introduction to some aspects of computing and visualization
in R. This class uses R because it seems to be the scripting language that is
easiest to install and use for all the platforms people are likely to have. But
experience shows that following the instructions will not give the desired out-
comes for all people on all platforms. There is a special form of bad luck for
newbies. We’ve all been there. It is likely others will have similar problems.
Post your issue to the class message board or get some help another way.

Take the stuff about coding standards seriously, especially if you are a be-
ginning programmer. If you spend 15 minutes making your code more readable
and automatic, you will save days of pointless debugging. Follow the links on
the class Resources page to read more about programming style.

1. If you do not have the R package on your computer, install it from the web.
There are instructions for this on the class web page. It should be easy.
When you start up R, you should get a command window with a prompt
that looks like this;

>

Type the command x = 2.3 . It creates an object (mathematicians say
variable) called x, assigns it the value 2.3, then gives you a prompt for the
next command. Now the R window should look like

> x = 2.3

>

This is an assignment statement. You may use <- instead of = as the
assignment operator. If you do that, it looks like this:

> x <- 2.3

>

I use = because that’s what it is in most other programming languages.
Pure R programmers often use <- because it makes clear that you are not
asserting that the two sides are equal, but changing the value on the left
to be equal to the value on the right. You can use the one you prefer.

If you just type the name of the object, R replies with [1] and then the
value currently assigned to that object. So type x , and R will reply with
[1] and then its current value:

1

> x = 2.3

> x

[1] 2.3

>

If you type a more complicated arithmetic expression, R will evaluate
the expression and print the value. For example, typing x*x should give
2.32 = 5.29. The R window should look like this:

> x

[1] 2.3

> x = 2.3

> x

[1] 2.3

> x*x

[1] 5.29

>

R will give an error message if you ask the impossible. For example, you
can ask it to add a number it doesn’t know, or perform an operation that
is not defined

> x+z

Error: object ’z’ not found

> x***3

Error: unexpected ’*’ in "x***"

>

This can be frustrating, but it does no harm to the computer. It’s often a
simple typo, for example z instead of x in the first one, or x***3 instead of
x**3 in the second (x**3 means x3 in R). Error messages try to be helpful,
but are not always.

2. Every object in R has a type, also called its class. The object x above is
a floating point number; its type is float. Two other important types are
vector and character string. You assign x to the vector (2, 1,−1, 0) using
the c() function (“c” stands for “catenate”, which means concatenate):

> x = c(2, 1, -1, 0)

> x

[1] 2 1 -1 0

> x+x

[1] 4 2 -2 0

> x*x

[1] 4 1 1 0

> 3*x

[1] 6 3 -3 0

2

Notice that addition and multiplication are done elementwise. Also, when
you do an assignment, whatever value the object had before is forgotten.
Even the type can change; here it goes from float to vector.

A character string (or just string) object is a sequence of characters
in quotes:

> label = "time, in years"

> label

[1] "time, in years"

Here, label is the name of an object whose type is string and whose
value is "time, in years". Names are case sensitive, which means that
Label and label are different names.

> Label = "time, in days"

> Label

[1] "time, in days"

> label

[1] "time, in years"

The R function paste() puts together two (or more) strings into a sin-
gle string, while the c() function makes a “vector” (not a mathematical
vector) whose “components” are the two strings:

> paste(Label, label)

[1] "time, in days time, in years"

> c(Label, label)

[1] "time, in days" "time, in years"

Strings are important in numerical computing because they help us format
the output (results of a calculation) in a way that is easy to read. Here is
an example. The R function sprintf() (the “s” is for “string”, “print” is
for printing, and “f” is for “format”: you format the numbers and text into
a line string for printing) can produce a string that represents the value
of a float. Note the different ways to make two-word variable names,
the underscore (x string) and capitalizing each word (OutputLine). The
following creates strings that represent some numbers, does some com-
putation, then uses paste() to put all the numbers into a sentence for
printing. We will do this kind of thing a lot, particularly for making titles
for plots.

> x = 2.3

> x_string = sprintf("\%5.3f",x)

> x_string

> y = 3.4

> y_string = sprintf("%5.3f",y)

3

> y_string

[1] "3.400"

> z = x+y

> z_string = sprintf("%5.3f",z)

> z

[1] 5.7

> OutputLine = paste("Adding ", x_string, " to ", y_string, " gives ", z_string)

> OutputLine

[1] "Adding 2.300 to 3.400 gives 5.700"

3. You should do almost all of your R work using scripts rather than by typing
the commands one by one as above. An R script is a file that contains a
series of R commands. The R interpreter reads the lines from the file one
by one and executes them in R. For example, suppose you create a file
AddNumbers.R that contains the R commands we just used:

add two numbers and print the result

x = 2.3

y = 3.4

z = x + y

x_string = sprintf("%5.3f",x)

y_string = sprintf("%5.3f",y)

z_string = sprintf("%5.3f",z)

OutputLine = paste("Adding ", x_string, " to ", y_string, " gives ", z_string)

cat(OutputLine)

The R function source() reads an R script and uses the R interpreter to ex-
ecute it. We execute AddNumbers.R by typing source("AddNumbers.R")

at the command prompt. The interpreter prints whatever output is gen-
erated:

> source("AddNumbers.R")

Adding 2.300 to 3.400 gives 5.700

Note a few differences between the lines in the script file AddNumbers.R

and the corresponding lines typed directly at the command prompt as
before. The first line is a comment. The interpreter ignores any character
after the comment character, which is # in R. You put comments into
scripts to help you, or someone else reading the file, understand what the
script does. The script also has blank lines that visually separate different
parts of the script. There are also blank spaces to separate things and
make it easier to read. This is part of programming style, which is very
very important for scripts that take more than a few minutes to write.

4

Finally, you see that the last line is not just OutputLine, which prints
the result somewhere we can’t see, but cat(OutputLine). The R function
cat() (“cat” is also for “catenate”; it’s a long story.) prints out the output
string to the command line where we typed source().

One of the points of a script is that it is easy to change something and do
it again. For example, if we change the line defining x to x = -2.3 then
we get:

> source("AddNumbers.R")

Adding -2.300 to 3.400 gives 1.100

Here’s a similar example. The file QuadraticFormula.R is:

the quadratic formula

a = 1

b = 5

c = 2

root = (-b + sqrt(b**2 - 4*a*c))/(2*a)

OutputLine = sprintf("a = %6.3f, b = %6.3f, c = %6.3f\n", a, b, c)

cat(OutputLine)

OutputLine = sprintf("The larger root is %6.3f\n",root)

cat(OutputLine)

And then we can do:

> source("QuadraticFormula.R")

a = 1.000, b = 5.000, c = 2.000

The larger root is -0.438

Quickly change the value of c and do it again (something goes wrong):

> source("QuadraticFormula.R")

a = 1.000, b = 5.000, c = 20.000

The larger root is NaN

Warning message:

In sqrt(b^2 - 4 * a * c) : NaNs produced

5

