
Monte Carlo Methods, Courant Institute, Spring 2013

http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo12/

Always check the class message board on the NYU Classes site from home.nyu.edu before doing

any work on the assignment.

Assignment 1, due February 12 or February 19

Corrections: Feb. 12: Exercise 2, fn = tne−t

n! corrected to fn+1 = tne−t

n! .
Exercise 3, f(x) = 2

π sin(πx) corrected to f(x) = π
2 sin(πx).

1. (This exercise has two purposes. One is to understand why a sampler
might not work well in high dimensions. Another is to understand why
some functions have good Gaussian approximations.) Suppose Cn is the
side length 2 cube in n dimensions centered at the origin. This may be
written Cn = [−1, 1]n. For x ∈ Rn, we have x ∈ Cn if |xk| ≤ 1 for all
k. You can generate a “random” point X ∈ Cn by taking Xk = 2Uk − 1,
where the Uk are independent standard uniforms. The n dimensional
volume of Cn is 2n, so the probability density of X is 2−n if x ∈ Cn
and zero otherwise. Let Bn be the unit ball in n dimensions. We have
x ∈ Bn if (x2

1 + · · · + x2
n)1/2 ≤ 1. Clearly Bn ⊂ Cn. We can generate X

uniformly distributed in Bn by generating X uniformly distributed in Cn
and accepting X if X ∈ Bn. The efficiency of this algorithm is the ratio
of the volumes

Zn =
vol(Bn)
vol(Cn)

.

This exercise derives an approximate formula for Zn that shows that Zn →
0 as n → ∞ exponentially. This makes the sampling method impractical
for large n. An exercise from the Week 1 notes suggests a different sampler
that is practical for large n. (It is possible to find the large n behavior of
I(n) in (1) using a change of variables r2/2 = s to express it in terms of
the Γ function, whose asymptotics are available on wikepedia – Stirling’s
formula. Please don’t do it this way. The asymptotics of Γ are found
using the method of this problem, so that approach is not actually easier.)

(a) The unit sphere in n dimensions is Sn−1 = {|x| = 1}. The “surface
area” (or n− 1 dimensional volume) of Sn−1 is ωn−1. Show that

vol(Bn) =
ωn−1

n
.

You can do this by

vol(Bn) =
∫
x∈Bn

dx

using polar coordinates, which involves ωn−1r
n−1dr.

1

(b) Show that

ωn−1 =
(2π)n/2

I(n)
,

where
I(n) =

∫ ∞
0

rn−1e−r
2/2 dr . (1)

Hint: integrate ∫
x∈Rn

e−|x|
2/2 dx

in polar coordinates.

(c) Write I(n) =
∫
e−φ(r) dr and identify φ. Show that φ has a unique

maximum value achieved at r∗. Calculate φ′′(r∗), φ′′′(r∗), and pos-
sibly one more. Let q(r) be the quadratic Taylor approximation to
φ(r) about r∗, which is

q(r) = φ(r∗) + 1
2φ
′′(r∗)(r − r∗)2 . (2)

Write the formula for

J(n) =
∫ ∞
−∞

e−q(r) dr .

(d) J(n) is an approximation of I(n). The error is written K(n) =
I(n)− J(n). Show that

K(n)
I(n)

→ 0 as n→∞ .

Hint: there are two kinds of r values: those where the quadratic
approximation (2) is accurate, and those where φ and q are much
smaller than values that matter. For this exercise, you can take the
“values that don’t matter” set to be |r − r∗| > np with 0 < p <
1
6 . When |r − r∗| = np, then e−q does not matter, and q(r) is still
relatively close to φ(r) (use φ′′′ to verify this).

(e) Write the large n asymptotic approximation of Zn that shows that
sampling uniformly in the ball by rejection from the cube is an ex-
ponentially bad idea.

2. (Direct samplers often are for probability distributions that depend on a
parameter. It is not enough that the sampler “works” for each parameter
value. It must be efficient uniformly over the parameter. This Exercise is
an example of such a sampler.) Suppose Tn is the n − th arrival time in
a Poisson process with rate constant λ = 1. The goal is to find a sampler
that samples Tn using an amount of work that is bounded as n → ∞. A
direct simulation Tn = S1 + · · ·+ Sn (the Sk are i.i.d. exponentials) takes
order n work.

2

(a) Show that the probability density for Tn+1 is fn+1(t) = tn

n! e
−t if

t ≥ 0. Hint: Tn+1 = Tn + Sn+1.

(b) Determine the behavior of fn(t) for typical Tn values using the method
of Exercise 1. Find the most likely value of Tn by maximizing fn,
then make a Gaussian approximation of fn about this value, tn∗.

(c) Explain why it is not a good idea to use the Gaussian approximation
as a proposal distribution for rejection sampling of fn.

(d) Explore using a double exponential as a proposal distribution. That
is gn(t) = 1

Z e
−αn|t−tn∗|. Calculate the normalization constant Z. Do

not worry about negative T values. Those are rare for large n, and
can be rejected for any n.

(e) What formula for αn is suggested by the Gaussian approximation
(same power of n in typical Tn−tn∗, same power of n in the variance)?

(f) Determine wether this αn leads to a sampler whose efficiency does
not go to zero as n→∞. If so, you are done. If not, can you adjust
αn to make the sampler uniformly efficient?

3. (Programming exercise. Please read the material on the class web site
on programming conventions. When you modify and re-use posted code,
please keep the automation features, such as making plots automatically
with computational parameters and legends. If you add a computational
parameter, figure out how to make it appear in the plot. If you remove
a parameter, make it disappear from the plot. Update the makefile to
keep everything automated.) Download the file Week1.tar. This is an
archive with several files for the assignment. Save it in some directory.
In the UNIX command line, cd to that directory and unpack using the
command tar -xvf Week1.tar. (Type man tar to see what x, v, and
f mean, or google “unix tar”.) The individual files will appear. Then
type make fTest. A lot of things should happen, but eventually a picture
should pop up that looks like Week1.pdf on the assignment page. You
may have to surf the web to see how the Unix command make works.
You will need to know at least a little because you will be adding another
C++ procedure, which will not be compiled unless you add it to the
CPP SOURCES list.

Modify the code to sample the density f(x) = π
2 sin(πx) for x ∈ [0, 1], and

f(x) = 0 otherwise. Use rejection sampling with proposal distribution
g(x) = 6x(1− x) as described in the notes. Here is a suggested sequence
of steps. If you are not used to the Unix command line, there may be lots
of “learning curve” involved in some of them.

(a) The proposal distribution is sampled using procedures presently in
the file f.cpp. You need to copy this to g.cpp and change the names
of the routines to be g instead of f . It should be clear how to do
this. You also need to adjust header.h. If you do this correctly and

3

run the code again, you should get the same plot, except that it will
be called g.

(b) Now modify f.cpp to do the rejection sampling using g as a trial.
Change everything that needs changing, including the string that
describes the distribution. Test it using the histogram procedure. If
you can, put both the f and g target distribution curves in the plot,
so you can see that you have changed from f to g. Use a sample size
that makes it clear that the empirical histogram represents f , not g.

4

