
Monte Carlo Methods, Courant Institute, Spring 2013

http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo12/

Always check the class message board on the NYU Classes site from home.nyu.edu before doing

any work on the assignment.

Assignment 2, due February 26

Corrections: (none yet).

1. (“Gaussian” in probability plays the role of “linear” in other parts of math-
ematics. You try to understand the Gaussian case of anything you do.
Gaussians are important in MCMC for several reasons. We sometimes
use MCMC even for Gaussians if the dimension is so high that the direct
Choleski method is impractical. There are many MCMC methods whose
behavior can be understood in the Gaussian case.) A linear Gaussian re-
currence relation takes the form

Xn+1 = AXn +BZn , (1)

where Xn ∈ Rd, and A is a d× d matrix, and Zn ∼ N (0, Id×d), and B is
another d× d matrix. The Zn are i.i.d. Let µ1, . . . , µd be the eigenvalues
of A. The iteration (1) is stable if |µj | < 1 for j = 1, . . . , d. The iteration
is non-degenerate if µj 6= 0 for |µj | < 1 for j = 1, . . . , d. This exercise
shows that for any initial distribution, the distribution of Xn converges to
the unique invariant distribution, which is Gaussian.

If X0 = 0, then Xn is a linear combination of mean zero Gaussians, so it
is a mean zero Gaussian. Let Cn = E[XnX

t
n] be the covariance matrix of

Xn.

(a) Show that
Cn+1 = ACnA

t +BBt . (2)

(b) Let L be the vector space of real d × d symmetric matrices. This
has dimension d(d + 1)/2. Show that the map (2) may be written
Cn+1 = LACn + fB , where LA is a linear transformation on L, and
fB ∈ L, and Cn ∈ L. You can think of LA as a d(d−1)/2×d(d−1)/2
matrix built from A, and Cn as a column vector with the d(d− 1)/2
entries of Cn arranged in some order. Of course, fB is a column
vector whose entries entries of the matrix BBt.

(c) Let M be any square matrix. The spectral radius of M is ρ(M) =
max |λ|, where λ is an eigenvalue of M . Show that the spectral radius
of ρ(LA) = ρ(A)2. There are several ways to do this. Pick one.

Hint (1): If Arj = µjrj then rjr
t
k is an “eigenmatrix” of LA.

Hint (2): What is LnA? Equivalently, express Cn in terms of C0.
There is a theorem of Lyapounov that says that if ρ(A) = r and
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ε is given, then there is a symmetric positive definite matrix W
so that if y = Ax, then

‖y‖W =
(
ytWy

)1/2 ≤ (r + ε) ‖x‖W .

(d) Conclude that if A is stable (ρ(A) < 1), then Cn → C as n →
∞, where C is the unique solution of the Lyapounov equation C =
ACAt+BBt. Show that the C that satisfies the Lyapounov equation
is positive definite if A is stable and non-singular and B is non-
singular. (Hint: start with a C0 that is positive definite in (2)).

(e) let fn(x) be the probability density of Xn. Let g(x) = N (0, C) be
the multivariate Gaussian density with mean zero and covariance C.
Show that this is the unique Gaussian invariant distribution for (1).
Show that if X0 = 0, then fn → g as n → ∞. This does not yet
imply that fn → g if f0 is not Gaussian, or that g is the unique
invariant distribution.

(f) Fix the defect of part (e) by looking at iterates Xn for X0 6= 0. Let
Xn satisfy (1) withX0 = 0 and the same Zn. Show thatXn−Xn → 0
exponentially. Let fn(x) be the density of Xn. Use this to show that
fn → g as n → ∞. Hint: (mathematical technicality) if V (x) is a
Lipschitz function with compact support, then E[V (Xn)]−E[V (Xn)]
converges to zero exponentially.

2. (Many problems in statistical physics involve discretized functions or fields.
In such an object, the random object U is a function with values given on a
discrete lattice. The phase separation model in the notes is like this. There
also are Gaussian fields, which are often called free fields.) Consider an
n × n lattice with lattice variables Uij ∈ R for each (i, j) in the lattice.
The energy function is

φ(u) =
1
2

∑
nn

(uij − ui′j′)2 . (3)

The sum is over nearest neighbor pairs, as described in the Week 3 notes.
This exercise discusses MCMC samplers for the free field probability den-
sity

f(u) =
1
Z
e−φ(u)/kBT . (4)

Distributions like this are used in Bayesian image reconstruction algo-
rithms and (unfortunately in 4D) to compute the masses of protons and
the supposed Higgs boson.

(a) Show that φ(u) = 1
2u

tMu, where M is the matrix of the discrete
Laplace operator. The boundary conditions for A depend on the
boundary conditions for u. For example, if we take uij = 0 on the
boundary of the lattice, we get the discrete Laplace operator with
Dirichlet boundary conditions. If we omit the terms in (3) with one
site on the boundary, we get Neumann boundary conditions.
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(b) Consider a mapping GSij : u → u defined as follows. Hold all of
u fixed except for the value at the lattice site (i, j). Minimize the
energy over the lattice site variable uij and use the minimizing value
for uij . That is, ukl = ukl if (k, l) 6= (i, j), and

uij = arg min
uij

φ(u) . (5)

Show that this is given by

uij =
1
4

∑
nn

ui′j′ . (6)

(This may have to be interpreted properly if (i, j) is on the boundary
of the lattice.)

(c) Consider the algorithm (here, GS(i,j,u) is the code that implements
GSiju.)

for ( i = 0; i < n; i++){
for ( j = 0; j < n; j++) {

u = GS(i,j,u)
}

}

This is called the Gauss Seidel iteration and is denoted by u→ Au.
It is an ancient method for solving discrete Laplace equations. Show
that the Gauss Seidel iteration un+1 = Aun has un → 0 as n→∞,
and that A is a stable matrix. Hint: φ(un+1) < φ(un) if un 6= 0.
Warning: do not try to get a quantitative convergence rate. The
spectral radius of A is 1−O(n−2), so the iterates converge slowly.

(d) Consider the single site heat bath MCMC method for sampling (4)

for ( i = 0; i < n; i++){
for ( j = 0; j < n; j++) {

U = HB(i,j,U)
}

}

Here HB(i,j,U) resamples Uij according to (4) keeping all the other
components of U fixed. Show that this has the effect

U → AU +BZ ,

where A is the Gauss Seidel matrix and Z is an n2 component stan-
dard normal. Conclude that the single site Gauss Seidel algorithm
converges to the correct distribution.

3. (Although we use detailed balance to derive MCMC samplers, many such
samplers do not satisfy detailed balance. Here is an example.) We want

3



to sample the discrete three state distribution P (X = 1) = P (X = 2) =
P (X = 3) = 1

3 . Consider the MCMC move 1 ↔ 2 with probability 1
2 .

That is, we toss a coin. With probability 1
2 we do a move and otherwise

do nothing. The move we do is 1 → 2, 2 → 1 and 3 → 3. Let R1 be the
3 × 3 transition matrix for this move. Similarly, let R2 be the transition
matrix for the 2 ↔ 3 move with probability 1

2 . Show that R1 and R2

satisfy detailed balance. Show that R1R2 preserves the distribution P .
You are not allowed to do this by explicit calculation. Show that R1R2

does not satisfy detailed balance.
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