
http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo12/

Class notes: Monte Carlo methods
Week 4, Markov chain Monte Carlo analysis

Jonathan Goodman
February 26, 2013

1 Introduction

Error bars for MCMC are harder than for direct Monte Carlo. It is harder
to estimate error bars from MCMC data, and it is harder to predict them
from theory. The estimation and theory are more important because MCMC
estimation errors can be much larger than you might expect based on the run
time.

The fundamental formula for MCMC error bars is as follows. Suppose Xk

is a sequence of MCMC samples. We estimate A = Ef [V (X)] using

Ân =
1
n

n∑
k=1

V (Xk) . (1)

For large n, the variance is

var
(
Ân

)
=

varf (V (X))
(n/τ)

. (2)

The new quantity in this formula is the autocorrelation time, τ . If τ = 1, this is
the error bar formula for direct sampling. In practice, τ can be in the thousands
or more, which makes error bars much larger than direct sampling with the same
number of samples. This week we will discuss how to estimate τ from Monte
Carlo data and how to estimate it in theory.

The autocorrelation time measures the effect of correlations between sam-
ples. If X0 ∼ f , then Xk ∼ f for all k > 0. This is what it means for f to be
the invariant distribution. But Xk is not independent of X0 for k > 0. We need
a quantitative measure of the dependence of Xk on X0. The auto-covariance
function is

C(n) = covf (V (Xn), V (X0)) . (3)

The subscript f indicates that X0 ∼ f . This is the auto-covariance because it
is the covariance between the same quantity, V (X), at different times. A cross
covariance is the covariance of different quantities.

A bad MCMC method has C(n) that converges to zero slowly. Theory
identifies (at least) two obstructions to faster convergence: bad geometry and
collective modes. Bad geometry refers to sets in the state space that are hard
to get out of. A simple way to quantify this is

Pf (Xk+1 /∈ A | Xk ∈ A) .
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This is small by necessity if P (A) is close to 1. Therefore, we consider the
conductance

Φ = inf
P (A)≤ 1

2

Pf (Xk+1 /∈ A | Xk ∈ A) . (4)

Warning: the term implies that there is a physical motivation to this definition
related to electricity or something. To the best of my knowledge, there is no
such motivation. The term was invented to sound physical, but it is not.

This definition was motivated by a similar definition given by Jeff Cheeger
to quantify “bottlenecks” in manifolds. If A is a set with a significant volume
but small boundary, then ∂A (the boundary of A) is a bottleneck. The Cheeger
constant is

C = inf
vol(A)≤ 1

2vol(M)

voln−1(∂A)
voln(A)

. (5)

For 2D (n = 2 above), the ratio is the ratio of the arc length of ∂A to the area
of A. Cheeger showed that the spectral gap of M is at least 1

2C
2. Similarly, an

MCMC method that satisfies detailed balance has a spectral gap at least 1
2Φ2

The definition of conductance (4) will be restated in Section 4 to look more like
the Cheeger constant (5).

2 Auto-correlation time, Kubo formula

The Kubo formula is

lim
n→∞

n var
(
Ân

)
=

∞∑
n=−∞

C(n) . (6)

Before getting to the not completely rigorous “proof”, some remarks. The sum
on the right can be thought of as a diffusion coefficient

D =
∞∑

n=−∞
C(n) . (7)

The important statement is that for large n,

var
(
Ân

)
≈ D

n
. (8)

The static variance (more properly, time zero covariance) is

C(0) = σ2
V (X) = varf (V (X)) .

This is a property of the distribution f and the function V (x), not the MCMC
method. If we had a direct sampler, then C(n) = 0 for n 6= 0. This makes the
Kubo formula degenerate to

var
(
Ân

)
≈ varf (V (X))

n
.
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This formula is true as an identity, not an approximation.
The covariance function is a symmetric function of n. You can see this from

the alternative more constructive definition

C(n) = lim
k→∞

cov(V (Xk+n), V (Xk)) . (9)

Here we do not assume that X0 ∼ f , since it would not be in practice. Section 3
explains why this should be true. Informally, if the distribution of Xk converges
to f , and if n > 0, then the joint distribution of Xk and Xk+n converges to the
joint distribution that X0 and Xn have if X0 ∼ f . But the definition (9) makes
sense when n < 0. And

cov(V (Xk+n), V (Xk)) = cov(V (Xk), V (Xk+n)),

so the limit is the same: C(n) = C(−n).
The correlation coefficient is a dimensionless measure of the relationship

between two random variables. If V and W are two random variables, then

ρ = cor(V,W ) =
cov(V,W )√

var (V )var(W )
.

This is a number between −1 and 1 (proof: Cauchy Schwarz, applied to Ṽ =
V −E[V ] and W̃ = W −E[W ]). It is the covariance, normalized by V and W in
a way that makes ρ dimensionless. The auto-correlation function is the un-equal
time correlation. The denominator simplifies because X0 ∼ f and Xn ∼ f , so
var(V (X0)) = var(V (Xn)) = varf (V (X)).

ρ(n) =
cov(V (Xn), V (X0))

var(V (X))
=
C(n)
C(0)

. (10)

This gives the alternative definition

D = C(0)
∞∑

n=−∞
ρ(n) .

The auto-correlation time is the dimensionless sum (because ρ(−n) = ρ(n))

τ =
∞∑

n=−∞
ρ(n) = 1 + 2

∞∑
n=1

ρ(n) . (11)

We get some insight by rewriting the variance formula for the estimator (8)
in terms of the auto-correlation time. The result is (2). The denominator defines
the effective number of samples

neff =
n

τ
.

The auto-correlation time is the number of MCMC steps that it takes to make
one effectively independent sample, for the purpose of estimating A using (1).
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Note that τ is a property not only of the MCMC method, but also of the quantity
being estimated. It can happen that one quantity is much harder to estimate
(has a larger τ) than another. More commonly, the quantity you are interested
in has a τ about as large is it can be for the sampler you are using.

In discrete time, the auto-correlation time is dimensionless. But the contin-
uous time version of τ has units of time. If Xt is a continuous time Markov
process that has a suitable invariant distribution, then we can look at

ÂT =
1
T

∫ T

0

V (Xt) dt .

The analogue of the (8) is

var
(
ÂT

)
≈ D

T
=

varf (V (X))
(T/τ)

,

with
D =

∫ ∞
−∞

C(t) dt , (12)

and
τ = 2

∫ ∞
0

ρ(t) dt .

Since ρ(t) is dimensionless, τ has units of t. The formula (12) is the more
common version of the Kubo formula. It was essentially discovered by Einstein
and used in his 1905 paper explaining Brownian motion.

We verify the discrete time Kubo formula (6) under the hypotheses

|cov(V (Xk), V (Xj))| ≤ Ce−µ|k−j| , (13)

and
|cov(V (Xk), V (Xj))− C(|j − k|)| ≤ Ce−µ min(j,k) , (14)

If course C and µ are positive constants. In Section 3, we verify these hypotheses
for discrete state space and non-degenerate MCMC chains. You need more
hypotheses to verify it for continuous state space. Normally the covariances
are positive, but they do not have to be. There are significant, though rare,
practical situation where some covariances are negative. It even is possible to
have τ < 1.

Starting with (1), we get

var
(
Ân

)
=

1
n2

n∑
j=1

n∑
k=1

cov(V (Xj), V (Xk)) . (15)

We show that

n var
(
Ân

)
=

1
n


n∑
j=1

[ ∞∑
i=−∞

C(|j − i|)

]
+ E

 , (16)
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where E is bounded as n→∞. This will prove the Kubo formula.
There are two differences between the exact sum (15) and the target approx-

imation in (16). One is cov(V (Xj), V (Xk)). The other is expanding the range
of the k sum. Both parts reduce to summing a geometric series of error terms.
The principle is that a geometric sum is approximately the size of its largest
term. More precisely, suppose x 6= 1 and x > 0, and consider

S =
b∑

k=a

xk .

If x > 1 or x < 1 the largest term is xb or xa. Either way, we have

S ≤ 1
|1− x|

max(xa, xb) .

First we bound the error in replacing the non-equilibrium covariances cov(V (Xj), V (Xk))
with the equilibrium values covf (V (Xj), V (Xk)) = C(|j−k|). We seek a bound
for

E1 =
n∑
j=1

n∑
k=1

|cov(V (Xj), V (Xk))− C(|j − k|)| .

The summand is symmetric in j and k, so it suffices to bound half the sum

E1 ≤ 2
n∑
j=1

j∑
k=1

|cov(V (Xj), V (Xk))− C(|j − k|)| .

We have assumed two bounds for the summands. One is

|cov(V (Xj), V (Xk))− C(|j − k|)| ≤ Ce−µmin(j,k) .

The other is (with a different C)

|cov(V (Xj), V (Xk))− C(|j − k|)| ≤ |cov(V (Xj), V (Xk))|+ |C(|j − k|)|
≤ Ce−µ|j−k| .

We want to use the better bound, so we see where they are equal, which is

min(j, k) = |j − k|

We chose the half sum where j ≥ k, so this is k = j − k, which is k = j/2.
Therefore:

E1 ≤
n∑
j=1

j/2∑
k=1

e−µ(j−k) +
n∑
j=1

j∑
k=j/2

e−µk .

Our general principle for bounding geometric series says that

j/2∑
k=1

e−µ(j−k) ≤ 1
|1− eµ|

e−µj/2 ,
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and
j∑

k=j/2

e−µk ≤ 1
|1− e−µ|

e−µj/2 .

Therefore

E1 ≤
C

1− e−µ
n∑
j=1

e−µj/2 ≤ C .

The constant C is uniform in n as long as µ stays away from zero.
In the second step we expand the range of the k sum. For this, we choose

a different inner variable k = j + i, i = k − j, so that i = 0 corresponds to the
“diagonal”, which is the equal time covariance. The error is

E2 =

∣∣∣∣∣∣
n∑
j=1

n∑
k=1

C(|j − k|)−
n∑
j=1

∞∑
k=−∞

C(|j − k|)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑
j=1

n−j∑
i=1−j

C(i)−
n∑
j=1

∞∑
i=−∞

C(i)

∣∣∣∣∣∣
≤

n∑
j=1

−j∑
i=−∞

|C(i)| +
n∑
j=1

∞∑
i=n−j+1

|C(i)|

The two sums on the last line are the same, so we discuss only the first one.
That has the bound (recall the largest term principle)

n∑
j=1

−j∑
i=−∞

|C(i)| ≤ C
n∑
j=1

−j∑
i=−∞

e−µ|i|

= C

n∑
j=1

e−µj

1− e−µ

≤ C 1
(1− e−µ)2

.

This shows that E2 is bounded as n →∞. This, and the E1 bound, prove the
Kubo formula (6).

2.1 Estimating D

You can use the Kubo formula to estimate an error bar. You estimate the auto-
covariance function C(t) then do the sum. But there is a subtlety. If you do
too much of the sum, you get an estimator that is inconsistent.

Suppose A is a number you want to estimate and Ân is a family of estimators.
The family is consistent if Ân converges to A as n → ∞ in some sense. Two
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precise versions of this notion are weak consistency and strong consistence. The
family is weakly consistent if, for any ε > 0,

Pr
(∣∣∣Ân −A∣∣∣ ≥ ε) → 0 , as n→∞ . (17)

This corresponds to Ân → A in probability. As a computational scientist, you
would choose the precision, ε and the confidence 1− δ. Then there is an N0 so
that if n ≥ N0, then the estimator error is less than ε with probability at least
1 − δ is you take n ≥ N0. Moreover, the estimator family is weakly consistent
if the bias and variance go to zero as n → ∞. This is easy to check in most
practical applications that are weakly consistent.

Strongly consistent is Ân → A as n → ∞ almost surely. For example, the
Kolmogorov law of large numbers states that the sample mean of n i.i.d. samples
is a strongly consistent estimator of the population mean. Strong consistency
implies weak consistency, but weak consistency does not imply strong consis-
tency. Strong consistency is a nice property to have, but it is harder to prove
than weak consistency. As an example, the weak law of large numbers is easier
to prove than the strong law.

One way to estimate D is to estimate C(t) and add. Suppose we have an
MCMC sequence of samples Xk, and the corresponding time series Yk = V (Xk),
for k = 1, . . . , n. Then

Y n =
1
n

n∑
k=1

V (Xk)

is the sample mean. The “standard estimator” of the sample auto-covariance is

Ĉ(t) =
1

n− t− 1

n−t∑
k=1

(
Yk+t − Y n

) (
Yk − Y n

)
.

We subtract t+ 1 from n in the denominator because there are t terms missing
from the sum and because we took away one “degree of freedom” by using Ŷn
instead of A = Ef [V (X)]. In practice, the difference between n− t−1 and n− t
should not matter at all. The difference between n and n − t barely matters,
because t should be much smaller than n.

A natural seeming estimator of D is

D̂inc = Ĉ(0) + 2
n−1∑
t=1

Ĉ(t) . (18)

This estimator is inconsistent because the variance of D̂inc does not go to zero
as n→∞. You can see this using a straightforward calculation that takes only
a few hours. The reason is that although C(t) → 0 as t → ∞, the estimators
Ĉ(t) all have noise. When you add all the estimators as in (18), you get more
noise than signal.
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One way to fix this is to cut off the sum.

D̂W = Ĉ(0) + 2
W∑
t=1

Ĉ(t) . (19)

If the window size, W , is too small, D̂W is a biased estimator. It is probably
biased too low, because the usual case is C(t) > 0. This means that your
estimated error bars will be too small. If W is too large, D̂W is noisy.

The appropriate W depends on the problem. It could be 10 to 106. Robust
software should estimate an appropriate W from data. One heuristic is the self
consistent window. Each W gives an estimate of the auto-correlation time by
summing the estimated auto-correlation function up to W :

τ̂W =
D̂W

Ĉ(0)
= 1 + 2

W∑
t=1

ρ̂(t) . (20)

If W is large enough, this is an accurate estimate of the time scale on which
ρ(t) decays. A simple strategy is to take the window size to be a multiple of the
estimated auto-correlation time

W = Mτ̂W . (21)

We typically take M = 4 or so. This window is self consistent because W is
consistent with the τ determined by W . It is found using

#define M 5

double tHat = 1.;
int W = 1;
while ( tHat < M*tHat )

tHat += 2*rhoHat[(W++)-1]; // rhoHat[0] is at lag t=1.

3 Convergence rate and spectrum

You can learn something about the auto-covariance function using the eigenval-
ues and eigenvectors of the generator of the MCMC Markov chain. We define the
generator first abstractly and then concretely in various specific cases. Spectral
theory for abstract operators is complicated, so we discuss some of the possibil-
ities in examples. You do not have to be an expert in functional analysis to do
Monte Carlo.

The abstract generator of a discrete Markov chain is a linear operator on
the space of functions defined on the state space, S. If S = {1, . . . , n}, then a
function defined on S is a function of k ∈ (1, . . . , n), which is a column vector
V ∈ Rn. If S = R\, then we are talking about functions of n real variables
V (x1, . . . , xn). The generator R produces another function W = RV by

W (x) = E[V (X1) | X0 = x] . (22)
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If S = {∞, . . . , \} and the transition probabilities are Rjk, then W = RV
has entries (be careful of our conflicting notation, where x is called j, W (x) is
called Wj , etc.)

Wj = E[V (X1) | X0 = j] =
∑
k∈S

P (X1 = k | X0 = j)Vk =
n∑
k=1

RjkVk . (23)

In this case, the abstract generator is the same as the transition matrix. The
action of the generator on a vector is matrix multiplication.

Suppose S = Rn and we are using a Metropolis sampler with proposal
density Q(x, y) and acceptance probability A(x, y). We define Z(x) to be the
probability of accepting a proposal made from x. This is

Z(x) =
∫
y

Q(x, y)A(y) dy .

Then P (X1 = x | X−0 = x) = 1 − Z(x). If V (x) is defined for x ∈ Rn, and
W = RV , then

W (x) = P (X1 = x | X0 = x)V (x) +
∫
Q(x, y)A(x, y)V (y) dy

W (x) = (1− Z(x))V (x) +
∫
Q(x, y)A(x, y)V (y) dy . (24)

You can write this using a transition density R(x, y) if you include a δ−function
term to represent the probability of getting a rejection:

R(x, y) = δ(x− y)(1− Z(x)) +Q(x.y)A(x, y) .

Then
W (x) =

∫
R(x, y)V (y) dy .

The generator R always has an eigenvector with eigenvalue λ = 1, the con-
stant function. If V (x) = 1 for all x, then (22) gives W (x) = 1 for all x. You
might wonder about the case S = Rn, where a constant is not in L2. We will
see that V ≡ 1 is in L2 when viewed the right way.

Any linear operator has a set of complex numbers associated to it, the spec-
trum. If R is an n×n matrix, the spectrum is the set of all eigenvalues of R. If
R is an integral operator, odds are R is compact. The spectrum of a compact
operator consists of all its eigenvalues and the number λ = 0, even if 0 is not
an eigenvalue. Many operators, including (24) are not compact. For those, the
spectrum is the complement of the resolvent set. A complex number λ is in the
resolvent set if (R−λI)−1 is a well defined bounded operator. This means that
there is a positive C so that for any W , there is a unique V with ‖V ‖ <∞, and
so that RV − λV = W . This V satisfies1 ‖W‖ ≤ C ‖V ‖.

1The resolvent set, and the spectrum, may depend on the norm ‖V ‖. There is a natural
norm that is relevant for the auto-covariance function, as we will see.
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Spectral theory for linear operators is more complicated that eigenvalue-
eigenvector theory for square matrices because there is more to spectrum than
eigenvalues. Eigenvalues are in the spectrum, as defined in the previous para-
graph. If there is a V 6= 0 with ‖V ‖ <∞ so that RV −λV = 0, then the solution
of RV − λV = 0 is not unique. If there is a family of eigenvalues λj → λ as
j →∞, then λ is in the spectrum of R even if it is not a proper eigenvalue. You
can see this by looking at the solution of RUj − λUj = Vj . The solution is

Uj =
1

λ− λj
Vj .

This means that there is no finite C so that ‖Uj‖ ≤ C ‖Vj‖. A compact operator
typically (“typically”→ “always” if ‖V ‖ is a Hilbert space norm) has eigenvalues
λj → 0 as j → ∞. For the Metropolis sampler operator (24), all the numbers
Z(x) are in the spectrum and it is likely that most of them are not eigenvalues.

With luck, our MCMC operator R has a positive spectral gap, which is

µ = min{1− |λ| with λ ∈ spec(R) , λ 6= 1} . (25)

The spectral gap is the distance in the complex plane from the largest non-
trivial eigenvalue to the unit circle. The smaller the spectral gap, the slower
C(t) can converge to 0, and the larger the auto-correlation time can be.

Let us come back to the concrete case of an n state Markov chain with
transition matrix R. We denote the solution of the eigenvalue problem as

Rrj = λjrj , ljR = λj lj , ljrk = δjk .

The rj and lj are right and left eigenvectors respectively. The last relation is
bi-orthogonality. By convention λ1 = 1 and |λj | < 1 if j 6= 1. We assume
there are no non-trivial Jordan blocks. If there are Jordan blocks the formulas
are more complicated but the conclusions are about the same. By convention,
l1 = f (the steady state probability distribution) and rj = 1 (the vector of all
ones). The relation l1r1 = 1 is

∑
j(fj · 1) = 1.

Let V an observable, some function of S we are interested in. The expected
value is

V = Ef [V ] =
n∑
j=1

fjVj .

The static variance is

C(0) = var(V ) =
n∑
j=1

(
Vj − V

)2
.

The lag t covariance is calculated using the lag t transition probabilities (You
can prove this by induction on t starting from the lag 1 case that is the definition
of R.)

P (Xt = k | X0 = j) = Rtjk .
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To calculate the result, use the joint probability formula

Pf (Xt = k and X0 − j) = P (Xt = k | X0 = j)P (X0 = j) = Rtjkfj .

C(t) = covf (V (Xt), V (X)))

= Ef [(V (Xt)− V )(V (X0)− V )

=
n∑
j=1

n∑
k=1

Pf (Xt = k and X0 − j)
(
Vk − V

) (
Vj − V

)
C(t) =

n∑
j=1

n∑
k=1

fjR
t
jk

(
Vk − V

) (
Vj − V

)
. (26)

We express this formula in a more natural way. A natural inner product for
functions on S is

〈W,V 〉f = Ef [W (x)V (x)] =
n∑
j=1

fjWjVj . (27)

In this notation, the auto-covariance function is

C(t) = 〈
(
V − V 1

)
, Rt

(
V − V 1

)
〉f . (28)

You find the behavior for large t using the right eigenvector basis. If W is
any observable, then there are coefficients aj so that

W =
n∑
j=1

ajrj .

The coefficients are given by
aj = ljW .

Since l1 = f ,

a1 = l1W = fW =
n∑
j=1

fjWj = Ef [W ] .

Of course,

RtW =
n∑
j=1

λtjajrj .

But |λj | < 1 except λ1 = 1, so RtW → Ef [W ] as t→∞.
The formula for C(t) in (28) involves Rt

(
V − V 1

)
. The expected value of

V − V 1 is zero (check: fV = V ), so

V − V 1 =
n∑
j=2

ajrj .
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We find that

C(t) =
n∑
j=2

bjλ
t
j , (29)

where
bj = 〈V − V 1, rj〉f . (30)

Since |λj | ≤ 1 − µ for j ≥ 2 (µ being the spectral gap), we see that the sum
D =

∑
C(t) converges and the auto-correlation time is finite.

You can get a feel for auto-correlation time by supposing λ2 (say) is extremal
among decaying modes, so |λ2| = 1− µ. Suppose b2 = 1 and bj = 0 otherwise.
Then C(0) = 1, so (11) gives the auto-correlation time as

τ =
∞∑
−∞

(1− µ)t =

[
2
∞∑
t=0

(1− µ)t
]
− 1 = 2

1
µ
− 1 =

2− µ
µ
≈ 2
µ
.

A small spectral gap leads to a large auto-correlation time and slow MCMC
convergence.

The auto-correlation time depends on both the MCMC Markov chain and
the observable. The analysis of the previous paragraph is not sharp, see Exercise
1. Eigenvalue/eigenvector analysis is not always a good way to understand high
powers of large matrices.

The analysis is easier when the MCMC chain satisfies detailed balance. That
is because detailed balance implies that R is self adjoint in the f inner product
(27). In general, a matrix A is self adjoint with respect to inner product 〈·, ·〉 if

〈AW,V 〉 = 〈W,AV 〉

for every pair of vectors W and V . For example, A is self adjoint in the l2 inner
product,

〈W,V 〉l2 =
n∑
j=1

WjVj ,

if and only if A is symmetric: Ajk = Akj for all j and k. The detailed balance
condition Pf (observe j → k) = Pf (observe k → j) is

fjRjk = fkRkj . (31)

Then, R is self adjoint in the f inner product if

〈RW,V 〉f = 〈W,RV 〉f .

This is easy to write out
n∑
j=1

(RW )j fjVj =
n∑
k=1

Wkfk (RV )k

n∑
j=1

n∑
k=1

RjkWkfjVj =
n∑
k=1

n∑
j=1

WkfkRkjVj .

The detailed balance relation (31) makes this last line true.
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4 Conductance and spectral gap

5 Examples and exercises

1. Find an example of a non-degenerate Markov chain with spectral gap
µ and an observable V so that the corresponding auto-correlation time
satisfies τV � 2µ−1.

13


