Monte Carlo Methods, Courant Institute, Spring 2015
http://www.math.nyu.edu/faculty /goodman/teaching/MonteCarlo15/
Always check the class message board on the NYU Classes site from home.nyu.edu before doing

any work on the assignment.

Assignment 1. Part 1 due due February 10, Part 2 due February 17

Corrections: none yet.

Part 1: Set up a computing environment for the class. Programming assign-
ments will use a combination of C/C++ and Python 2.7. The C/C++ code will
do the main Monte Carlo computation. The Python code will do data analysis
and visualization. The C/C++ code will write an ASCII format output file that
contains all the information about the run that the analysis and visualization
routines need. This file will be in the form of a Python module that can be
read by the Python routines we create. This arrangement takes advantage of
the strengths of both language systems. The C/C++ language and compil-
ers create efficient code. Python comes with visualization tools and has more
“productivity” (lines of debugged code per hour of programmer time).

Computing assignments in this class will ask students to program in both
C++ and Python. We will use only basic features of these languages. There
are excellent web resources to help you do this. You will have to learn enough
about make to add new procedures to the CPP_SOURCES list. If you get stuck,
post a question on the class message board.

(a) Setup a UNIX like programming environment. If you have a Mac or a
Linux box, this just means using the terminal command line. If you have
a Windows operating system, you can get a UNIX like operating system
using cygwin. This is available for free download, but it’s better to avoid
cygwin if you have a choice. In your UNIX like environment, download
the file assignment_1.tar to some directory. In that directory, type:

tar -xvf assignment_1.tar

Some files should appear. If this worked, the file assignment_1.pdf will
look the same as assignment_1_check.pdf on the class web site.

(b) The C/C++ compilers come pre-installed on Linux and systems. On OSX
(the Mac operating systems), they are part of the xcode package that you
can download from Apple. You can check that your C/C++ compilers
work by typing

make fTestExecutable

(¢) There are several ways to get Python 2.7. Tt is installed on CIMS desktop
machines, but if you just type python ..., you might get Python 2.6. You



get version 2.7 by typing: module load python-2.7. Other systems come
with installed versions of Python2.7 that may not be suitable for this class
because they do not have the packages numpy and matplotlib. You can
get a full Python installation, with these and many other packages, from
anaconda (google it) or (what I use) homebrew. It has been frustrating
for me to get Python working. Please report your frustrations on the class
message board so others can help you get through this. If your Python is
installed correctly, you should be able to type

python histogram.py

and create a .pdf file identical to the assignment_1.pdf that came in the
tarball file assignment_1.tar.

(d) The final step is editing. We do not want to use an integrated build system
such as the one that comes with xcode or the Microsoft compiler suite.
These integrated systems are so different from each other that it would
be impractical to post code in all formats. Instead, we use the UNIX
make system. You need to find an editor you like. Popular choices are
emacs, xedit (on Linux or cygwin systems), and the xcode editors on
OSX. Check that you can edit by playing with the program. Change the
bin size of the number of samples to see what happens. These are set in
main.cpp. Change the wording of the plot title a little. This is set in
histogram.py. Type

make fTest

to build and run the whole thing. The power of the make system is that
you tell it how to build anything and it can re-build and re-run everything
necessary from just one make command. Hand in two plots that show you
have edited both main.cpp and histogram.py. Choose parameters you
think are interesting.

Part 2: The actual assignment.

1. (This exercise has two purposes. One is to understand why a sampler
might not work well in high dimensions. Another is to understand why
some functions have good Gaussian approzimations. The analytical method
is called Laplace’s method.) Let C), be the cube in n dimensions, sym-
metric about the origin, whose side is length 2. This may be written
C, = [-1,1]". The n dimensional volume of C, is vol,(C,) = 2". If
z € R", then « € C, if |zx| < 1 for all k. You can generate a “random”
point X € C), by taking X} = 2Uy —1, where the Uy are independent stan-
dard uniforms. This X has uniform probability density inside C,,, which
is f(x) =27" =1/vol,(Cp) if x € C,,, and f(z) =0if ¢ C,. Let By, be
the unit ball in n dimensions. We have x € B, if (2 +--- +22)1/2 < 1.



Clearly B,, C C,,. We can generate X uniformly distributed in B,, by
generating X uniformly distributed in C, and accepting it if X € B,.
The efficiency of this algorithm is the ratio of the volumes

vol,, (By)

" vol, (Cy)

This exercise derives an approximate formula for Z,,. The formula shows
that shows that Z, — 0 as n — oo, exponentially. Therefore the sam-
pling method impractical for large n. An exercise from the Week 1 notes
suggests a different sampler that is practical for large n.

It is possible to find the large n behavior of I(n) in (1) using a change
of variables 72/2 = s to express it in terms of the I' function, whose
asymptotics are available on wikepedia — Stirling’s formula. Please don’t
do it this way. The asymptotics of I are found using the method of this
problem, so that approach is not actually easier.

(a) The unit sphere in n dimensions is S,—1 = {|z| = 1}. The “surface
area” (or n — 1 dimensional volume) of S,,_; is w;,,—1. Show that
Wn—1

vol(B,,) =

n

vol(By,) = / dx
r€EB,

using polar coordinates, which involves w,,_1r"1dr.
(b) Show that

You can do this by

n/2
Wp—1 = (277) )
I(n)
where -
I(n)= / rnle 2 gy (1)
0

Hint: integrate
(2m)"/? = / e 17172 gy
zER™

in polar coordinates.

(c) Write I(n) = [ e~ dr and identify ¢. Show that ¢ has a unique
maximum value achieved at r,. Calculate ¢"(r.), ¢"”(r.), and pos-
sibly one more. Let ¢(r) be the quadratic Taylor approximation to
@(r) about r,, which is

q(r) = ¢(r.) + 50" (re)(r — )% . (2)

Write the formula for



(d) J(n) is an approximation of I(n). The error is written K(n) =
I(n) — J(n). Show that

K(n)

I(n)

—0 as n—o00.

Hint: there are two kinds of r values: those where the quadratic
approximation (2) is accurate, and those where ¢ and ¢ are much
smaller than values that matter. For this exercise, you can take the
“values that don’t matter” set to be |r —r.| > n? with 0 < p <
1

5- When [r —r.| = nP, then e~? does not matter, and ¢(r) is still

relatively close to ¢(r) (use ¢’ to verify this).

(e) Write the large n asymptotic approximation of Z, that shows that
sampling uniformly in the ball by rejection from the cube is an ex-
ponentially bad idea.

2. (Probability distributions usually depend on parameters. It may not be
enough that a sampler “works” for each parameter value. It may need to
be efficient uniformly over the parameter. This FExercise is an example of
such a sampler. This exercise also demonstrates that some careful anal-
ysis can lead to good samplers.) Let S, for n = 0,1,..., be independent
exponential random variables with rate parameter A. Let these be the
inter-arrival times for the arrival times T;,, which means that T, = Sy,
and T,, = T,,_1 + S, for n > 0. The sequence T, is a Poisson process with
arrival rate parameter A\. The goal is to find a sampler that samples T,
using an amount of work that is bounded as n — oco. A direct simulation
of the Poisson process takes order n work, because you have to generate
all the inter-arrival times from Sy up to .S,,. For simplicity, we take A = 1.

(a) Show that the probability density for T,, is f,,(t) = %e_t ift > 0.
Hint: T, = T,,—1 + Sy, with .S,, independent of T;,_;, allows you to
find f,, from f,_1.

(b) Determine the behavior of f,(t) for typical T,, values using the method
of Exercise 1. Find the most likely value of T;, by maximizing f,,
then make a Gaussian approximation of f,, about this value, ¢,,..

(¢) You can find the mean and variance of T,, from the representation
of T,, as a sum of independent Sy for £ < n. You can estimate the
mean and variance of T,, from the Gaussian approximation of part
(2b). Show that these ways of getting the mean and variance give
(approximately?) the same result.

(d) Explain why it is not a good idea to use the Gaussian approximation
as a proposal distribution for rejection sampling of f,.

(e) Explore using a double exponential as a proposal distribution. That
is gn(t) = £e~@nlt=tl. Calculate the normalization constant Z. To

find the optimal Z you need to solve the two maximization problems,



(2)

one for ¢t > t,, and one for ¢t < ,,. Do not worry about negative T’
values. Those are rare for large n, and can be rejected for any n.

What formula for o, is suggested by the Gaussian approximation?
You can choose ., so that the proposal distribution has the same or
similar variance as the true distribution.

Determine wether this «,, leads to a sampler whose efficiency does
not go to zero as n — oo. If so, you are done. If not, can you adjust
a, to make the sampler uniformly efficient?

3. (Programming exercise. Please read the material on the class web site
on programming conventions. When you modify and re-use posted code,
please keep the automation features, such as making plots automatically
with computational parameters and legends. If you add a computational
parameter, figure out how to make it appear in the plot. If you remove a
parameter, make it disappear from the plot. Update the makefile to keep
everything automated.) Modify the code to sample the density f(xz) =
5 sin(mz) for x € [0,1], and f(x) = 0 otherwise. Use rejection sampling
with proposal distribution g(z) = 6x(1 — ) as described in the notes.
Here is a suggested sequence of steps.

(a)

The proposal distribution is sampled using procedures presently in
the file £.cpp. You need to copy this to g.cpp and change the names
of the routines to be ¢ instead of f. It should be clear how to do
this. You also need to adjust header.h. If you do this correctly and
run the code again, you should get the same plot, except that it will
be called g.

Now modify f.cpp to do the rejection sampling using g as a trial.
Change everything that needs changing, including the string that
describes the distribution. Test it using the histogram procedure.
Put both the f and g target distribution curves in the plot, so you
can see that you have changed from f to g. Use a sample size that
makes it clear that the empirical histogram represents f, not g.



