
http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo15/

Class notes: Monte Carlo methods
Week 1, Survey of the class

Jonathan Goodman
January 23, 2015

1 Introduction to Monte Carlo

Monte Carlo methods are computational methods that use random numbers. An
obvious Monte Carlo task is sampling. Roughly speaking, this means producing
a random variable X whose distribution is a given probability density f(x).
Sampling can be challenging, particularly if X is high dimensional, if f(x) is
complex or ill conditioned, and if f(x) is expensive to evaluate. Much of Monte
Carlo research is aimed at finding better samplers. Much of this class will focus
on this, particularly Markov Chain Monte Carlo, or MCMC.

But there is much more to Monte Carlo than this. This is the point of a
definition given by Malvin Kalos: Monte Carlo means using random numbers to
estimate something that is not random. For example, we sample the probability
density f to estimate the expected value

A = Ef [V (X)] =

∫
V (x)f(x) dx . ≈ 1

N

N∑
k=1

V (Xk) .

One way to estimate A is to generate samples Xk ∼ f and use

A ≈ Â ≈ 1

N

N∑
k=1

V (Xk) , (1)

but there may be better ways. Simulation is the process of generating random
variables using a given stochastic recipe. One way to estimate A is to create
samples by simulating and take the sample mean (1). The Kalos definition of
Monte Carlo suggests that we look for alternatives to direct simulation. This is
generally called variance reduction.

There are problems that are formulated without anything stochastic, but
which are solved using Monte Carlo. One example is quantum Monte Carlo,
which largely means using Monte Carlo to estimate solutions (or properties of
solutions) of the Schrödinger equation. Simpler applications include estimating
the area of a high dimensional surface in a higher dimensional ambient space.

Monte Carlo may or may not be the best way to solve a specific problem.
The curse of dimensionality makes many problems intractable by non-random
methods. In its simplest form, this curse is that it is impractical to create a
mesh for numerical integration or for PDE solving in high dimensions. A mesh
with n points on a side in d dimensions has nd mesh points in total. This is
impractical, for example, if n = 10 and d = 50.

1

A more general version of the curse is that it is impossible to represent a
generic function f(x) in high dimensions. Consider a general polynomial in d
variables. A polynomial is a linear combination of monomials. The number of
monomials xk11 · · ·x

kd
d of degree ≤ n is

(
n+d
n

)
. This is the number of coefficients

you need to represent a general polynomial of degree n. For example, you
need about 10, 000 coefficients for degree 4 in 20 variables, and about thirty
million coefficients for a degree 10 polynomial in 20 variables. For example,
dynamic programming is an algorithm that requires you to represent the “value
function” (for economists) or the “cost to go function” (for engineers). Dynamic
programming is impractical except for low dimensional problems.

On the other hand, if f(x) is a probability density, it may be possible to
represent f using a large number of samples. A sample of f is a random variable
X that has f as its probability density. If Xk for k = 1, ..., N is a collection of
samples, then

E[V (X)] =

∫
V (x)f(x) dx ≈ 1

N

n∑
k=1

V (Xk) .

A collection of samples of f contains the information you need to estimate an
integral. Sampling is one of the core technical issues in Monte Carlo.

Another challenge, which is important in many applications, is combining
Monte Carlo with optimization. Here, you seek a parameter set, y ∈ Rm that
maximizes a quality measure defined in terms of a random variable, X ∼ f(x, y).
The quality measure and the distribution of X can depend on y, so you seek to
maximize (or, outside the US, maximise)

u(y) = E[V (X, y)] , X ∼ f(·, y) .

Some optimization problems come in this form. An example of this would be
minimizing expected least squares tracking error for a stochastic dynamical sys-
tem. Other problems may be formulated in this way to make them computation-
ally tractable. An example of this is maximum likelihood parameter estimation
(maximize the likelihood function, which is a deterministic function of the data),
when there is so much data that using all of it is computationally expensive.
One strategy is to approximate the likelihood function using a randomly chosen
small subset of the data. Of course, there are optimization problems where u(y)
is defined in terms of the solution of a partial differential equation for which
Monte Carlo is the best solution method. Monte Carlo optimization methods,
the good ones anyway, are not just deterministic optimization methods applied
to approximate Monte Carlo estimates of u.

2 Direct sampling methods

It is a sad fact that math classes start with the most gritty technical part of their
subject. Real analysis starts with set theory and sigma algebras. Numerical
computing starts with the IEEE floating point standard. In that spirit, this

2

Monte Carlo course starts with the direct sampling methods that are at the
deepest level of most Monte Carlo codes.

Suppose f(x) is the probability density for an n component random vari-
able X. A direct sampler is an algorithm or a piece of software that produces
independent random variables with the density f . Consider the code fragment

X1 = fSamp();

X2 = fSamp();

If fSamp() is a direct sampler of f , then X1 ∼ f , and X2 ∼ f , and X1 is
independent of X2.

Most probability distributions you meet in practice do not have practical
direct samplers. Sampling them requires MCMC. But direct samplers are im-
portant parts of most MCMC methods.

3 Pseudo random number generators

A pseudo random number generator is the basic ingredient of any sampler. A
perfect random number generator (we usually drop the “pseudo”) would be a
procedure uSamp() so that U[i] = uSamp(); (in a loop over i) would fill the
array U with independent random variables uniformly distributed in the interval
[0, 1]. The word “pseudo” tells us that the numbers are not actually random,
but are produced by a deterministic algorithm. Modern state-of-the-art random
number generators produce “random” numbers that good enough for any Monte
Carlo computation I am aware of.

All random number generators in common use have the same structure.
There is a seed, s, that is some small amount of data. Congruential random
number generators have a seed that is an integer s ∈ {0, 1, . . . , p− 1}, where p
is a large prime number. More sophisticated generators have a seed that may
consist of several integers or other discrete data. A random number generator
is defined by two functions, a seed update function Φ, and an output function
Ψ. The seed update function produces a new seed from the current one. If
the current seed is sn, the next seed is sn+1 = Φ(sn). The output function
produces a number in the interval [0, 1] from the seed. If sn is the current seed,
then Un = Φ(sn) is the corresponding “random” number. A call U = uSamp()

has two effects. It returns the number U = Ψ(s), and it updates the seed:
s ← Φ(s). If you start with an s0 and call uSamp() many times in succession,
you will get the sequence Un = Ψ(sn), where sn+1 = Φ(sn). If you start again
with the same s0, you will get the same sequence Un.

Congruential random number generators have a state that is a single integer,
and an update function sn+1 ≡ asn + b (mod p), with sn+1 ∈ {0, 1, . . . , p− 1}.
Here a and b are integers smaller than p. A good one has a large p and a and
b. The output function is just U = s/p. One talks about the number of bits
in a congruential random number generator. A computer integer has 32 bits
(regular integer) or 64 bits (long integer). A long unsigned integer is in the range

3

{
0, 1, . . . , 264 − 1

}
. If p is a prime number close to 264, then the generator has

close to 64 bits. The number of integers between 0 and 264 − 1 is

264 = 16 · 260 = 16 ·
(
210
)6 ≈ 16 ·

(
103
)6

= 16 · 1018 .

The most powerful computer being discussed today is an exa-scale computer,
which would do 1018 operations per second and in principle could use all 16·1018

numbers in one calculation. A good 128 bit random number generator simulates
128 bit arithmetic using two or more ordinary computer integers. The data
structure of the seed for such a generator would be two or four ordinary computer
integers.

A good random number generator has a 1 to 1 update function. If s 6= s′,
then Φ(s) 6= Φ(s′). Such an update function will produce distinct seeds until is
has used every seed available to it. The number of available seeds is the cycle
length of the random number generator. A good random number generator has
a cycle length significantly longer than any realistic computation. For example,
an exa-scale computer would not exhaust a 128 bit congruential generator. If
the output is a 64 bit double precision floating point number and you use a 128
bit seed, then many seeds map to the same output. Getting the same U does
not force the random number generator to cycle.

A random number generator should allow the programmer to read and set
the seed. A procedure such as s = getSeed(); will return the current seed.
Another procedure setSeed(s); will set the seed equal to the given s. A Monte
Carlo computation should set the seed exactly once before using any random
numbers. Reading the seed at the end of a Monte Carlo calculation would let you
continue the computation where it left off. If you set the seed more than once
in a Monte Carlo computation, you probably will ruin the computation. The
random number generators that come with major languages (C/C++, Python,
Matlab, ...) will set the seed in some arbitrary way if the programmer doesn’t do
it. You can run the program twice to see whether the seed is set the same way
each time. The random number generator rand(); that comes with C/C++
and UNIX used to be a 16 bit generator and not suitable for scientific computing.

Python and Matlab supply random number generators that produce random
variables with Gaussian or other distributions. These use mapping methods of
the kind described below. It is usually better to use the built in Gaussian
generator, if there is one, than to write your own. This is because the mapping
behind the built in generator uses an ugly (but accurate and reasonably efficient)
rational function with many pre-computed coefficients. It will probably be much
faster and as accurate as what you would produce.

Warning: the random number generator that comes with the numpy package
in Python uses state for what is called seed here. It also has a function that
turns a single integer input, which it calls the seed into a state. The relevant
procedures are: seed([seed]), which creates a state from the given integer
seed and sets s to that state, get state(), which returns the current s, which
is an object with a Python defined type, and set state(state), which sets s
to the argument, which must have the correct data type.

4

4 Mapping methods for direct sampling

I.i.d uniformly distributed random variables are used to generate all the other
random variables in Monte Carlo. We usually assume that the uniform random
number generator is perfect, that it produces a sequence Un that is exactly i.i.d.
and uniformly distributed in [0, 1]. A sampler is an algorithm that uses one or
more such uniforms to generate samples from other densities.

A direct sampler of density f uses one or more uniforms to generate an
independent sample X ∼ f . Suppose it takes k uniforms to generate X. Math-
ematically, this means that there is a function x = G(u1, . . . , uk) so that if the
Uj are i.i.d. uniforms, and X = G(U1, . . . , Uk), then X ∼ f . This section gives
some examples of direct samplers where k is known in advance. These are map-
ping methods, with G being the mapping. The next section discusses rejection
methods, where k is not known in advance.

4.1 Exponential random variables

The exponential distribution with rate parameter λ has probability density
f(t) = λe−λt, if t ≥ 0, and f(t) = 0 if t < 0. You can think of an expo-
nential random variable, T , as the time you have to wait until “a bell rings”.
The restriction T ≥ 0 is natural if t = 0 represents the present. The probability
that the bell rings right away is P (0 ≤ T ≤ dt) = f(0) dt = λ dt. We call
λ the rate constant because it is the “rate” of bell ringing at the beginning.
The exponential random variable is special in that it has no memory. If the
bell has not rung by time s, it is as though time starts over then. More pre-
cisely: P (T ∈ [s, s+ dt] | T ≥ s) = λ dt. The conditional probability density is
f(t | T ≥ s) = e−λ(t−s). (The reader should do the easy verification that the
two conditional statements are equivalent.)

Exponentials (i.i.d. exponential random variables with arbitrary λ) have
many uses in Monte Carlo. The occupation times of a continuous time Markov
chain are exponential. The Green’s function commonly used in Green’s function
Monte Carlo, or GFMC, is sampled using an exponential, see Exercise 4.

To make an exponential, just set

T =
−1

λ
log(U) , (2)

where U is uniform [0, 1]. We verify this by computing the probability density
of the random variable T defined by (2). This density is defied by

f(t) dt = P (T ∈ [t, t+ dt]) .

5

But we can calculate that this event says about U :

t ≤ T ≤ t+ dt ⇐⇒ t ≤ −1

λ
log(U) ≤ t+ dt

⇐⇒ −λt− λdt ≤ log(U) ≤ −λt
⇐⇒ e−λte−λdt ≤ U ≤ e−λt

⇐⇒ e−λt(1− λdt) ≤ U ≤ e−λt .

This is an interval in [0, 1] of length e−λtλdt. Since U is uniformly distributed
in [0, 1], the probability of this is e−λtλdt. This implies that f(t) = λe−λt. A
careful reader may worry that we implicitly assumed that t > 0. The formula
(2) does not produce negative T if U ∈ [0, 1].

Here are two checks of (2). Since U ≤ 1, we have T > 0. That is why we
need the minus sign. If the random number generator gives U = 0, then T is
not defined. Unfortunately, some random number generators do that from time
to time, so you might need to check that U 6= 0 in the code before applying
(2). The other check involves the λ factor. If λ is large, the rate is fast and T
happens sooner. Our formula does that. To say this in a deeper way, the units
of λ are 1/Time because λ is a rate. Therefore 1/λ has the same units as T .

4.2 Inverting the CDF

If X is a one dimensional random variable, the cumulative distribution function,
or CDF, is F (x) = P (X ≤ x). For example, a standard uniform CDF is
F (u) = u for u ∈ [0, 1], F (u) = 0 for u < 0, and F (u) = 1 for u > 1. An
exponential with rate constant λ has CDF F (t) = 1 − e−λt for t ≥ 0, and
F (t) = 0 for t < 0. In general, the CDF of X is an increasing function of x, and
it is strictly increasing for any x with f(x) > 0. Also, F (x) → 0 as x → −∞,
and F (x)→ 1 as x→∞.

If X is a random variable with F (x) as its CDF, then the random variable
U = F (X) is uniform in [0, 1]. Conversely, if U is uniform [0, 1] and we find X
by solving the equation F (X) = U , then X ∼ f(x) = F ′(x). This is “obvious”.
If u ∈ [0, 1], and x is some number so that u = F (x), then the events U ≤ u and
X ≤ x are the same, so they have the same probability. The probability that
U < u is u = F (x). Therefore F (x) is the probability that X < x. You have to
be careful about degenerate cases where f(x) vanishes (e.g., the exponential for
t < 0) and partly discrete random variables where F (x) can be discontinuous.
Otherwise, there is a unique x for each u ∈ [0, 1] and a unique u for each x, and
the inverse function x = F−1(u) is well defined.

X = F−1(U) (3)

generates a sample X ∼ f .
For example, you can generate an exponential with rate constant λ by solving

F (T) = U , which given 1− e−λT = U and then

T =
−1

λ
log(1− U) .

6

This is the same as (2) because 1− U has the same uniform distribution as U .
Another example, with f(r) = Crn, for 0 ≤ r ≤ 1 and f = 0 otherwise, is in
Exercise 3.

It is not quite so simple for normals. The CDF, written N(x), is not an
elementary function. Nevertheless, there is fast and accurate software that
computes N(x) and N−1(u) quickly and almost to machine precision. The
Python and Matlab normal random number generators work this way, which is
a shame, given the elegance of the Box Muller algorithm.

4.3 Coin tossing

Suppose you want a discrete random variable X = 1 with probability p and
X = 0 with probability q = 1 − p. You just generate a uniform, U , and say
X = 1 if U < p, and X = 0 otherwise.

int X = 0;

if (uSamp() < p) X = 1;

More generally, suppose you want X = k with probability pk, and p1+· · ·+pn =
1. The discrete distribution function is

Pk =
∑
j≤k

pj .

The following code produces the desired sample

int X = 1;

double U = uSamp();

while (P[X] < U) X++;

This code assumes that Pn = 1 exactly. You can put this in the code with

P[n] = 1.;

In IEEE floating point arithmetic, this represents the mathematical 1 exactly.
If you get Pn by adding the pj , roundoff error could give a result slightly smaller
than the mathematical 1. You would have to hope that roundoff error in the
random number generator never produces U > 1.

4.4 Normals, Box Muller

The standard normal probability density is

f(x) =
1√
2π
e−x

2/2 .

The Box Muller algorithm is a mapping that turns two independent uniforms
into two independent standard normals. The algorithm is elegant and easy to
program. It is based on the trick for computing the Gaussian integral

I =

∫ ∞
−∞

e−x
2/2 dx .

7

The trick is to write

I2 = I · I

=

∫ ∞
−∞

e−x
2/2 dx ·

∫ ∞
−∞

e−y
2/2 dy

=

∫ ∞
−∞

∫ ∞
−∞

e−x
2/2e−y

2/2 dxdy

=

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2 dxdy .

Then switch to polar coordinates x = r cos(θ), y = r sin(θ), dxdy = dθ rdr, and
x2 + y2 = r2. Therefore

I2 =

∫ ∞
r=0

∫ 2π

θ=0

e−r
2/2 dθ rdr

= 2π

∫ ∞
r=0

e−r
2/2 rdr

To work the last integral, use s = r2/2, ds = rdr, which gives

I2 = 2π

∫ ∞
0

e−s ds = 2π .

There is no explicit formula for the one dimensional indefinite integral
∫
e−x

2/2dx.

But the indefinite integral in two dimensions is
∫
e−r

2/2 rdr. We find this in-

definite integral using the formula d
dr e
−r2/2 = −re−r2/2.

Here is the Monte Carlo version of this trick. We seek to make a pair, (X,Y),

of independent standard normals. The probability density is 1
2π e
−(x2+y2)/2,

which is isotropic. See Exercise 1 for a related consequence of the fact that the
joint density of independent standard normals is isotropic. The polar coordinate
representation of (X,Y) = (R cos(Θ), R sin(Θ)) involves a random distance, R,
and a random angle Θ. Clearly, Θ is uniformly distributed in [0, 2π], so we can
generate it using

Θ = 2πU1 , (4)

where U1 is uniform [0, 1]. Clearly R and Θ are independent. The density of R

is f(r) = re−r
2

. This is because

f(r) dr = P (r ≤ R ≤ r+dr) =
1

2π

∫ ∫
r≤R≤r+dr

e−(x2+y2)/2 dxdy = e−r
2/2 rdr .

Exercise 5 uses the method of Subsection 4.2 to show that a sampler for this
distribution is

R =
√
−2 log(U2) . (5)

It is possible to find an explicit sampler because there is an explicit formula
for the indefinite integral of f . Using the Box Muller algorithm you can fill an
array Z with 2n i.i.d. standard normals

8

int j = 0;

for (i = 0; i < n; i++) {

U1 = uSamp();

U2 = uSamp();

Th = 2*pi*U1;

R = sqrt(-2*log(U2));

X = R*cos(Th);

Y = R*sin(Th);

Z[j++] = X;

Z[j++] = Y;

}

4.5 Order statistics

You may never use this clever trick, but it does illustrate the possibility of using
several uniforms to generate a single X ∼ f . Suppose U1 and U2 are independent
standard uniforms. An elementary verify shows that X = max(U1, U2) has
density f(x) = 2x, if 0 ≤ x ≤ 1, and f(x) = 0 otherwise. Going further, the
result of sorting (U1, . . . , Un) is written U(1) ≤ · · · ≤ U(n). The kth smallest

of (U1, . . . , Un) is the kth order statistic, U(k). If n = 2, then X = U(2) =
max(U1, U2) as above. If n = 3, the density of X = U(2) is 6x(1 − x). The
density goes to zero as x → 0 or x → 1 because it is hard for the middle of
three to be very close to zero or 1. The density of U(k) has a factor of x for each
j < k and a factor of (1 − x) for each j > k. These densities do not arise so
often by themselves, but they can be useful as proposals for rejection sampling
discussed in Section 6.

5 Multivariate normal sampling via Cholesky fac-
torization

High dimensional distributions rarely have practical direct samplers. The mul-
tivariate normal is an exception. A multivariate normal with mean µ and co-
variance matrix C, or precision matrix H = C−1 has probability density

f(x) =
1

(2π)n/2det(C)1/2
e−(x−µ)tH(x−µ)/2 . (6)

If X has this density, we write X ∼ N (µ,C). In one dimension the covariance
matrix is just the variance σ2, where σ is the standard deviation. If Y is another
multivariate normal, we write µX and µY , CX and CY for the parameters of
the distributions.

Suppose X ∼ N (µX , CX). Let Y = AX+b, where A is an m×n matrix with
rank m. This requires m ≤ n. Then Y is multivariate normal with parameters
µY = AµX + b and CY = ACXA

t. You can derive the covariance formula

9

(if µX = 0, b = 0, and µY = 0) using CY = E[Y Y t] = E[(AX)(AX)t] =
E[A(XXt)At] = AE[XXt]At = ACXA

t.
It is easy to generate a multivariate normal Z ∼ N (0, I), just take the

components of Z to be independent standard normals. If we take X = AZ + b,
we get X ∼ N (b, AAt). This gives X ∼ N (µX , CX) if b = µX and CX = AAt.
If CX is known, we can find a suitable matrix A using, for example, the Cholesky
factorization. If C is a symmetric positive definite matrix (as any covariance
matrix must be), there is a Cholesky factor L that is lower triangular and has
C = LLt. There is good software in most programming languages to compute
Cholesky factors. In C, C++, or Fortran, you can use LAPACK. In Matlab or
Python you can use built in functions. The drawback is that Cholesky factors
are somewhat expensive to compute in high dimensions. But n = 1000 is still
practical.

It often happens that you have H = C−1 rather than C, an example is in
Subsection 6.2. It may be thatH is tridiagonal or for another reason has a simple
Cholesky decomposition. If H = MM t is the Cholesky factorization of H, then

H−1 = (M t)
−1
M−1. Recall that (M t)

−1
=
(
M−1

)t
and both are written

M−t. If we take X = M−tZ, then CX = M−t (M−t)
t

= M−tM−1 = H−1, as
desired. The equation X = M−tZ is equivalent to M tX = Z. Since M is lower
triangular, M t is upper triangular. The process of finding X from Z and M to
satisfy M tX = Z is called back substitution. Any software system that computes
Cholesky decompositions also has a procedure to do back substitution. If H is
n × n and not sparse, it takes O(n3) work to compute the Cholesky factor M
and O(n2) work to do a back substitution.

6 Rejection sampling

6.1 Basic rejection

Rejection sampling converts samples of a proposal density, g(x), into samples
of a target density, f(x). If you can sample g, rejection allows you to sample
f . Rejection sampling uses an acceptance probabiltiy function A(x), which is a
probability: A(x) ∈ [0, 1] for each x. A step of rejection sampling uses a sample
X ∼ g. This is the proposal. The proposal is accepted with probability A(X).
If X is accepted, it is the sample of f . If X is rejected (not accepted), you gen-
erate a new independent X ∼ g. Rejection sampling continues this propose and
accept/reject until the first acceptance. All proposals and acceptance/rejection
decisions are independent of each other. Assuming gSamp() produces indepen-
dent samples from g, the code for basic rejection sampling could be like this:

while(1){

X = gSamp(); // an independent sample from g

A = Z*f(X)/g(X); // acceptance probability, see below

if (uSamp() < A) break; // break means accept

}

10

We compute the probability density of an accepted sample. This is defined
by f(x) dx = P (X ∈ [x, x+ dx]), where X is a typical accepted sample. Bayes’
rule gives the distribution of X conditional on acceptance. We let Z be the
probability of acceptance in a given try, which is given by

Z = P (accept)

=

∫
P (accept X | propose X ∈ [x, x+ dx]) dx

Z =

∫
A(x)g(x) dx . (7)

With this,

f(x) dx = P (accepted X in [x, x+ dx])

= P (proposed X in [x, x+ dx] | accepted the proposal)

=
P (proposed X in [x, x+ dx] and accepted this X)

P (accepted)
(Bayes’ rule)

=
g(x) dx ·A(x)

Z
.

This leads to the important rejection sampling formula

f(x) =
1

Z
A(x)g(x) . (8)

In practice, you know the target density f and the proposal density g. Then
(8) gives

A(x) =
Zf(x)

g(x)
. (9)

We want the largest possible acceptance probability, we we should take Z as
large as possible. The constraint A(x) ≤ 1 for all x leads to

Z = max
x

g(x)

f(x)
. (10)

You can think of the rejection sampling formula (8) as a thinning process.
You get the graph of f starting from 1

Z g by reducing by a factor A(x). This
changes the shape of the distribution because the reduction factor, A(x), is
different in different places. A drawback is that this thinning formula only
removes probability, it never adds probability. For example, if g(x) = 0 for
some x, then f(x) = 0. Going further, the tails of g (the values of g for large
x) must be large enough to create the tails of f . For example, if g(x) = 2e−2x

and f(x) = e−x (and f = g = 0 when x < 0), then the tails of g are too small
relative to the tails of f . The formula (8) gives A(x) = Z

2 e
x. This is impossible

if A(x) ≤ 1 for all x.
It is common to denote normalization constants in probability densities by Z.

It is also common to have a formula for a probability density with an unknown

11

normalization constant. That means we have a formula for h(x) and the desired
probability density is f(x) ∝ h(x). This is written

f(x) =
1

Z
h(x) .

The normalization constant is found using the fact that f integrates to 1:

Z =

∫
h(x) dx . (11)

In the present case, if we propose using g(x) and accept using A(x), then the
resulting density is clearly f(x) ∝ A(x)g(x). The normalization constant is

Z =

∫
A(x)g(x) dx . (12)

The optimal Z satisfies both (10) and (12). It may be that we cannot solve the
optimization problem (10), but we can find a Z so that A(x) ≤ 1 in (9) for all
x. Then (12) would be satisfied, but not (10).

The efficiency of a rejection sampler depends on the expected number of
proposals to get an acceptance. Let N be the number of proposals to get the first
success. This is a geometric random variable because proposals are independent.
The first trial may be an acceptance or rejection. If it is a rejection, the number
of subsequent proposals needed is the same as it was before. The probability of
rejection is 1− Z. Therefore

E[N] = 1 · P (accept) + E[1 +N] · P (reject) = Z + (1 + E[N])(1− Z) .

Solving for E[Z] gives

E[N] =
1

Z
.

The smaller the acceptance probability, the more proposals you need, on average,
to get an acceptance.

This formula tells you how to design an efficient rejection sampler. You have
a bad sampler, one with small Z, if there is an x that is much more likely in the
target distribution than the proposal distribution. It is unfortunate that (12)
calls for a worst case analysis rather than an average case analysis. It might
be that g

f is reasonable for most x values and yet Z is very small. Exercise 7

is an example where g(x)
f(x) → 0 as x→∞. This leads to acceptance probability

Z = 0.
You find a good proposal distribution by looking for a g that can be sampled

and that looks like f . But even if g looks like f in the central parts of the
distributions, it can fail in the tails. For example, it is possible to sample a
standard normal by rejection from the double exponential density g(x) = 1

2e
−|x|

(exercise 7 asks you to calculate the optimal Z), but it is not possible to sample
the double exponential from a standard normal proposal because the tails of the

12

standard normal are too thin. Of course, there are simpler direct samplers for
both distributions that do not require rejection.

Suppose the target density is f(x) ∝ sin(πx) in the interval [0, 1]. The
normalization constant (11) is∫ 1

0

sin(πx) dx =
−1

π
cos(πx)

∣∣∣1
0

=
2

π
.

The target density is f(x) = π
2 sin(πx). A proposal density whose graph is

similar, and that we know how to sample (Subsection 4.5), is g(x) = 6x(1− x).
The efficiency is determined by

Z = min
6x(1− x)
π
2 sin(πx)

.

The minimum presumably is achieved in the middle of the interval, x = 1
2 ,

which gives the value

Z =
6 · 1

4
π
2

=
3

π
= .955 .

This rejection sampler is a little better than 95% efficient.
Most people working on Monte Carlo have designed a rejection sampler at

least once. This process can be messy, inelegant, and time consuming. But
good rejection sampling is crucial for the performance of the overall code. In
a lifetime practicing Monte Carlo and inventing rejection samplers, it is not
likely that you will be able to make one with a 95% acceptance probability for
a problem that you care about.

6.2 A multivariate example

Many multivariate distributions are approximately normal. Some of them are
Gibbs Boltzmann probability densities of the form

f(x) =
1

Z
e−βφ(x) . (13)

Here φ(x) is the energy in a system with configuration x, and β is the inverse
temperature. (In equilibrium statistical physics, β = 1/kBT , where T is the
temperature in degrees above absolute zero and kB is Boltzmann’s constant,
which is a conversion factor between temperature and energy. High temperature,
which is large T , corresponds to small β.)

The energy minimizing configuration is the x that minimizes φ in (13).
Denote this equilibrium position by x0, and suppose it is unique and non-
degenerate. A non-degenerate equilibrium has Hessian matrix H = φ′′(x0) that
is positive definite. As the temperature goes to zero, which is the limit β →∞,
the distribution f becomes concentrated closer and closer to x0. For x close to
x0, we should be able to use the Taylor series approximation

φ(x) ≈ φ(x0) +
1

2
(x− x0)

2
H (x− x0) . (14)

13

This approximation gives rise to the semiclassical approximation

f(x) ≈ g(x) =
1

Z
e−β(x−x0)2H(x−x0)/2 (15)

The difference between X ∼ f and the energy minimizing state x0, particularly
at low temperature (large β) is called thermal fluctuation. The semiclassical
approximation is to say that at low temperatures, thermal fluctuations are ap-
proximately Gaussian with a precision matrix given by the Hessian of the energy
function.

Now, suppose β is large enough that g is a good approximation to f . Could
we use the semiclassical approximate distribution (15) as a proposal density
for the exact (13)? There are several potential difficulties. One is that the
best possible acceptance probability (10) is equal to zero. That could be if the
semiclassical approximation is invalid far from x0. Even if there is a Z > 0, it
might be very hard to find. You might think of applying numerical optimization
to (10), but that could be very expensive, particularly if we want only one
sample. The curse of dimensionality may work against us too. The quadratic
approximation to the Gibbs distribution may be a poor trial distribution if the
dimension of x is large. This is because the next order Taylor series corrections
to (14) are cubic polynomials in x. If there are n components of x, there are
approximately n3/6 distinct cubic monomials and third partial derivatives of φ.
Even if each individual term is small, they may add up to something not very
small.

7 Weighted sampling, importance sampling

A weighted sample of a density f is a pair of random variables (X,W) so that
X, weighted by W , has the density f . An informal way to say this is

E[Wδ(X − x)] = f(x) (16)

for every x. More formally, if V (x) is a bounded continuous function, then

B =

∫
V (x)f(x) dx = E[WV (X)] . (17)

A weighted sampler does not have to produce X ∼ f . The weight W compen-
sates for the discrepancy in the X distribution. We write (X,W) ∼ f if (16) or
(17) are satisfied.

One form of weighted sampling allows you to use a rejection sampler without
rejection. You can take X ∼ g in (8) and

W = w(X)
1

Z
A(X) .

You can check the property (16) by

E[Wδ(X−x)] = Eg[
1

Z
A(X)δ(X−x)] =

1

Z
A(x)Eg[δ(X−x)] =

1

Z
A(x)g(x) = f(x) .

14

This is because

Eg[
1

Z
A(X)δ(X − x)] =

1

Z

∫
A(x′)δ(x′ − x)g(x′) dx′ =

1

Z
A(x)g(x) .

Equivalently, you can check the property (17) using (8):

E[WV (X)] =
1

Z
Eg[A(X)V (X)]

=
1

Z

∫
A(x)V (x)g(x) dx

=

∫
V (x)f(x) dx

= Ef [V (X)] .

If we are sampling f to estimate the expectation (17) the procedure would
be to generate N samples of g and use the estimator

B̂ =
1

N

N∑
k=1

w(Xk)V (Xk) . (18)

An alternative would be to do rejection sampling, getting some number of exact
samples of f from N proposals from g. It is an exercise to show that the weighted
sampling estimate (18) has lower variance.

Unfortunately, we often are trying to sample f not to evaluate B, but for
some other purpose. In that case, weighted samples may be less useful than
exact samples found from the same proposal distribution using rejection.

It is common that we we can sample g and we believe g is close to f , but
we cannot find the necessary Z for exact weighted sampling. That is, we have
g(x) and we know that f(x) ∝ w(x)g(x), but we do not know the normalization
constant. This is the situation in Section 6.2, where we can evaluate both g(x)
and e−βφ(x) easily, but we do not know Z in (13). The algorithm is to generate
N samples of g, evaluate the weights Wk, then use

B̂ =

∑
WkV (Xk)∑

Wk
.

8 Monte Carlo estimation and error bars

Error estimation and correctness checking are essential parts of all scientific
computing. This is particularly true in Monte Carlo, where the “exact” answer
always comes with some noise. Small errors in samplers can be hard to spot
unless you do high precision error checking. High precision in Monte Carlo
usually entails significant computing time.

Error estimation in Monte Carlo may be thought of as a problem in statistics,
and many statistical ideas apply. This is true both for producing error bars in
production Monte Carlo runs and for checking correctness of components of
Monte Carlo codes.

15

8.1 Error bars, the central limit theorem

Suppose you are trying to estimate a number A, which is not random. The
Monte Carlo estimate is Â, which is random. An error bar is an estimate of the
size of the difference between Â and A. One more precise version of this idea is
related to what statisticians call a confidence interval. The interval [Â−ε, Â+ε]
is a confidence interval with confidence level α if

P (A ∈ [Â− ε, Â+ ε]) ≥ α . (19)

In this definition A is not random. The random quantities are Â and ε. Suppose,
for instance, that our code has 95% confidence. Then there is at least a 95%
chance that the code will produce numbers Â and ε that have the property that
Â − ε ≤ A and Â + ε ≥ A. The interval [Â − ε, Â + ε] is the error bar. It is
often represented as a bar in plots with some symbol in the center of the bar
representing Â. In writing, you can report the error bar as A = Â ± ε. For
example, a 95% confidence interval [4.1, 4.5] might be written A = 4.3± .2.

The central limit theorem, or CLT, gives simple reasonably accurate error
bars for most computations involving direct samplers. Suppose you want A =
Ef [V (X)] and the estimator is

Â =
1

L

L∑
k=1

V (Xk) ,

where the Xk are i.i.d. samples of f . The CLT applies because the numbers
V (Xk) are i.i.d. random variables with expected value A. The number of sam-
ples, L, is likely to be large enough for the CLT to be valid if we are trying to
make an accurate estimate of A. Therefore, Â is approximately normal with
mean A and variance σ2/L, where σ2 is the variance of V (X) with X ∼ f .
The one standard deviation error bar is a confidence interval with ε equal to
the standard deviation of Â, which is ε = σ/

√
L. According to the CLT, the

confidence of this error bar is α = 68%. The custom in scientific Monte Carlo
is to report such one standard deviation error bars. Others may prefer to give
two standard deviation error bars ε = 2σ/

√
L. This gives 95% confidence error

bars.
Usually σ2 is unknown and must be estimated from Monte Carlo data. The

standard estimator of σ2 is

σ̂2 =
1

L

L∑
k=1

(
V (Xk)− Â

)2

. (20)

It is common to use 1/(L − 1) rather than 1/L here. But if that makes a
difference you probably don’t have enough data to estimate A accurately, or to
use error bars based on the CLT. If you use (20) instead of σ2 in the error bar
formulas, the α values will only be approximate. But even if you used the exact
σ2, the CLT is only a large L approximation. A wise and practical Monte Carlo
expert says: “Don’t put error bars on error bars.” The purpose of an error bar

16

is to know about how accurate Â is. Suppose Â = 2958 and the 68% error bar
is ε = 2.543. There doesn’t seem to be much harm in reporting A = 2958± 2.3,
even though the error bar is off by 10%.

It is absolutely unprofessional to do a Monte Carlo computation without
quantitative reasonably accurate error bars. You don’t have to report error bars
to non-technical people who would not appreciate them. But you do have to
know how big they are, and to report them to any consumer of your results who
has the technical training to know what they mean. For every computational
assignment in this course, reasonable error bars are part of the assignment.

8.2 Histograms, verifying a sampler

All programming is error prone, and particularly scientific computing. And
within scientific computing, particularly Monte Carlo. You need to verify each
Monte Carlo procedure carefully. Whenever you write a sampler, you need
to verify it before you put it into a larger Monte Carlo code. As with error
bars, verifications are a part of every computing assignment in this class. Not
just verifications of final results, but separate verifications of the component
subroutines.

The histogram is a practical way to verify most direct samplers of one
component random variables. A histogram divides the real axis into bins,
Bj = [xj − ∆x

2 , xj − ∆x
2). Here ∆x is the bin size, and xj = j∆x is the

bin center. The bin as written contains its left endpoint but not its right end-
point. Mathematically, this is irrelevant as long as the probability density is
continuous. But computational floating point numbers are discrete and may
sometimes land on endpoints. If the samples are X1, . . . , XL, the bin counts are
Nj = # {Xk ∈ Bj}. Nj is the number of samples in bin Bj . A histogram is a
graph of the bin counts. It is traditional to plot bin counts using a bar graph,
but there is no scientific reason do do that.

If the Xk are samples of a probability density f , then the expected bin counts
are

nj = E[Nj] = Lpj = L

∫
Bj

f(x) dx .

Here, pj is the probability that a particular sample lands in Bj . In practice,
it often suffices to approximate the integral by pj ≈ ∆xf(xj), but there is no
scientific reason to do this. The cost of doing the integrals more accurately is
trivial compared to the cost of generating the samples.

Since nj 6= Nj , you have to have an idea how much difference to expect.
You need error bars for bin counts. Bin counts are binomial random variables
because Nj is the sum of L independent Bernoulli random variables with the
same pj . The variance of Nj , therefore, is σ2

Nj
= Lpj(1− pj). You can estimate

pj from the empirical bin count

pj ≈ p̂j =
Nj
L

.

17

This is accurate if Nj is more than just a few, which it will be for lots of bins if
∆x is not too small and L is large.

The histogram verification procedure would be:

1. Generate a large number of samples X1, . . . , XL.

2. Calculate the bin counts Nj for a range of xj containing most of the
probability.

3. Calculate the error bars for Nj using εj = p̂j(1− p̂j)
√
L.

4. Calculate the expected bin counts nj .

5. Graph Nj±εj and nj in the same figure. Roughly a third of the nj should
be outside the error bars.

It is a good idea to take ∆x somewhat small and L very large so that you get
a picture of f with error bars as small as possible.

9 Examples and exercises

1. Suppose you want X ∈ Rn uniformly distributed on the unit n−1 dimen-
sional sphere. This is the same as asking for a unit vector ‖X‖l2 = 1 whose
probability distribution is isotropic. You can do this by starting with any
isotropic probability distribution and normalizing. Let Z = (Z1, . . . , Zn)t

where the Zk are independent one dimensional standard normals (made,
for example, by Box Muller). Then Z is an n dimensional standard nor-

mal with isotropic probability density f(z) = Ce−‖z‖
2/2. The normalized

random variable X = 1
‖Z‖Z is both normalized and isotropic, as desired.

2. Suppose you want X uniformly distributed in the unit ball. One approach
would be to take X uniformly distributed in the cube that contains the
ball. That would be Xk = 2Uk − 1, where the Uk are i.i.d. standard
uniforms. You can then accept X if it is inside the unit ball, ‖X‖ ≤ 1 and
reject otherwise. Eventually you will get an acceptance. The excepted
X is uniformly distributed in the unit ball. Each proposal is simple and
cheap. The efficiency of the overall algorithm depends on its acceptance
probability, Z. Show that Z is exponentially small in n. The conclusion
is that generating a uniform in the ball by rejection from a uniform in the
cube is an exponentially bad idea. One approach: there is a formula for the
volume of the unit ball in n dimensions. The cube has side 2 and volume
2n. The ratio of these volumes is the acceptance probability. You will
need to use an asymptotic approximation of the Gamma function, such as
Γ(n) = (n − 1)! ≈ (n − 1)n−1e−n−1. Another approach: If Xk is uniform

in [−1, 1] then E
[
X2
]

= 1
3 . Therefore, in n dimensions, E

[
‖X‖2

]
= n

3 .

Cramer’s theorem from large deviation theory implies that P
(
‖X‖2 ≤ 1

)
is exponentially small.

18

3. Another way to generate X uniform in the unit ball is to write X = RY ,
where R = ‖X‖ ∈ [0, 1], and Y is uniform on the sphere. Think of this as
working in spherical coordinates. Exercise 1 lets you generate Y . R is a
scalar whose CDF is F (r) = Crn (P (R ≤ r) is proportional to the volume
of the ball of radius r.). The constant is found from 1 = F (1) = C. The
CDF inversion method givesR with the desired CDF by solving F (R) = U .
In this case, that is just R = U1/n.

4. Let K(x) be the Green’s function for the Debye Hückel operator. This
satisfies 4K(x) −mK(x) = δ(x). Since K is negative and decays expo-
nentially, −K can be normalized to be a probability density. The normal-
ization constant may be found by integrating both sides over Rn:∫

4K(x) dx−m
∫
K(x) dx =

∫
δ(x) dx

m

∫
(−K(x)) dx = 1 .

To sample the probability density f(x) = −1
m K(x), you choose an expo-

nential T with rate constant λ = m, then you take X ∼ N (0,mI).

5. Suppose R > 0 has probability density f(r) = re−r
2/2. Show that the

CDF is F (r) = 1−e−r2/2. Show that if you solve the equation F (R) = U ,
you get a sampler for f that is equivalent to (5).

6. (easy) Show that the formula (12) gives Z ≤ 1 for any pair of probability

densities f and g. Note that there are x values with g(x)
f(x) > 1. The problem

is to show that g(x)
f(x) ≤ 1 for some x provided that f and g are probability

densities.

7. Solve the optimization problem (10) when f is the standard normal and g
is the double exponential. The efficiency should be around 75%. Consider
generating a double exponential from a standard normal. Show that the
optimization problem (10) leads to Z = 0.

8. Suppose we have a direct weighted sampler of a probability density g. This
means that there is a procedure so that [X,W] = gSampW() produces an
independent weighted sample of g in the sense of (16) or (17).

(a) Does the rejection method of Subsection 6.1 turn (X,W) into a
weighted sample of f?

(b) Suppose L(x) = f
g is the likelihood ratio. Is (X,WL(X)) a weighted

sample of f?

9. Describe the mechanics of using the CLT to estimate error bars when
you are using a weighted direct sampler of f . Describe how to create
“weighted” histograms to verify that (X,W) is a weighted sample of f .

19

