
http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo15/

Class notes: Monte Carlo methods
Week 3, Markov chain Monte Carlo

Jonathan Goodman
March 3, 2015

1 Introduction

Markov chain Monte Carlo, or MCMC, is a way to sample probability distribu-
tions that cannot be sampled practically using direct samplers. Most complex
probability distributions in more than a few variables are are sampled in this
way. For us, a stationary Markov chain is a random sequence X1, X2, . . ., where
Xk+1 = M(Xk, ξk), where M(x, ξ) is a fixed function and the inputs ξ are i.i.d.
random variables. Mathematically, a stationary Markov chain is defined by a
transition distribution, R, that describes distribution of Xk+1 conditional on Xk.
We use different related notations for this, including R(y|x) for the probability
density of Y = M(X, ξ), or Rxy = P(x→ y) for the probability that Xk+1 = y
given that Xk = x. An MCMC sampler is a code that implements M . It is
a direct sampler for the conditional distribution R(·|Xk). A direct sampler is
X = fSamp(), while the MCMC sampler is X = fSamp(X). Both the direct and
MCMC samplers can call uSamp() many times. The Markov chain is designed
so that fk → f as k →∞, where fk is the distribution of Xk and f is the target
distribution. It turns out to be possible to create suitable practical Markov
chains for many distributions that do not have practical direct samplers.

Two theorems underly the application of MCMC, the Perron Frobenius the-
orem, and the ergodic theorem for Markov chains. A Markov chain preserves f if
f is an invariant distribution for R. This means that if Xk ∼ f , then Xk+1 ∼ f .
Perron Frobenius says, among other things, a Markov chain preserves f , and
if it is non-degenerate (aperiodic and irreducible, see below), then fk → f as
k →∞. It is usually easy to check the non-degeneracy conditions. The impor-
tance of the Perron Frobenius theorem is that we do not have to design MCMC
samplers that make fk converge to f , we only have to make them preserve f .

The MCMC samples Xk are not independent, but they suffice for estimating
expected values. The ergodic theorem for Markov chains says that if R preserves
f and is non-degenerate then

Ân =
1

n

n∑
k=1

V (Xk) → A = Ef [V (X)] as n→∞ . (1)

For this, it helps that fk → f as k → ∞. But this is not enough. It is also
necessary that Xk and Xk+1 become independent as k → ∞ and t → ∞. The

statistical error var(Ân) ≈ E
[
(Ân −A)2

]
depends on the rate of convergence

cov(V (Xk), V (Xk+t) → 0 as t → ∞. The MCMC does not produce any inde-
pendent samples of f , but it produces enough samples with distribution close
enough to f that are close enough to being independent.

1

There is no theorem that says that a given correct sampler is practical. On
the contrary, there are distributions for which no practical sampler is known.
When you use MCMC, even more than with a direct sampler, it is important
to do convergence checks and estimate realistic error bars. The variance of Ân
with a direct sampler is 1

nσ
2. With an MCMC sampler, the variance can be

much larger.
This class covers generic MCMC methods. After today you will be able to

create a correct sampler for more or less any distribution. We do this first for
finite state space and discrete probability, then for continuous state space and
continuous probability. The basic ideas in both cases are:

• Detailed balance achieved through rejection, called Metropolis or Metropo-
lis hastings.

• Partial resampling, originally called the heat bath method, since renamed
the Gibbs sampler.

• Compositions of the above that make the overall chain mixing.

2 MCMC error bars

Error bars for MCMC samples are harder to make than error bars for inde-
pendent samples. There are two relaxation times that are relevant to knowing
whether you have taken enough MCMC steps. The burn-in time is the number
of steps it takes to achieve the convergence fk → f . This is not precisely defined
because fk is never equal to f . But it often takes many MCMC steps before Xk

resembles typical samples from f . MCMC practitioners often throw away the
first part of an MCMC sequence, hoping to avoid biased results that come from
the burn-in steps. But it is hard to make a statistical estimate of the burn-in
time, given that there is only one burn-in in a given MCMC run.

The auto-correlation time, τ , can be estimated from the MCMC run. Nor-
mally, the run length, n, should many times τ . The auto-correlation time is a
way to understand the approximate formula for the variance of the estimator
(1), which is

var
(
Ân

)
≈ D

n
, (2)

where

D =

∞∑
t=−∞

C(t) = C(0) + 2

∞∑
t=1

C(t) , (3)

and
C(t) = lim

k→∞
cov(V (Xk), V (Xk+t)) . (4)

We explain these in reverse order, starting with the auto-covariance function
C(t). As k →∞, the distribution of Xk converges to f . In the limit k →∞, and
if t > 0, the joint distribution of (X,Y)=(Xk, Xk+t) converges to f(x)Rt(y|x),
where Rt is the transition matrix to the power t. The definition (4) shows that

2

C(−t) = C(t). This justifies the second equality in the definition of D. The
formula (3) is called the Kubo formula. Kubo derived it in the form

var

(
n∑
k=1

V (Xk)

)
≈ nD .

The left side is the sum of n random steps of size V (Xk). The identity, which is a
generalization of a formula of Einstein, suggests that D is the effective diffusion
coefficient for a random walk process with correlated steps. That is because nD
would be the mean square displacement after n independent steps, each having
variance D.

The formula (3) may be written in a way that makes the relationship be-
tween independent sampling and MCMC sampling more clear. The time zero
covariance, C(0), is the static variance, which would be called σ2 for indepen-
dent sampling. We factor out the static variance and write the Kubo formula
as

D = C(0)

[
1 + 2

∞∑
t=1

ρ(t)

]
. (5)

Here,

ρ(t) =
C(t)

C(0)
, (6)

is the auto-correlation function. This is the correlation of V (Xk) with itself at
time lag t. In general, the correlation coefficient between random variables Y
and Z is

ρY Z =
cov(Y,Z)√

var(Y) var(Z)
.

This is a dimensionless measure of the relation between Y and Z. It ranges
from −1 to 1, with extreme values only if Y = CZ for some constant C. In
the context here, Y = V (Xk) and Z = V (Xk+t). For large k, the variances of
V (Xk) and V (Xk+t) are the same, hence the formula (6) for ρ(t).

The quantity in square braces in the Kubo formula (5) is the auto-correlation
time:

τ = 1 + 2

∞∑
t=1

ρ(t) . (7)

It measures the number of MCMC steps needed to create an effectively inde-
pendent sample of f , for the purpose of estimating Ef [V (X)]. You can see this
by rewriting the estimator variance formula (2) in terms of τ :

var
(
Ân

)
≈ C(0)

n/τ
=

σ2

neff
.

This formula defines the effective number of samples, which is the number of
MCMC steps measured in units of the auto-correlation time. The variance of

3

the estimator is the (static) variance of V (X) divided by the effective number
of samples.

<preach>In Monte Carlo practice, it is crucial to report neff rather than just
n. For example, if you take n = 10000 MCMC steps and the auto-correlation
time is τ = 1000, then A is estimated to the accuracy of just neff = 10 inde-
pendent steps. Unfortunately, τ = 1000 may be the best we can do even with
sophisticated MCMC algorithms. Taking a large number of MCMC steps does
not necessarily mean small error bars. Understanding the correlations in V (Xk)
is crucial, if you want to know whether you have the right answer.</preach>

The auto-correlation time, τ , depends both on the MCMC algorithm and on
the quantity, V (X), being measured. The spectral gap of the MCMC algorithm
may give a bound on τ for any V , if the chain satisfies detailed balance. A small
spectral gap implies that there are observables V (x) with large τ . It is possible
that the Markov chain you are running has a small spectral gap but your V is
not among the bad ones that have a correspondingly large τ . This seems to be
uncommon in practice.

If we use the Kubo formula to estimate error bars (strongly recommended),
we must estimate τ from Monte Carlo data. There does not seem to be a
straightforward robust way to do this. It is natural to start by estimating the
auto-covariance and auto-correlation functions, first

Ĉ(t) =
1

n− t− 1

n−t∑
k=1

(
V (Xk)− Ân

)(
V (Xk+t)− Ân

)
,

then

ρ̂(t) =
Ĉ(t)

Ĉ(0)
.

A typical ρ̂ goes from 1 to zero as t goes from 0 to several times τ . The exact
ρ(t) converges to zero as t→∞, but the estimated ρ̂(t) fluctuates around zero
in a noisy way. The following estimator is a natural implementation of auto-
correlation sum (7):

τ̂inc,n = 1 + 2

n/2∑
t=1

ρ̂(t) . (8)

In statistics, an estimator, depending on the sample size n, is called consistent if
it converges (in probability, or almost surely, depending) to the right answer as
n→∞. In practice, we usually prove convergence in probability by showing that
the bias and the variance of the estimator go to zero as n→∞. The estimator
(8) is inconsistent in that sense. The bias goes to zero, but the variance does
not go to zero. Most of the signal (values of t where ρ(t) is significantly different
from zero) is gone by, say t = 5τ . But the noise continues all the way to t = n/2.

An informal quantitative analysis suggests that variance of τ̂inc,n has a finite
non-zero limit as n→∞. Suppose that the there were neff independent samples
used for each value of ρ̂(t). Then these estimates would have statistical error
with variance of order 1/neff. The sum (8) contains roughly neff independent

4

terms with that variance, so the sum of the variances is order 1. It is easy
(though time consuming) to verify this in specific examples.

We use a self consistent window strategy to capture most of the signal in ρ̂
without taking more noise than necessary. We do the sum in (7) over a window
whose size is a multiple of τ .

τ̂sc = 1 + 2

wτ̂sc∑
t=1

ρ̂(t) . (9)

The parameter w is the window size, which I typically take to be w = 5 or
w = 10. The estimator is self consistent because the estimated τ is used in the
formula that estimates τ . The following code (which is not robust enough for a
real MCMC code) does this:

tau_hat = 1.;

t = 1;

while (w*tau_hat > t)

tau_hat += rho_hat[t++];

3 Discrete probabiltiy

We describe MCMC sampling first in a case that is not very technical so the main
ideas are clear. Afterwards, we discuss continuous probability distributions. We
start with two examples of discrete distributions. In both cases the state space
is enormous but finite.

3.1 Example, a mixing/separation model

Two or more chemical species may mix or not mix. Oil and water do not
mix. Sugar and water do mix, but the amount of sugar that can dissolve in
water depends on the temperature. We give a qualitative model from statistical
physics that explains the temperature dependence of mixing in some cases.

Suppose there are m atoms of species A. Each atom occupies a site in a
lattice of n× n possible sites. A lattice site is described by integer coordinates
(i, j) with i ∈ {1, . . . , n} and similarly for j. Each site is either occupied (by a
species A atom) or unoccupied. A configuration, X, is the set of occupied sites,
which is an m element subset of the n2 sites. The state space, S, is the set of all

possible states. The number of states in this example is |S| =
(
n2

m

)
. If n = 10

and m = 20, this is about 2× 1020.
The neighbors, or nearest neighbors, of site (i, j) are the four sites (i− 1, j),

(i + 1, j), (i, j − 1), and (i, j + 1). A bond, or link, or edge, in the lattice is
the connection between neighboring sites. There is a bond between (i, j) and
(i+ 1, j), and a bond between (i, j) and (i, j + 1). The boundary of the lattice
consists of sites with i = 1, i = n, j = 1, or j = n. periodic boundary conditions
is the model specification that opposite edges are neighbors. That means, for

5

example, (n, j) is a neighbor of (1, j). Open, or free, boundary conditions is
the specification that boundary sites have fewer neighbors. For example, the
neighbors of (4, n) would be (3, n), (5, n), and (4, n − 1), and the neighbors of
(n, 1) would be (n − 1, 1), and (n, 2). The reason to use periodic boundary
conditions is to avoid having to model side/void interactions and to make every
lattice site look like every other site. It is not because we think a large lattice
has periodic occupations.

A graph is an abstract generalization of this model. You define a graph by
giving its vertex set and its edges. The vertex set is just a set. An edge is a
subset of two vertices. Vertices v1 and v2 are neighbors in the graph if {v1, v2}
is an edge of the graph. In our mixing model, the vertex set is the set of lattice
points. The edges are the bonds connecting nearest neighbors. The complete
graph has n vertices and an edge connecting each pair of vertices – n(n + 1)/2
edges in all. A random graph has n vertices. A pair {vi, vj} is an edge with
probability p, with all choices being independent.

Our lattice model of mixing has the physical hypothesis that atoms of species
A attract each other. You model the attraction using the corresponding poten-
tial energy, which is the amount of energy it takes to pull apart a neighboring
pair of A atoms. The overall energy of a configuration X is a sum over edges
between neighbors. Each edge that has both sites occupied by A type atoms
contributes −h to the total energy. The energy is negative because you have to
add energy to pull an A atom pair apart. The total potential energy is called
φ(x) and is given by

φ(x) = −h
∑

e∈edges

1e , (10)

where 1e = 1 if both sites are occupied with A atoms, and 1e = 0 otherwise. The
maximum energy, which is zero, is achieved if the A type atoms are arranged
in a checkerboard pattern. This is possible only if m ≤ n2/2. Low energy
configurations have all occupied sites in a square of neighboring sites.

In a statistical equilibrium (technically, a cannonical ensemble), the proba-
bility of configuration X is given by

f(x) =
1

Z
e−φ(x)/kBT . (11)

The normalization constant Z is the partition function is a sum over all possible
configurations

Z(T) =
∑
x∈S

e−φ(x)/kBT . (12)

The normalization constant is usually not known. It is important that the
sampling algorithm be able to work without knowing Z. As usual, T is the
temperature, in degrees above absolute zero. kB is Boltzmann’s constant, which
is a conversion factor between degrees and units of energy.

The Gibbs distribution (11) says that low energy states are more likely than
high energy states. The strength of this preference is determined by the temper-
ature. At low temperature, low energy states are very strongly preferred over

6

low energy states. In the limit T → ∞, all states are equally likely. Ice is an
example of a low temperature situation. Water molecules arrange themselves in
a periodic crystal lattice that minimized their energy. Steam (gas phase water)
is an example the same material at high temperature, where all configurations
of water molecules are possible.

The behavior of this model, as with many models in statistical physics, is
a competition between the influences of energy and entropy. Entropy refers to
combinatorics: how many states are there with a given energy. Often there are
more high energy states than low energy states. This can make it more likely
to see a high energy state than a low energy state. Any particular high energy
state is less likely than any particular low energy state. But there are so many
more high energy states that high energy is more likely than low energy.

As an example, suppose there are only two type A atoms in the lattice.
The two possible energy values are −h, if the two type A atoms are neighbors,
and 0 if they are not. The number of “neighbor” configurations is 2n2 – the
configuration could be vertical or horizontal (two possibilities), and the lower (if
vertical) or left (if horizontal) occupied site can be any site. The total number
of configurations is

|S| =
(
n2

2

)
= n2(n2 − 1)/2 = n4/2 +O(n2) .

The total number of energy zero configurations is |S|minus the number of energy
−h configurations, which is n4/2 +O(n2)− 2n2 = n4/2 +O(n2). Therefore the
probability of energy zero is

P (φ(X) = 0) =
n4

2 +O(n2)(
n4

2 +O(n2)
)

+ 2n2eh/kBT
≈ 1

1 + 4eh/kBT

n2

.

This is significantly less than one only when 4eh/kBT

n2 is significantly different
from zero. The larger n is, the smaller T has to be to make a φ = −h state as
likely as a φ = 0 state.

The problem is to understand how the system mixes as a function of the
temperature and the density, which is ρ = m/n2. We imagine a large system,
large n, with a fixed ρ. A mixed state would be occupied sites distributed
more or less uniformly in the lattice. A separated state would be most of the
occupied sites in one high density region while most of the rest of the sites
are not occupied. Separated states have lower energy and are preferred at low
temperature. We will use Monte Carlo to investigate this quantitatively.

3.2 Example, Chemical potential

Chemical potential, denoted by µ, is the energy needed to add one atom or
molecule of something. The very simplest probability distribution involving
chemical potential just has N copies of a molecule. The energy for n copies is

7

φ(n) = µn. The probability of having n copies is

fn =
1

Z(µ)
e−µn . (13)

Of course,

Z(µ) =

∞∑
n=0

e−µn =
1

1− e−µ
.

The state space is not finite, strictly speaking. You can ignore this, or truncate
the system with a maximum allowed n. There is a simple direct sampler for
this distribution, which we also ignore for the time being.

3.3 Example, unobserved regime switching

A hidden Markov model is a model of a sequence of observations that partially
describe the state of a Markov chain. Here is a simple example. At each discrete
time j there is a binary variable, Xj ∈ {0, 1}, that we call the state, and a binary
variable, Yj , that we call the observation. Three parameters characterize the
model, p, q0, and q1. In one time step, X flips with probability p. That is
P (Xj+1 6= Xj) = p. If Xj = 0, then Yj = 1 with probability q0. If Xj = 1, then
Yj = 1 with probability q1.

A general hidden Markov model is like this example. There is a state Xj

that is in some state space, S, that is in general more complicated than {0, 1}.
The sequence of states forms a stationary Markov chain. For each j there is
an observation Yj that is a random function of Xj . More formally, for each
x ∈ S, there is a probability distribution g(y|x). The observation is a sample of
this distribution: Yj ∼ g(·, Xj). The problem is to say what you can about the
sequence Xj given the observations (Y1, . . . , YT).

To get some intuition about our simple binary model, suppose that p is small,
that q0 is close to zero, and q1 is close to 1. Then spin flips are rare and Yj = Xj

most of the time. The observation sequence will consist of sequences of mostly
zeros followed by sequences of mostly ones, and so on. A more interesting case
is p small, but q0 = .5 − ε and q1 = .5 + ε. Flips are as rare as before, but
harder to identify the spin flips from an observation sequence. It is unlikely to
see long sequences of mostly zeros or mostly ones. Instead, there will be periods
when ones are slightly more common than zeros, or the other way around. It
will be hard to say whether a sequence with slightly more ones than zeros is do
to Xj = 1 or just random chance.

A major advance in statistics is to take the simple Bayesian point of view
that you answer study this question simply by generating samples of the pos-
terior distribution, which is the conditional distribution f(x | Y). This is the
distribution of X conditional on the data Y . We write this distribution using
some convenient notation: The transition matrix for the X process is

R(x, x′) =

{
1− p if x = x′

p if x 6= x′

8

The observation distribution is g(y | x) given by

g(y | x) =


1− q0 if y = 0, x = 0
q0 if y = 1, x = 0

1− q1 if y = 0, x = 1
q1 if y = 1, x = 1

The probability of a particular sequence (x, y) = (x1, . . . , xT , y0, . . . , yT) is

P (X = x, Y = y) = F (x, y) =

T−1∏
j=0

R(xj , xj+1)

T∏
j=0

g(yj | xj) .

For simplicity, we assume that x0 is known. Once the value y = Y is known,
the conditional probability of X is

P (X = x | Y) =
1

Z(Y)
F (x, Y) . (14)

It is easy to evaluate f(x, Y) for any particular x and Y . The normalization
constant

Z(Y) =
∑
x∈S

F (x, Y)

is hard to know. The state space S consists of all binary sequences of length T .
The size of this state space is |S| = 2T .

3.4 Discrete Markov chain Monte Carlo

Here is a quick review of Markov chain theory. Let S be a finite state space of
size n. Let R be an n × n transition matrix for the stationary Markov chain
Xk. That means that

Rij = P (i→ j) = P (Xt+1 = j | Xt = i) .

Suppose f0,i = P (X0 = i) is the starting probability distribution. Then the
probability of a sequence x0, . . . , xT is

P(X0 = x0, X1 = x1, . . . , XT = xT) = f0,x0

T−1∏
j=0

Rxj ,xj+1
.

For example, we find the joint distribution of X0 and X2 by summing over x1

P(X0 = i,X2 = k) =
∑
k

f0,iPikPkj = f0.i

(
P 2
)
ij
.

The probability distribution of Xt is the row vector ft with components ft,j =
P (Xt = j). These numbers satisfy

ft+1,j = P (Xt+1 = j) =
∑
k∈S

P (Xt+1 = j | Xt = k)P (Xt = k) =
∑
k

ft,kRkj .

9

In matrix notation, this is simply

ft+1 = ftR . (15)

If you think of ft as a column vector, the same equation would be ft+1 = R∗ft.
(We write R∗ for the transpose of R so that Rt can be R to the power t.)

A distribution is invariant if f = fR. In MCMC, we are given f and
we need to create a non-degenerate R, that can be implemented, so that f is
an invariant distribution of R. A non-degenerate R determines the invariant
probability distribution f uniquely. But there are many transition matrices
that preserve a given f . Finding a good R for a given f , that is one if the
central research problems in modern Monte Carlo.

In a Markov chain generated by R, the probability to go from X0 = i to
Xt = j, which is an i → j transition in t steps, is (P t)ij . The Markov chain
is irreducible every transition is eventually possible. That means, for each pair
(i, j), there is a t > 0 so that (P t)ij > 0. A Markov chain on a finite state space

is aperiodic if there is a t > 0 so that (P t)ij > 0 for all (i, j). It is “elementary”
(takes under an hour) to see that if an irreducible Markov chain on a finite state
space is not aperiodic, then it is indeed periodic in that there is a state i and a
period, r so that (P t)ii = 0 if t is not a multiple of r.

The basic theory of finite state space Markov chains includes theorems that
if R is non-degenerate, which means irreducible and aperiodic, then f (the
invariant probability distribution) is unique, ft → f as t→∞, and the sample
means (1) converge to the right answer. The conclusion is this. You can sample
f well enough to compute expectations by running a non-degenerate Markov
chain that has f as its invariant distribution. An MCMC sampler of f is such
a Markov chain.

3.5 Balance and detailed balance

The fact that R preserves f may be understood as a balance condition. If
Xt ∼ f , then the probability that Xt+1 = i is the probability that Xt = i,
minus the probability of a transition out of the state i, and plus the probability
of a transition into state i. If f is an invariant distribution, then these in and
out probabilities balance for each state, i. The probability of an out transition
is

P(observe i→ not i) = P(Xt = i) P(i→ not i)

= fi
∑
j 6=i

Pij .

The probability of a transition into i is

P(observe not i→ i) =
∑
j 6=i

fjPji .

10

The balance condition comes from setting these equal to each other:

fi
∑
j 6=i

Pij =
∑
j 6=i

fjPji . (16)

We put this in a more familiar form by adding the i → i “transition” term,
which is fiPii, to both sides. On the left we have

fi
∑
j

Pij = fi .

On the right we have ∑
j

fjPji = (fP)i .

Setting these equal gives the familiar f = fP . We conclude that the balance
condition is equivalent to the condition that f is an invariant distribution of P .

The detailed balance condition is a refinement of the above balance condition.
An R that satisfies detailed balance for f obviously (as we will see) satisfies
overall balance. But it is possible to have overall balance without detailed
balance. The value of detailed balance is that it is easy to check because it does
not involve a sum over all states. Overall balance does involve such sums. If we
understood enough about f do to such sums, we would not need to do MCMC.

Detailed balance is a balance condition for each pair of states.

P(observe i→ j) = P(observe j → i)

fiPij = fjPji for all pairs (i, j). (17)

Summing this over j (obviously) the balance condition (refeq:b). When we
design MCMC algorithms, we have f and we are looking for P . The detailed
balance condition (19) is an equation that relates just two numbers Pij and Pji.
Each transition probability occurs in just one of these equations. It is easy to
find numbers Pij because the equations (19) are all independent of each other
(almost).

3.5.1 Detailed balance

Detailed balance is a simple practical way to construct MCMC samplers. Sta-
tistical physics has a principle of detailed balance, which is the statement that
certain systems should satisfy detailed balance. MCMC has no principle of
detailed balance. Rather, detailed balance is a trick that allows you to find
matrices R that preserve f . There are many correct MCMC samplers that do
not satisfy detailed balance.

The ordinary balance condition is a way to say that R preserves f . You look
at a particular state x ∈ S and ask that the probability of observing a transition
out of x is the same as the probability of observing a transition into x. The

11

two probabilities should balance. If X ∼ f , then the probability of observing a
transition out of x is∑

y 6=x

P (observe x→ y) =
∑
y 6=x

f(x)Rxy .

The probability to observe a transition into x is∑
y 6=x

P (observe y → x) =
∑
y 6=x

f(y)Ryx .

The balance condition is that these are equal, which is∑
y 6=x

f(x)Rxy =
∑
y 6=x

f(y)Ryx . (18)

This is equivalent to the steady state condition f = fR, which you can see by
adding f(x)Rxx to both sides. On the left, we have

f(x)
∑
y∈S

Rxy = f(x) .

On the right we have ∑
y∈S

f(y)Ryx ,

which is the the x component of fR.
Detailed balance is the balance condition for each x 6= y pair, P (observex→

y) = P (observe y → x):
f(x)Rxy = f(y)Ryx . (19)

It is clear that if R satisfies detailed balance for f , then it satisfies ordinary
balance. If you sum (19) over y 6= x, you get (18). There are many ways to
satisfy ordinary balance without detailed balance. This being said, most MCMC
strategies use detailed balance in some way.

3.5.2 Metropolis, Metropolis Hastings

The Metropolis method achieves detailed balance through rejection. As with
rejection sampling, is uses a proposal distribution, Q, and an acceptance prob-
ability, A. If you are in state x, you propose to move to a random Y ∈ S
with

Qxy = P (propose Y = y from x) .

Of course, the Q matrix must be a probability distribution as a function of y for
each x, which means Qxy ≥ 0, and

∑
y∈S Qxy = 1 for every x. The acceptance

probability of a proposed move is Axy. If the proposed Y is accepted, then it
becomes the new state. If the proposed Y is rejected, the new state is the same
as the old state.

12

We express R in terms of Q and A. In order to make a transition from x to
y, the state y must be proposed and then accepted. This means that if y 6= x,
then

Rxy = P (x→ y) = P (propose y from x)P (accept y) = QxyAxy . (20)

There are two ways to have an x→ x transition. One is to propose x→ x. The
probability of this is Qxx. Many common Metropolis samplers never propose
x→ x. The other way to get x→ x is to reject the proposed move. Altogether,
the probability of getting x→ x is

Rxx = Qxx +
∑
y 6=x

Qxy(1−Axy) .

This formula is consistent with the convention Axx = 1. There is no point in
rejecting a proposed x→ x proposal, because that gives x→ x just as accepting
does.

Once Q and f are given, it is possible to choose A so that the resulting R
satisfied detailed balance. The detailed balance condition (19) for the Metropolis
formula (20) is

f(x)QxyAxy = f(y)QyxAyx . (21)

This determines the ration Axy/Ayx. The Metropolis method chooses the largest
acceptance probabilities consistent with (21) and the constraint Axy ≤ 1 for all
x, y. You can get the explicit formula by writing (21) in the form

Axy =
f(y)Qyx
f(x)Qxy

Ayx .

If Ayx = 1, this gives

Axy =
f(y)Qyx
f(x)Qxy

.

If this number is ≤ 1, we should use it, and take Ayx = 1. Those would be
the largest possible acceptance probabilities. Otherwise, we take Axy = 1. This
reasoning leads to

Axy = min

(
1,
f(y)Qyx
f(x)Qxy

)
. (22)

The detailed balance formula (21) is a relationship between Axy and Ayx. The
Metropolis choice (22) makes at least one of them equal to one. It gives both of
them the largest possible values consistent with detailed balance. It is common
to use symmetric proposal distributions. If Qxy = Qyx, then (22) simplifies to

Axy = min

(
1,
f(y)

f(x)

)
. (23)

The original paper of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller had
a symmetric proposal and used (23). For that reason, (23) is the Metropolis,

13

or the MR2T2 acceptance probability. The generalization to non-symmetric
proposals is due to Hastings, so (22) is often called Metropolis Hastings.

Here is a Metropolis sampler for the chemical potential problem (13). The
proposal is n → n ± 1 with equal probability. The proposal distribution is
symmetric, so we use (23). If x = n and y = n + 1, we get f(n + 1)/f(n) =
e−µ < 1. Similarly, f(n− 1)/f(n) = eµ > 1. Therefore

An,n−1 = min (1, eµ) = 1

An,n+1 = min
(

1, e−µ
)

= e−µ .

Of course, a proposal 0 → −1 must be rejected. Recall that the state n + 1
is less likely than the state n, because it takes an extra e−µ of energy to add
another copy. A proposal to move from a state to a less likely state is sometimes
rejected, which is how the MCMC makes it less likely to occupy n + 1 than n.
A proposal, n → n − 1, to move to a more likely state is always accepted. See
Exercise 1.

Here is an outline of how you might code the MCMC sampler.

int nSamp(n, mu) { // Take one MCMC step for the

// chemical potential problem

int np; // n-prime is the proposed new value

double A; // The acceptance probability

if (rand() < .5) {

np = n - 1;

A = 1.;

}

else {

np = n + 1;

a = exp(- mu);

}

if (np < 0) return n // Reject a proposal to -1

if (rand() < A) return np; // Accept np with probability A

else return n; // If reject, keep n

}

Here is a Metropolis MCMC sampler for the mixing/separation problem from
Subsection 3.1. You choose a bond at random with all bonds equally likely to
be chosen. Then you propose to exchange the sites at the ends of this bond.
This proposal also is symmetric. You compute ∆φ, which is a local calculation
involving six sites. If ∆φ ≤ 0, the proposed new configuration is more likely than
the current configuration, you accept the new one. If ∆φ > 0, you accept with
probability e−∆φ/kBT . If the proposed exchange is rejected, the configuration
does not change.

Here is an MCMC Metropolis sampler for the binary hidden Markov model.
The random object is a path X = (X1, . . . , XT). The proposed move is to
choose t ∈ {1, . . . , T} at random and flip the value of Xt, 0 ↔ 1. Exercise 2 is
the computation of the acceptance probability. This MCMC algorithm is correct

14

in the sense that it samples the correct distribution. But it is a bad method for
small p because it is likely to be inefficient. Most moves are rejected because
flipping Xt probably makes the proposed X path much less likely than X itself.
See Exercise 2.

3.5.3 Non-degeneracy conditions

A Markov chain on a finite state space is ergodic if it has the following property.
There is an ε > 0 and a T so that RTij ≥ ε for all i ∈ S and j ∈ S. If a Markov
chain is not ergodic, it is reducible or cyclic or both. Reducible means that there
is an i ∈ S and j ∈ S so that Rtij = 0 for all t. This means, if you start in state
i, it is impossible ever to reach state j in any number of steps. An irreducible
Markov chain has the property that for every (i, j), there is a t with Rtij > 0.
To be ergodic, you have to be able to take the same t value for every (i, j). Not
every irreducible chain has this property.

State i in a Markov chain is acyclic if there is a T > 0 so that Rtii > 0 for all
t ≥ t. For example, suppose S = {0, 1, 2, 3} and a step is X → X ± 1(mod 4).
The probabilities do not matter as long as they are all non-zero. If X0 = 0, then
Xt = 0 implies that t is even, so Rt00 = 0 whenever t is odd. This example is
typical. It is possible to show (think about this for an hour or so) that if state i
is cyclic then there is a d > 1 so that Rtii > 0 only if t is a multiple of d. This d
is the “cycle” length related to the term cyclic. A Markov chain with no cyclic
states is acyclic.

It is usually easy to decide whether a specific Markov chain is irreducible and
acyclic. All the MCMC chains described above are clearly irreducible. MCMC
samplers that have a rejection step usually have Rtii > 0 for all t: just get a
string of t rejections. There may be extreme states that have no rejections, the
states with maximum energy and least probability. For those you can use the
observation that if a chain is irreducible and there is any acyclic state, then
every state is acyclic.

It is possible to make a mistake and suggest an MCMC sampler that is not
irreducible. An example is part (c) of Exercise 2. A reducible MCMC sampler
that was used for scientific computing (and therefore gave the wrong answer in
principle) is in Exercise 3.

It remains to prove that if a Markov chain is irreducible and acyclic, then
it satisfies (??). This involves several theorems. One is the Perron Frobenius
theorem for an acyclic and irreducible Markov chain, which states that

• This is a row vector with all non-negative entries that satisfies f = fR.
This can be normalized to be a probability distribution, i.e.,

∑
fj = 1.

• The eigenvalue λ = 1 of R is simple. If g = gR, then g = cf for some
constant c. There is no Jordan structure for λ = 1.

• If λ is an eigenvalue of R, then either λ = 1 or |λ| < 1.

• If Xt ∼ ft, then ft → f as t→∞

15

The Markov chains of MCMC are designed to have a given f as invariant dis-
tributions. Perron Frobenius states that the probability distribution of Xt con-
verges to f regardless of the distribution of X0. If R preserves f , then R samples
f .

The other theorem is the ergodic theorem for Markov chains. This states
that the right side of (??) converges to the left side almost surely as T →∞.

These are not hard to prove, but the proofs do not fit into Week 2.

4 Continuous probability

MCMC applies to sampling probability densities. Suppose f(x) is the probabil-
ity density for X ∈ Rn. An MCMC sampler of f is a non-degenerate Markov
chain that preserves f . The ideas are similar to the discrete case, but you have
to be more careful reasoning about random transformations R and probability
densities,

A transition probability density is a function R(x, y) so that Xt+1 ∼ R(x, ·)
if Xt = x. A mathematician’s statement might be

P (Xt+1 ∈ A | Xt = x) =

∫
A

R(x, y) dy .

If ft(x) is the probability density of Xt, then the analogue of ft+1 = ftR is

ft+1(y) =

∫
Rn

ft(x)R(x, y) dy .

An invariant probability density has f = fR, which is

f(y) =

∫
f(x)R(x, y) dy , (24)

for every x.
Most MCMC methods used in practice do not have transition densities in

the strict sense. They usually have δ−function components of some sort.

4.1 Detailed balance, global Metropolis

The detailed balance condition is

f(x)R(x, y) = f(y)R(y, x) . (25)

Detailed balance implies balance, as it does in the discrete case. If you inte-
grate (25) over y, you find (24). You can create transition densities using the
proposal/rejection idea. Suppose Q(x, y) is a proposal probability density and
A(x, y) is an acceptance probability function. A Metropolis strategy would be
to propose Xt → Y ∼ Q(x, ·) and then accept Y with probability A(Xt, Y). If

16

Y is accepted then Xt+1 = Y . Otherwise Xt+1 = Xt. The resulting probabil-
ity density is R(x, y) = Q(x, y)A(x, y). The detailed balance condition (25) is
satisfied if A is given by the Metropolis Hastings rule

A(x, y) = max

(
1,
f(y)Q(y, x)

f(x)Q(x, y)

)
. (26)

The formula and the derivation are the same as the discrete case. If Q is
symmetric, then proposals to higher probability states always get accepted.

The statements are not quite true, but the algorithm is OK. The transition
distribution for the Metropolis method clearly has a δ−function component that
corresponds to rejected proposals. A more correct formula is

R(x, y) = RA(x, y) + (1− Z(x))δ(x− y) ,

where Z(x) is the acceptance probability for a proposal from x:

Z(x) =

∫
Q(x, y)A(x, y) dy .

This presumes that there is no δ−function component in Q. It is reasonable to
think that you would not propose to stay at x. The part of R that does have a
density is

RA(x, y) = Q(x, y)A(x, y) .

This is analogous to the discrete formula (20), but we are talking about proba-
bilities there and probability densities here.

It is common to use simple proposal distributions that correspond to a ran-
dom step from x of a certain proposal step size, r. For example, one could
propose Y to be a Gaussian centered at x with covariance e2I. That means

Q(x, y) = Ce−
∑n

k=1(xk−yk)2/(2r2) .

Another possibility is Y − x uniformly distributed in a ball in Rn of radius r.
An exercise last week explained how to sample that distribution.

The proposal step size is a parameter in the MCMC algorithm. Tuning (more
recently, training) the algorithm means finding a good r for a specific problem.
If r is too small, then Y is close to x, f(Y) is close to f(x), and the proposal
is likely to be accepted. But it takes many such small steps to get a Y that is
significantly different from x. The algorithm is slow. If r is too large, then most
proposals are rejected because the proposed Y is too far from an x that is likely
in the probability distribution f . This also given an inefficient algorithm. There
is a “rule of thumb” in the Monte Carlo community that the optimal r is the
one that gives overall acceptance probability .5, or maybe .4 or .6 of something.
Anyway, it should not be too close to zero (too many rejections) or too close to
one (steps smaller than necessary).

17

4.2 Partial resampling

Resampling means replacing X ∼ f with a different X ′ ∼ f . In that sense,
any MCMC algorithm is resampling. Partial resampling means resampling only
part of X. Suppose X = (U, V), where U is one set of variables and V is the
complementary set. An example is U = (X1, . . . , Xk), and V = (Xk+1, . . . , Xn).
We have U ∈ Rk and V ∈ Rn−k, so X = (U, V) ∈ Rn. Partial resampling means,
in this case, resampling just U without changing V . The conditional probability
density of U given V is

f(u | V) =
1

Z(V)
f(u, V) .

An MCMC algorithm for resampling U would have a probability density
function R(u, u′ | V). This preserves the conditional distribution if

f(u′ | V) =

∫
f(u | V)R(u, u′ | V) du . (27)

Partial resampling is based on the following principle: If X = (U, V) ∼ f , and
U ′ ∼ R(U, · | V), and R satisfies (27), then X ′ = (U ′, V) ∼ f . We prove this
principle by showing that X ′ ∼ f . This is simple, once you get the definitions
right. The hypotheses are that X ∼ f and U ′ ∼ R(U, · | V). Let1

f(v) =

∫
Rk

f(u, v) du

be the marginal density of V . Then then density of X = (U, V) is f(u, v) =
f(u | v)f(v). Resampling U gives U ′ with density f(u′ | V) (because of (27)),
so the pair X ′ = (U ′, V) has density f(u′ | v)f(v) = f(u′, v).

Single variable resampling is partial resampling where U is one component of
X and V is the rest. That is U = Xj , and V = (X1, . . . , Xj−1, Xj+1, . . . , Xn).
You need a single variable resampler R(xj , x

′
j | V) to do this. You could use

a direct sampler that produces an independent sample X ′ ∼ f(xj |V). This is
the single variable heat bath algorithm, also called the Gibbs sampler. If you
understand the one variable conditional distributions well enough, you should
be able to make an efficient rejection sampler, for example.

Otherwise, you could apply Metropolis to the Xj variable with all the other
components held fixed. This is single variable Metropolis. As with the global
Metropolis, you probably have to tune the proposal distribution so that the
acceptance probability is not too close to zero or one.

4.3 Hybrid samplers

Suppose you have two MCMC samplers, R1 and R2. You can put them together
into a single sampler by first doing R1 then doing R2:

X
R1→ X ′

R2→ X ′′ .
1People in machine learning often use f for any probability density. The probability density

of X is f(x). The density of V is f(v), etc. It is possible that adding a subscript, as fV (v) is
clearer, but only a little.

18

it is “obvious” that the composite sampler preserves f . If X ∼ f , the correctness
of R1 implies that X ′ ∼ f . The correctness of R2, and X ′ ∼ f , implies that
X ′′ ∼ f . It is possible to combine any number of correct samplers in this way,
clearly.

One application of this idea is to cycle through the components of X using
a single variable resampler for each. Suppose Rj(xj | Vj) resamples Xj with the
complementary variables Vj fixed. Using these in any order, say R1, R2, . . . , Rn,
gives a resampler that changes all the components of X. A single variable
resamplers on its own cannot give an irreducible Markov chain. If you resample
X1 over and over, you never change any of the other variables. But resampling
each variable in turn probably gives a non-degenerate (irreducible and acyclic)
MCMC sampler.

Is the single variable heat bath method better than, say, a well tuned global
Metropolis? Sometimes it is. Sometimes it is not. It depends on details of the
problem.

5 Examples and exercises

1. Write a formula for the transition probabilities Rn,n−1, Rnn, and Rn,n+1

for the simple Metropolis sampler for the chemical potential problem.
Verify by explicit calculation that if n > 0, then fn−1Rn−1,n + fnRnn +
fn+1Rn+1,n = fn.

2. In the binary hidden Markov model,

(a) Find the formula for the acceptance probability if the proposal is
flipping the value of Xt. This depends on Xt−1, Xt+1, Xt, and Yt.
(Be careful not to confuse the time variable in the X path with the
time variable in the MCMC sampler. I made that confusion easier
by using the same t and T variables for both purposes. Feel free to
change notation.)

(b) Consider the special case where q0 = q1 = .5, so the data do not effect
the probabilities. How does the probability of accepting the proposal
(· · · , 0, 0, 0, · · ·)→ (· · · , 0, 1, 0, · · ·) depend on p in that case?

(c) Show that the exchange move: Xt, Xt+1 ↔ Xt+1, Xt (with all other
Xk unchanged) is much more likely to be accepted for small p and
q0 and q1 near .5.

3. A walk on a 2D lattice is a sequence of L sites (ik, jk) for k = 1, . . . , L,
so that (ik+1, jk+1) is a neighbor of (ik, jk). The walk is self avoiding if
(ik, jk) 6= (im, jm) if k 6= m. This is a qualitative model of a polymer,
which is a long string of monomers that cannot overlap. In simple self
avoiding walk, every allowed path has the same probability. The snake
move is an MCMC sampler for SAW (self avoiding walk) that works as
follows. You propose to delete the “tail” of the walk and add one step to

19

the “head”. This means: delete (i1, j1), renumber the remaining L − 1
steps, and choose at random a neighbor for the end (iL−1, jL−1).

(a) Show that this satisfies detailed balance, possibly after adding a re-
jection step.

(b) Show that this is reducible. In fact, there are states in which the
“head” is buried so that it cannot be extended at all.

(c) It was proposed to allow the snake to “reverse” and move from head
to tail. Show that this also has states that cannot move.

4. A hybrid sampler R = R2R1 may not satisfy detailed balance even if R1

and R2 do satisfy detailed balance.

5. Consider the hidden Markov model in the case p is small and q0 ≈
.5 and q1 ≈ .5. Exercise 2 shows that resampling Xj is unlikely to
change Xj . However, we could resample the pair (Xj , Xj+1). If, for
example, (Xj−1, Xj , Xj+1, Xj+2) = (0, 0, 1, 1), it is not so unlikely to get
(X ′j , X

′
j+1) = (1, 1) or (0, 0). A 0→ 1 transition between j and j+1 could

move to the right or the left by one.

6. Single variable resampling for the Gaussian distribution

f(x) = C exp

− 1

2

∑
ij

xixjhij

 .

20

