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1 An example

It is possible to understand one non-trivial example in detail, the heat bath/Gibbs
sampler applied to a multi-variate normal. We will find expressions for all the
eigenvalues of the transition operator in terms of the eigenvalues of a related
Gauss Seidel matrix. This analysis suggests ways find faster (i.e. shorter auto-
correlation times) MCMC algorithms for Gaussians. There is much ongoing
research looking for ways to apply Gaussian insights to non-Gaussian problems.

Suppose f(x) is a probability density in Rn, and that P (x, y) = P (x → y)
is the transition probability density of a Markov chain. We have seen in an
assignment that P defines a self adjoint operator on the space of functions u
with Ef

[
u(X)2

]
<∞. An eigenfunction is a function that satisfies

λu(x) =

∫
P (x, y)u(y) dy = EP [u(Xn+1) | Xn = x] . (1)

We write this as Pu = λu, where P is the integral operator defined by the
right hand side above. An exercise shows that if Pu = λu and Pv = µv with
λ 6= µ, then 〈u, v〉 = Ef [u(X)v(X)] = 0. A somewhat technical argument
shows that if P has no delta function component, then there is a complete set
of eigenfunctions. A delta function on the diagonal of P corresponds to a non-
zero probability that Xn+1 = Xn. This happens in rejection based methods
(Metropolis), but not for heat bath methods.

The analysis of heat bath on Gaussians has two parts. The first part shows
that the heat bath method produces MCMC iterates that satisfy

Xn+1 = AXn +BZn , (2)

where Zn ∼ N (0, I) are independent multivariate standard normals. The im-
portant thing is that the MCMC process turns out to be linear. The second
part is an analysis of linear processes. The eigenvalues of the corresponding P
may be expressed in terms of the eigenvalues of A. It turns out (as pointed
out to me by Persi Diaconis) that this analysis applies even if the Zn are not
Gaussian.

We start by identifying the integral kernel P (x, y) for Gaussian iteration.
This amounts to identifying the conditional PDF of Xn+1 conditional on Xn =
x. Clearly Xn+1 is Gaussian with mean x. The covariance matrix is C = BBt

(famous fact about multivariate normals).

P (x, y) =
1

Z
e−

1
2 (y−Ax)

tC−1(y−Ax) . (3)
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In other applications the normalization constant would depend on x, but for the
Gaussian, the normalization constant depends on det(C), which is independent
of x.

1.1 Heat bath on general Gaussians, Gauss Seidel

The multivariate Gaussian density will be

f(x) =
1

Z
e−

1
2x

tHx =
1

Z
exp

−1

2

 d∑
i=1

d∑
j=1

xixjHij

 . (4)

The heat bath/Gibbs sampler algorithm cycles through the components, replac-
ing the value by the conditional mean given all the other components. It can be
confusing that one MCMC step Xn → Xn+1 consists d individual component
steps. We try to make this clearer with the following notation. One MCMC
sweep will be X → Y . In this and the next paragraph Xi with be component i
of X = (X1, . . . , Xd). The first step of the sweep replaces X1 with Y1, the next
replaces X2 with Y2, and so on. The d steps of the sweep are

(X1, X2, . . . , Xd)
step 1→ (Y1, X2, . . . , Xd)

step 2→ (X1, Y2, X3 . . . , Xd)
step 3→ · · ·

step d− 1→ (Y1, Y2, . . . , Yd−1, Xd)
step d→ (Y1, Y2, . . . , Yd−1, Xd)

Step i uses replaces Xi using the new values Y1, . . . , Yi−1, and the old values
Xi+1, . . . , Xd.

The individual step i uses a sample of one variable conditional density

fi(xi | Y1, . . . , Yi−1, Xi+1, . . . , Xd) .

Of course, the formula for fi is the same as the formula for f , except for a
normalization constant that is independent of xi. Some Gaussian tricks help
us identify fi in the Gaussian case (4). The exponent in (4) is a quadratic
function of x, so the exponent in fi is a quadratic function of xi. A quadratic
is determined by three quantities: its minimum value, its symmetry point (the
minimizer), and the coefficient of x2i . For our purposes, the minimum value
is irrelevant, because it can be absorbed by the normalization constant. The
coefficient of x2i is 1

2Hii. Therefore 1
Hii

is the conditional variance of Xi. For
Gaussians, the minimizing value of the exponent is the maximizing value of the
PDF, which is the conditional mean. The derivative of the exponent of (4) with
respect to xi is

Hiixi +
∑
j<i

HijYj +
∑
j>i

HijXj .

The conditional mean of Xi comes from setting this to zero:

Xi =
−1

Hii

∑
j<i

HijYj +
∑
j>i

HijXj

 .
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The new Xi should be Gaussian with this mean, and variance 1
Hii

. These criteria
are satisfied by the formula

Yi =
−1

Hii

∑
j<i

HijYj +
∑
j>i

HijXj

+
1√
Hii

Zi . (5)

As usual, the Zi are independent standard normals. To do an MCMC sweep
X → Y , we do

for (i = 1, ..., d) { apply (5);}

The formulas (5) make Yi a linear function of the earlier Yj , the later Xj ,
and Zi. Of course, the earlier Yj themselves are linear functions of X variables
and the earlier Zj . Therefore, Yi is a linear function of the Xj (all of them),
and the Zj with j ≤ i. This shows that the MCMC step has the form (2) as
claimed.

The heat bath equations (5) are related to the Gauss Seidel iterative method
for solving systems of equations of the form

Hx = b . (6)

The Gauss Seidel algorithm produces a sequence of iterates xn → x as n→∞.
The xn → xn+1 iteration consists of a sweep through the components of xn. At
step i of the sweep, you solve equation i for variable i. The formula is

xn+1,i =
1

Hii

bi −∑
j<i

Hijxn+1,j −
∑
j>i

Hijxn,j

 . (7)

On the right we have the new values xn+1,j for j < i. These correspond to
components that are updated before component i. The components j > i are
updated after component i. If we set b = 0 in the Gauss Seidel iteration (7) and
Z = 0 in the heat bath iteration (5), the iterations are the same.

There is a simple argument to show that the Gauss Seidel iteration con-
verges to the correct solution, provided H is symmetric and positive definite.
This argument is related to the the derivation of the heat bath iteration (5).
It is a variational argument, one that argues from maximizing or minimizing
something. The variational principle for the linear equation system (6) is that
it is equivalent to minimizing the “energy” function

φ(x) =
1

2
xtHx− xtb . (8)

Indeed, minimizing φ by setting the gradient to zero leads to (using Ht = H
here) ∇φ = Hx − b = 0. The Gauss Seidel formula (7) is what you get if
you minimize φ(x) over the single component xi. In fact, φ(x) is a quadratic
function of xi. The calculation that leads from minimizing over xi to (7) is the
same as the one that led to (5). Since H is positive definite, φ(x) has a unique

3



global minimum. The Gauss Seidel iteration xn → xn+1 consists of d steps (7),
each of which reduces φ. Therefore φ(xn+1) ≤ φ(xn).

A closer examination shows two things. One is that φ is strictly decreasing:
φ(xn+1) < φ(xn) unless Hxn = b. The second is an eigenvalue gap that implies
that xn → x exponentially (albeit with a possibly small exponential factor).
This discussion is simpler if b = 0. The trick for reducing to the case b = 0 is
to look at the error yn = xn − x. Of course, the program uses only xn because
x is unknown. But the analysis can use yn. The rate at which xn → x is the
same as the rate at which yn → 0. We can write Hx = b in the form

xi =
1

Hii

bi −∑
j<i

Hijxj −
∑
j>i

Hijxj

 .

We subtract this from (7), and get

yn+1,i =
−1

Hii

∑
j<i

Hijyn+1,j +
∑
j>i

Hijyn,j

 .

This is a linear iteration, which may be written in the abstract form yn+1 = Ayn,
where A is the matrix in (2). It is the same as (5) if you set Z = 0. So now
we know that A is a d × d matrix so that Any → 0 as n → ∞ for any y. This
implies that if µ is an eigenvalue of A, then |µ| < 1. Since there are finitely
many eigenvalues, there must be a spectral gap

g = 1−max |µ| > 0 .

This implies that the iterates yn = Any0 converge to zero exponentially as
n→∞.

The strict decrease of φ is another route to exponential decay of yn. It is
easy to see that unless Hxn = b, then φ(xn+1) < φ(xn), which is strict decrease.
Look at the first i where xn+1,i 6= xn,i. If there is no such i, then xn+1 = xn,
which means that every component of Hxn = b is satisfied. But xi changes in
the Gauss Seidel algorithm only if changing xi reduces φ. If only xi changes,
then φ(xn+1) < φ(xn). If other components of x change, then even more so
φ(xn+1) < φ(xn). We look to yn to make this argument more quantitative.
These satisfy the Gauss Seidel iteration formulas with b = 0. Therefore, consider
the energy with b = 0, which we write as φ(y) = 1

2y
tHy. The argument just

given shows that unless yn = 0, we have ψ(yn+1) < ψ(yn). Since H is positive
definite, the set of y with ψ(y) = 1 is compact. Therefore

1− γ = max
ψ(yn)=1

ψ(yn+1)

is well defined, with γ > 0. This implies that ψ(yn+1) ≤ (1 − γ)ψ(yn) ≤
(1− γ)nψ(y0). This is another way to see the exponential convergence of Gauss
Seidel. The argument has the same weakness as the previous eigenvalue argu-
ment. It uses compactness to infer the existence of a constant without giving
any information about how small γ might be. In many applications, Gauss
Seidel iteration converges so slowly that it is impractical.
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1.2 Gaussian lattice free fields

One definition of a field in physics is something whose value depends on coor-
dinates. Electric and magnetic fields are examples. The strength of the electric
field changes from place to place and time to time. This is more or less what
mathematicians call a function. A random field is a function whose values are
random. Brownian motion is an example.

A generic field depending on continuous coordinates cannot be represented
in the computer using finitely many numbers. Instead, a continuum field may
be approximated by a lattice field, which is defined when the coordinates are
points in a discrete lattice. A mathematician normally would write a function
u(x) (or something like that). If we did that, x would be the coordinates and
u(x) would be the random value at location x. We do not use this notation
here, to keep this section notationally consistent with the rest of the section.
Here, the coordinates will be called i = (i1, . . . , ik) for a k dimensional field.
We write xi = xi1,...,ik for the value of the field at location i. We suppose
that the coordinates are integer valued with range 1 ≤ ij ≤ L. There are Lk

distinct lattice sites i. The lattice field x is determined by the Lk values xi,
so we write x ∈ Rk. A one dimensional lattice field has values x1, . . . xL, and
may be thought of a string of beads. A two dimensional lattice field has values
x11, . . . , x1L, x21, . . . , xLL. The graph of a two dimensional lattice field defines
a random two dimensional surface in 3D.

A Gaussian field is a random field with a Gaussian density f(x) = 1
Z e
−βφ(x),

where φ is a quadratic function of x. A common energy function is a discrete
version of the Dirichlet integral ∫

|∇u|2

Instead of the gradient, we use the lattice gradient. In 2D this is

(xi1+1,i2 − xi1,i2)
2

+ (xi1,i2+1 − xi1,i2)
2

The first term is thought of as the energy in the horizontal bond connecting
neighboring lattice sites (i1, i2) and (i1 + 1, i2). The second term is the bond
energy for the vertical bond between (i1, i2) and (i1, i2 + 1) The lattice energy
is the sum of these bond energy over all the bonds in the lattice

φ(x) =
1

2

∑
i1,i2

[
(xi1+1,i2 − xi1,i2)

2
+ (xi1,i2+1 − xi1,i2)

2
]
. (9)

This is sometimes called the Gaussian free field, as opposed to an interacting
field that would have cubic, quartic or other terms in its energy function.

The field energy expression (9) is incomplete in that it does not say what
to do at the boundary of the lattice. One possibility is Dirichlet boundary
conditions, where the field values on sites that neighbor lattice sites are set to
zero:

x0,i2 = 0 , xi1,0 = 0 , xL+1,i2 = 0 , xi1,L+1 = 0 .
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These values matter if the sum over bonds (9) includes bonds such that connect
interior point to boundary points, such as the bond between (0, i2) and (1, i2).
Periodic boundary conditions are also possible. These suppose that xi is a
periodic function of i, so that for example xi1+L,i2 = xi1,i2 . In practice, we
implement periodic boundary conditions by copying “active” values such as
x0,i2 = xL,i2 . We use this value when computing the bond energy contribution

(x1,i2 − x0,i2)
2
. The point of periodic boundary conditions is that all lattice

sites are the same. There is in effect no “boundary”.
The heat bath/Gauss Seidel algorithm is local for this nearest neighbors

quadratic energy function. Suppose X is a current sample field and we want to
resample Xi1,i1 . For this, we need to know how φ(X) depends on Xi1,i1 . There
are four terms in the sum (9) that depend on Xi1,i1 , so we can write

φ(X) =
1

2

[
(Xi1+1,i2 −Xi1,i2)

2
+ (Xi1,i2+1 −Xi1,i2)

2

+ (Xi1−1,i2 −Xi1,i2)
2

+ (Xi1,i2−1 −Xi1,i2)
2
]

+ terms independent of Xi1,i2 .

The conditional mean of Xi1,i2 , given the values of the neighbors, is found by
minimizing over Xi1,i2 . Setting the derivative with respect to Xi1,i2 gives

Xi1,i2 =
1

4
(Xi1+1,i2 +Xi1,i2+1 +Xi1−1,i2 +Xi1,i2−1) .

To find the variance, we look for the coefficient of X2
i1,i2

, which we can see
by letting this go to infinite keeping the other values fixed. The coefficient is
1
24 = 2. Therefore, we may write the conditional density as

f(xi1,i2 |rest) =
1

Z
e−

1
2 4β(xi1,i2

−Xi1,i2)
2

.

One heat bath sweep is implemented, roughly, as

sig = sqrt(4.*beta); // sigma = standard deviation of the noise

for i = 1, ..., L {

for j = 1, ..., L {

Xb = .25*( X[i+1,j] + X[i-1,j] + X[i,j+1] + X[i,j-1]; // for "X bar"

X[i,j] = Xb + sig*N_samp(); // N_samp gives standard normals

}

}

Note that there is only one copy of the array. All changes are made “in place”.
When X[i,j] is updated, the values X[i-1,j] and X[i,j-1] are new for this
sweep, while X[i+1,j] and X[i,j+1] are old from the previous sweep.

1.3 Adjoints

If you have a matrix, A, that is not symmetric, the eigenvalue/eigenvector
problem for At may be easier or harder (or, anyway, different) from the problem
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for A. Of course, the eigenvalues must be the same. But if we evaluate the
eigenvalues by identifying the eigenvectors, then A or At may be easier. As
an example of this phenomenon, suppose P is the n × n transition matrix for
a discrete Markov chain: Pjk = P(j → k). It is easy see that λ = 1 is an
eigenvalue of P , but harder with P t. For P , note that

∑
k Pjk = 1 for every j

(the walker must go somewhere in one step). Therefore, if uk = 1 for all k, we
have

(Pu)j =
∑
k

Pjkuk =
∑
k

Pjk = 1 , for all j.

This verifies that Pu = u, and that u is an eigenvector for eigenvalue λ = 1.
On the other hand, finding an eigenvector for P t is the same as finding a row
vector, f , so that fP = f , which is∑

j

fjPjk = fk .

Such an eigenvector is an invariant probability distribution for the Markov chain.
Its existence is harder to prove directly.

For Markov chains with a continuous state space, the transition distribution
is given by a transition probability density, P (x, y), so that for “any” set B,

P(Xn+1 ∈ B | Xn = x) =

∫
y∈B

P (x, y) dy .

This P defines a linear operator by saying that Pu = v means that

v(x) =

∫
P (x, y)u(y) dy .

A function, u, is an eigenfunction if it satisfies the eigenvalue equation (1). The
adjoint operator of P , with respect to the L2 inner product, satisfies

〈f, Pu〉 = 〈P ∗f, u〉∫
f(x)

(∫
P (x, y)u(y) dy

)
dx =

∫ (∫
f(x)P ∗(x, y) dx

)
u(y) dy .

On the right side of the second line, f is before P ∗ to make the formulas look
like the matrix formulas, where f would be a row vector. It is clear from this
that if g = P ∗f , then

g(y) =

∫
f(x)P (x, y) dy . (10)

In the matrix case, the adjoint action of P on column vectors was an action on
row vectors. The numbers Pjk are the same, but the sum is over j instead of
k. In the L2 case here, the values P (x, y) are the same, but we integrate over x
instead of y.

We look for eigenvalues of P either by looking directly at (1), or by looking
for adjoint eigenfunctions for (10)

λg(y) =

∫
g(x)P (x, y) dy . (11)
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1.4 Eigenvalues for linear Markov chains

For the linear Gaussian transition (2), the transition “matrix”, the transition
probability density, is given by (3). The eigenvalues of P turn out to be products
of eigenvalues of A. Suppose α = (α1, α2, . . . , αd) is a list of non-negative inte-
gers. In this context, we call α a multi index. Let µ1, . . . , µd be the eigenvalues
of A. For any multi-index, α, there is an eigenvalue of P

λα = µα = µα1
1 · · ·µ

αd

d . (12)

The expression µα is multi-index notation.
We prove (12) be writing the eigenfunctions of P ∗ and verifying that they are

correct. These eigenfunctions are built from Hermite polynomials, so we start
by explaining them. The verification that they are eigenfunctions is simple, once
we know what they are. We start with the one variable case. The multi-variate
case is a natural generalization.

Standard uni-variate Hermite polynomials may be defined by the Rodrigues
formula (

d

dx

)n
e−

1
2x

2

= Hn(x)e−
1
2x

2

. (13)

The first few are found directly:

e−
1
2x

2 ∂x−→ −x e− 1
2x

2

∂x−→
(
x2 − 1

)
e−

1
2x

2

∂x−→
(
−x3 + 3x

)
e−

1
2x

2

∂x−→
(
x4 − 6x2 + 3

)
e−

1
2x

2

∂x−→
(
−x5 + 10x3 − 15x

)
e−

1
2x

2

.

This gives

H0(x) = 1

H1(x) = −x
H2(x) = x2 − 1

H3(x) = −x3 + 3x

H4(x) = x4 − 6x2 + 3

H5(x) = −x5 + 10x3 − 15x

An induction argument shows that Hn(x) is a polynomial of degree n with
leading coefficient ±1. Since we are looking for eigenfunctions, it is common to
ignore the signs, and write, for example H1(x) = x and H3(x) = x3 − 3x.

There are many things to say about Hermite polynomials. One is the or-
thogonality relation∫ ∞

−∞
Hn(x)Hm(x)e−

1
2x

2

dx = 0 , if n 6= m . (14)
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This orthogonality, plus the requirement that

Hn(x) = ±xn + polynomial degree n− 1 ,

determines the Hn completely. Another is the interlacing property of the zeros.
Hn(x) has n real roots, xn,1 < · · · < xn,n. The interlacing property is xn+1,i <
xn,i < xn+1,i+1, which holds for all n > 0 and all i = 1, . . . , n. It indicates that
Hn(x) becomes more oscillatory as a function of x (goes back and forth across
zero more) as n increases. A third is the recurrence relation

Hn+1(x) + xHn(x) + nHn−1(x) = 0 . (15)

The Rodrigues formula (13) implies the recurrence relation (15). This follows
from the following calculation(

d

dx

)n+1

e−
1
2x

2

=

(
d

dx

)n [
d

dx
e−

1
2x

2

]
= −

(
d

dx

)n [
xe−

1
2x

2
]

= −x
(
d

dx

)n
e−

1
2x

2

− n
(
d

dx

)−n−1
e−

1
2x

2

Hn+1(x)e−
1
2x

2

= −xHn(x)e−
1
2x

2

− nHn−1(x)e−
1
2x

2

.

The recurrence relation allows a proof by induction of the interlacing property.
Suppose we know that the zeros of Hn−1 interlace the zeros of Hn. This implies
that the numbers Hx−1(xn,j) alternate in sign as a function of j. Between xn,j
and xn,j+1, there is a single root of Hn−1(x). The recurrence relation, applied
at the zeros of Hn(x) gives

Hn+1(xn,j) = −nHn−1(xn,j) .

This implies that Hn+1(x) has at least one real root between xn,j and xn,j+1.
Since Hn+1 has at most n + 1 real roots, and there are n − 1 such intervals,
we learn about n − 1 real roots in this way. It may be that Hn+1(x) has only
n − 1 real roots, or that some interval has three instead of one roots of Hn+1.
We rule out this possibility by looking at the behavior of Hn(x) and Hn+1(x)
for x < xn,1 and for x > xn,n. It is possible to show (using signs of things)
there is at least one real root of Hn+1 in each of these intervals. It is possible to
prove the orthogonality property (14) from the Rodrigues formula by induction.
But there is a better proof of orthogonality based on the fact that the Hn are
eigenfunctions of some operator.

Back to the eigenvalue problem, consider first the scalar recurrence

Xn+1 = aXn + bZn ,

with −1 < a < 1. The transition kernel formula (3) simplifies to

P (x, y) =
1

Z
e−

1
2b2

(y−ax)2 . (16)
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Figure 1: Plots of Hermite polynomials, featuring H0(x) ≡ 1, and 1
kHk(x) for

k = 1, . . . , 5.
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Figure 2: Hermite functions 1
khk(x), where hk(x) = Hk(x)e−
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.
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Suppose f(x) is the steady state density, which is Gaussian in this case. Al-
though we do not need it here, it is easy to find the steady state variance as
follows. If σ2 = var(Xn) = var(Xn+1), then the fact that Zn is independent of
Xn implies that

σ2 = a2σ2 + b2 ,

which gives the variance formula for the scalar case

σ2 =
b2

1− a2
.

Simple scaling implies that Xn scales linearly with b, so the variance scales as
b2. The denominator expresses the fact that the variance goes to infinity as a
approaches 1.

We simply check that the functions hn(x) = ∂nxf(x) are adjoint eigenfunc-
tions of the integral operator with kernel (16).

anhn(y) =

∫
hn(x)P (x, y) dx .

We do not need the Gaussian form, only the more general P (x, y) = K(ax− y).
The derivation is based on ∂xK(ax − y) = aK ′(ax − y), and ∂yK(ax − y) =
−K ′(ax− y). We “do the math” with n = 1. The result for larger n is similar.∫

h1(x)K(ax− y) dx =

∫
(∂xf(x))K(ax− y) dx

= −
∫
f(x)∂xK(ax− y) dx

= −a
∫
f(x)K(ax− y)′ dx

= a

∫
f(x)∂yK(ax− y) dx

= a∂y

(∫
f(x)K(ax− y) dx

)
= a∂yf(y)

= ah1(y) .
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