http://www.math.nyu.edu/faculty /goodman/teaching/MonteCarlo15/

Class notes: Monte Carlo methods
Week 5, Bayesian statistics

Jonathan Goodman
April 14, 2015

1 The philosophy

This section of notes is more expository and less technical than most. The prac-
tice of statistics, particularly Bayesian statistics, calls for lots of good judgement
as well as technical, mathematical, and programming chops. The verbal mate-
rial here is as important to the practice of Monte Carlo for Bayesian statistics
as Hermite polynomials and the Perron Frobenius theorem. Pay attention and
read carefully.

Statistics, as an activity, means gathering and analyzing data to learn about
the world. In particular, data helps determine the values of parameters in mod-
els. The mathematics of statistics has much to say about what data says about
parameters, in particular, precisely how strongly data constrain the parameters.
The word constrain is not in the sense of optimization theory, which would be
inequalities or equalities that cannot be violated. Here, it means that the data
suggest certain combinations of parameters that are favored by the data and
other combinations that are made very unlikely by the data. There are few
absolute certainties, but there can be very high or low probabilities.

We denote the model parameters by x = (z1,...,24). The data are Y =
Yi,...,Y,). There will be a likelihood function, L(x|y), that determines the
goodness of fit — how well parameters z explain data y. Traditional frequentist
statistics determines the mazimum likelihood estimate of the parameters by
finding the parameter combination that best fits the data in this sense:

~

X(y)mr = arg max L(zly) . (1)

The modern Bayesian viewpoint (after Thomas Bayes, pioneering book on prob-
ability published 1763) criticizes this for not saying how strongly the data, y,
constrain z.

The frequentist answers this criticism by constructing confidence regions
in parameter space. A frequentist views the true parameters, x,, as fixed,
not random, and unknown. The data, Y, are drawn from a true probability
distribution that depends on this fixed but unknown parameter set z.. The
maximum likelihood estimate (1) gives Xy, that is a function of Y and therefore
also random. A confidence region, with confidence level 3, is a set in parameter
space C(Y) C R4, so that

P(z, €C(Y)>1-8. 2)



It may happen that you are interested in a single parameter, say ;. A confi-
dence region for a single parameter may take the form of a confidence interval
determined by a lower bound X; and upper bound X,.:

P(ry. € [X1(Y), X10]) 218 (3)

For example, it was recently announced that measurements at the CERN accel-
erator confirmed the predicted Higgs boson and gave estimates of its mass

a<mg<b

The announcement said these were 5o estimates, which meant that if Z ~
N(0,1), then

P(mpg ¢ [a,b]) <P(Z ¢ [-5,5]) =~ 5.7-107".

There are several Bayesian criticisms of the confidence region/confidence
interval approach:

e Individual confidence intervals potentially leave out much information
about the parameters that is contained in the data.

e Individual confidence intervals are not joint confidence intervals. If param-
eter estimates X; and Xo are correlated, we do now know immediately
what confidence intervals for X; and X, separately say about the pair
(X1, X2) This is particularly important when there are many parameters.

e Confidence regions and confidence intervals are often found using approx-
imations that are based on the central limit theorem and are valid when
the sample size is large. These may be unreliable in practical situations
with limited data. Many practical applications are not in the large data
central limit regime, even when the data set is very large. For example, a
year of stock trading tick data, recording every price change, may contain
only a few significant economic events.

e Confidence regions C(Y) may be hard to describe, given the curse of
dimensionality. The best way to describe C(Y') may be to give a collection
of random samples X € C(Y'). The question then arises, what probability
distribution should the X be drawn from?

e It is somewhat arbitrary to insist on a hard boundary set C(Y'). It may
be better to give a soft region confidence distribution X ~ f(z]Y) to
describe the constraint placed on parameter combinations by the data. If
you have the data There does not seem to be a frequentist statement to be
made about the “probability” that x, comes from the probability density

f@Y).

The frequentist will answer these criticisms and the debate will go on. But it
seems helpful to have a general way to understand how data constrain parame-
ters in statistical models.



The beginning of a Bayesian approach is to ask not which parameter combi-
nation best fits the data (1), but what is the set of good fits. One mathematical
formulation of this involves a family of probability distributions build from the
likelihood function and depending on a parameter, 3:

f(aly, B) = ﬁwmﬁ | (4)

The parameter 3 determines how closely z is to the best fit X Large
constrains = to be close to Xy, while smaller 8 > 0 allows more variation.
This may be clearer if you use the negative of the log likelihood function

o(xly) = —log(L(zly)) .

The maximum likelihood point minimizes ¢, which measures the badness of fit.
Xy, = arg min ¢(zly) .

The distributions (4) now take the form

- —Bo(=y)

This represents the statistical uncertainty in the form we used earlier for the
Gibbs Boltzmann distribution in thermodynamic equilibrium, with £ being in-
terpreted as the inverse temperature. Large 8 corresponds to low temperature,
which keeps the parameters close to the most likely values. As 8 — 0, we be-
come less interested in constraints the likelihood function place on the data. The
simplest Bayesian approach to model based data analysis is simply to produce
many samples of the distribution f(z|Y, ).

The research described in the talk

http://www4.ncsu.edu/~ctk/TALKS/NLSQ.pdf

illustrates the case for this primitive Bayesian approach. The researchers want
to use blood flow measurements to determine whether some of the major blood
vessels are partly blocked. The model parameters represent the state of dif-
ferent arteries. It turns out that the model is ill-conditioned: there are many
parameter combinations that give nearly identical measurements, which makes
the optimization problem (1) hard. The researchers show that the optimization
problem becomes more tractable if they impose constraints on the parameters
to select specific representatives from collections of parameters with nearly iden-
tical predictions. The details are interesting and clever.

But the approach has the drawback that it does not tell the end user, a
physician in this case, what uncertainties remain after using the data. If there
are several different explanations for the data, it may be important for the physi-
cian to know that. Rather than reporting a single best fit, or a single fit that
is nearly optimal in the sense of (1), it may be better to provide the physician



with a collection of parameter combinations that represent the different disease
states that are consistent with the data. The physician should know if the
measurements do not determine which artery is blocked. Giving a single likely
parameter set, or even the single most likely parameter set, does not convey all
the information the user (physician) wants or needs to know.

It makes sense to sample the distribution (4) only if it is possible to do
so. Advances in Monte Carlo sampling technique make it possible to apply the
Bayesian philosophy in more and more sophisticated situations.

2 Parametric statistics, likelihoods, probability
modeling

Parametric statistics means using data to identify parameters in probability
models. There are other aspects of statistics. For example, one may want
to know the mean of a population without having a model of the population
distribution. As an example, think about estimating the average income of
a New York City resident without using a probability model governing the
distribution New York City incomes. The average income is a well defined
number, but it is not a parameter in an income probability density function.
Often called non-parametric statistics would be estimating the PDF of New York
City incomes, from a collection of random samples. Ironically, this is actually a
problem involving a large number or an infinite number of parameters, as one
seeks to estimate a whole function (the PDF), which is an element of an infinite
dimensional function space. In practice, we would represent the estimated PDF
by a large but finite collection of numbers.

A simple case is the model is that the data consists of n independent observa-
tions of a random variable from a probability density depending on parameters
xr = (1‘1,...,.’1}(1>.

Y ~g(ylz) , Y;independent of Vi, j#k.

In that case Y = (Y7,...,Y,,) and joint PDF Y is

L(ylz) = [] 9(y;lx) -
k=1

A standard example is estimating the mean and variance of a one dimensional

normal: g(y|u, o) = %e_ﬁ(m_’m. We do not always denote the parameters by

generic x in specific applications. A fancier model in the same spirit would be
estimating the mean, “variance parameter”, and power law decay of a Student

g(ylu,mp):% (1) : (5)



The actual variance of Y in this distribution is larger than 2. The parameter p
here is within % of the “degrees of freedom” parameter in the standard t distri-
bution. This formula is simpler and represents the same family of distributions.
This converges to the normal in the limit p — co. The p parameter determines
the rate at which ¢ — 0 as y — oo. For finite p, this is a power law rather than
an exponential. These are fat tailed distributions. They are used to model situ-
ations where there are occasional “outliers” that are many o¢’s from the mean.
Many random objects have fat tailed distributions. Examples include the sizes
of files transmitted over the web (text messages to movies), incomes of people,
and sizes of earthquakes.

Here is a more complex model involving observations of a dynamical sys-
tem at various times. Suppose y(t) is the amount of a given chemical in an
experiment at time t. Suppose T'(t) is the temperature at time ¢ given, say, in
degrees Kelvin. Suppose y changes because it is consumed by a temperature
dependent chemical reaction. In particular, we take %y = gy ~ —y, with the
proportionality constant given by a standard chemical kinetics model

j = —Aemy(1) | (6)
T = —Cy=CAeTTy(t) . (7)

Finally, suppose the data consist of noisy observations of y at observation times
tk:
Ye=ylty) +0Zy , Zi~ N(O, 1), iid.. (8)

The parameters to be identified are
o A the prefactor

e FE,, the activation energy. You can think that the molecule of substance
y has to get energy F, to do its reaction. The probability to get this
energy at temperature T has the Gibbs Boltzmann probability E%%L,
except that in chemistry the conversion factor between temperature and
energy is called R (the ideal gas constant) rather than k (the Boltzmann
constant).

e (), the heat release. When one molecule reacts, it releases energy, which
in turn raises the temperature. The reaction starts slowly, but accelerates
as the temperature starts to rise.

e o, the observation noise standard deviation. This may be an example
of a nuisance parameter, which is a parameter whose value we are not
interested in, but which must be “estimated” (i.e., sampled) along with
the others because it is a part of the model and is unknown.

The ideal gas constant, R, is not a parameter because its value is known. Other
known quantities include the initial concentration, y(0), the initial temperature,
T(0), and the observation times t.



There is not a simple closed form expression for the likelihood function as
a function of the parameters and observations. The probability density to get
observations Y = {Y}} is

1 _ (up—u(tg|A, Eq,C))>
e

V2ro? o ’ ©)

The values y(ti|A, E,, C) are computed from (6) and (7) using a ODE solver
and the known initial conditions.

The log likelihood, which is the log of the likelihood, is often easier to work
with in practice. The likelihood itself can easily get to be smaller than the
smallest positive floating point number in double precision, which is e=1922 ~
1.4 - 10744, This can happen, for example, if there are 1022 data points each
contributing a factor é

It can be very hard, from a technical point of view, to sample the distribution

L(y|A, B, C.o) =[]
k=1

X ~ f(z) = =—=L(Y|x) .

Among the difficulties you will meet in practice:

e It can be expensive to evaluate the likelihood function. The formula (9)
asks you to solve a differential equation and cycle through a data set.
Other problems ask you to solve a partial differential equation and/or cycle
through a much larger data set. If it takes minutes or hours to compute
f(z) for a single proposal z, then we should seek more sophisticated ways
make good proposals.

e There can be more than one locally best fit. For example, if your data has
frequency w, then a fit with frequency 2w may fit better than 2w + ¢, even
though none of these fits as well as frequencies nearer to w. Local moves
typical of Metropolis samplers are slow to move from one local “potential
well”. The potential, ¢, is the negative log of the likelihood, L. ¢ has
a local minimum where the L has a local maximum. The problem can
be so severe that a sampler can spend all its time in a local potential
well without ever finding a deeper well with better fits. The theorem
(Perron Frobenius) says the sampler will eventually find the better fits,
but “eventually” may be longer than a practical run time.

e The burn-in phase can be very slow. Ironically, this often happens when
the data strongly constrain the parameters. Your starting guess may be
a bad fit, and nearby parameter combinations may be little better. For
example, if the frequency w is very clear in the data and you start with
23 - w, then Metropolis perturbations to 22 - w may be nearly equally bad
fits to the data. This means the samples will drift only slowly toward good
fits.



e The probability distribution may be ill conditioned. A simple form of
ill conditioning is that the different variables have different units and,
as numbers, vastly different ranges. For example, the activation energy
E, may be on the order of one (if measured in electron volts), while the
prefactor A may be of the order of 108, if measured in inverse seconds.
Consider a simple Gaussian proposal move X — X + pZ (where Z ~
N(0,1,)). This proposes to move E, by an amount of order p, and A by
order p. For E,, we should adjust p to be order 1. But if we do that,
the perturbation of A will be, relative to A, so small that it takes 102
such steps to make an order 1 relative change to A. More troubling is
that the data may imply strong relations among the parameters without
constraining the individual parameters so tightly. For example, a proposal
to raise A without also raising C a proportionate amount may take you
from good to bad fits, and be rejected.

3 Priors and posteriors

So far, Bayesian statistics has been a heuristic. You learn what parameter sets
are consistent with the data by sampling from that set. But there is a more
formal version.

The formal version is that first the parameters are chosen by sampling a prior
probability distribution 7(x). The prior distribution represents our knowledge
or beliefs about x before (“prior to”) looking at the data. The data model is
that the data, Y, are generated from the likelihood function with the selected
parameters. Therefore the joint distribution of random parameters X ~ m(z),
and conditional data Y ~ L(y|X) is given by Bayes’ rule”

(X,Y) ~ L(ylz)m(x) -

Once X and Y have been chosen as described, we look at Y. The remaining
uncertainty over X is given by the conditional distribution of X given Y, which
is

X~ flalY) = L(ylz)n(z) . (10)

1
Z(Y)
This is the posterior distribution of X, which is the distribution after (“posterior
t0”) looking at the data. Modern Bayesian statistics consists of producing
samples of the posterior.

The prior distribution 7 is the weak link in the Bayesian chain of ideas. It
is not likely that we know enough about x before taking data to believe very
strongly in a specific prior. This is particularly true, for example, when the
parameters are physical constants like activation energies. Often the best we can
do is to estimate bounds. For example, the activation energy must be positive,
and it presumably is less that three electron volts, which is enough energy to
break chemical bonds. There are similar physical arguments for bounds on
the reaction rate prefactor and heat release parameter. The person building
the detector may have a reasonable idea (say, within a factor of two) of the



observation error parameter, o. In the prior, the parameters may be taken to
be independent and uniformly distributed within their bounds. There are cases
where our prior bounds span many orders of magnitude. The masses of planets
in our solar system are an example. Jupiter mass is more than 500 times earth
mass. This makes it hard to put tighter priors on the masses that planets in
other systems might have. If we assume the log of the parameter is uniformly
distributed in a range, that is called (in astronomy) a Jeffries prior. We may
take 7(z) = 1 for all z. That is not normalizable in the sense that there is no Z
so that £ (z) is a probability density. But the posterior distribution (10) may
still be normalizable. That is called a flat prior. Slight less flat, but still not
normalizable, are priors that enforce, say, positivity of a parameter (such as all
the parameters in our chemical reaction model).

Priors are often used to “regularize” ill conditioned models. An example is
given below.

An important weakness of this Bayesian approach is the need to specify a
prior distribution for the parameters. In a majority of cases I have been involved
in, the prior is chosen for its qualitative properties, rather than some theory
or deep prior knowledge. An expression often used in turbulence modeling is
appropriate here: replacing ignorance with fiction. We do not know exactly
what the prior should be, so we make one up as best we can.

4 Gaussian examples

Example 1. Suppose the parameter X is a scalar. Before taking data, the
statistician believes that X ~ N'(u,0?). There are n independent observations
of X, which have observation noise with standard deviation p. The observations
may be written

Yk ~ N(X, pE) s

or as
Ye=X+pZx , Zr~N(0,1), iid

The prior is

1 s

The likelihood function is

1 1 __1_ n _)?
L(y|1’) = W p—n e 202 k=1 (ye—x) .

The posterior distribution is

f(a]Y)

I
\
2
=
=
=
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This is a Gaussian, so it is determined by its mean and variance. The posterior
variance is the coefficient of x2 in the exponent, which is

The variance of the sample mean is
1 & p?
2
0% = var| — Y| =—.

Comparing these expressions shows that the posterior variance is a little smaller.
The mean of the posterior, because it is Gaussian, if the minimizer of the expo-

nent. The result is
n ,02
< E Yi + 2M> .
o
k=1

This is an average of the data numbers Y, each taken with weight %, and the

X, =

1
n+{j—§

2
prior mean p, taken with weight 2. This may be rewritten as

n

2
& 1 1 ne?
Xp=—0 (nZYk> + Hipgﬂ (11)

I+ 27\

no?

:wl?—i—wgu , wiF+wy=1.

This shows that the posterior mean is a weighted average of the sample mean
and the prior. At least in the Gaussian case, Bayesian statistics means aver-
aging the data together with your prior beliefs. The posterior variance in the
Bayesian formulation is smaller than the variance of the posterior mean because
the prior beliefs are considered to be data too. The relative weights of the prior
belief and the data are determined by the ratio between the prior variance and
the observation variance. The prior variance is smaller than the observation
variance if 02 < np?. In that case, the prior mean u gets more weight than the
sample mean Y in sum (11) that gives the posterior mean.

Example 2. This example illustrates using the prior to regularize the problem.
A linear least squares problem is to minimize

1Az — yza - (12)

Here A is a coefficient matrix with n rows and d columns, x is a d component
vector of parameters (or fitting coefficients), and y is an n component obser-
vation vector. We assume d < n. A perfect fit would be Az = y, but this is
probably impossible because there are more equations than unknowns, x. The
residual from an imperfect fit is r = Az —y. The linear least squares problem is
to find coefficients x; that minimize the sum of the squares of the residuals 7.



As an example, consider fitting n data points y, to a polynomial of degree
d — 1 in t. The fitting polynomial is p(t) = xg + x1t + -+ + zg—1t*"1. The
residuals are r = p(tx) — yx. In matrix form this is

1 tl t% tee td7 1 Y1 1

1
1ty t3 - 37! o Y2 T2
Ty
Ta—1
1 ot, t2 ... it Yn Tn

Many other fitting problems can be formulated in a similar way.
The linear least squares problem is equivalent to a maximum likelihood es-
timator of z in the probability model that the observations are given by

Y =p(tx) + pZx , Zr~N(0,1) , iid.
More generally, if a is row k of the matrix A, the probability model would be
Y =arxr +pZr , Zp~N(0,1) , iid.

Here, aj, is a d component row vector and x is a d component column vector.
The likelihood function is

1 = r?
L(r|z) = Ok exp (— Z 2p2> .

k=1

Minimizing this likelihood is the same as minimizing the Y72, which is the
linear least squares problem.

The singular value decomposition of A (also called principal component anal-
ysis) is a way to solve the linear least squares problem, and to understand some
difficulties that may come up. The singular value decomposition of A is the
factorization

A=UxV!,

where V is a d x d orthogonal matrix (orthogonal means VVt = I), and ¥ is
d x d diagonal matrix with singular values o1 > o9 > -+ > o4 > 0 on the
diagonal, and U is an n x d matrix with orthogonal unit norm columns, which
means U'U = I. The expression for the residual becomes

USVis —y=r.

We multiply this from the left by U? and use the fact that U'U = I. The result
is
SViz —Uly=U'r.

The columns of V' are a convenient basis for x space and the columns of U are
a convenient set of ortho-normal vectors in data space. We use tildes for the

10



coefficients with respect to these vectors, which means 7 = V'z, § = Uly, and
7 = U'r. The equations become

Sr—y=r7.
In components, this is
0T = Yj =Tj -
Note that by our conventions, § and 7 have d < n components. Assuming (as we

did above) that all the singular values are positive, we may set all components
of 7 to zero, which gives

~ 1
Ti= Vi (13)
J

This is the solution to the original linear least squares problem. We have chosen
x that leaves a residual vector r that is orthogonal to the columns of A. It is
impossible to make ||r||;» smaller than this.

It is very common, unfortunately, to have a linear least squares problem
with a matrix A that has some very small singular values. Polynomial fitting
with even moderate d is an example. The solution formula (14) implies that
this gives a very large x. A proposed solution is Tikhonov regularization, which
is to minimize

il + & e -
The point is to look for good fits while not having such large fitting coefficients.
Minimizing over x using the SVD as above gives

~ 1 ~

l’jziyj.
,/Uf-—&—sz

If € is smaller than o;, then the regularized solution is almost the same as
without. But regularization essentially replaces the singular value o; with the
regularization parameter € if o; < €. If done right, this can have a small effect

(14)

on the quality of the fit, as measured by the residual norm Hr||l22, but have a big
impact on the size of the fitting parameters, as measured by the norm ||a:H122

The Bayesian interpretation Tikhonov regularization is simple, just intro-
duce a prior with variance =2

1 752
77(:1;) e Ee 2 Hx‘llzz

Then the posterior mean is given by (14).
Using a regularizing prior, you can do Bayesian “estimation” with more
parameters than data.

5 Bernstein theorem and uncertainty quantifi-
cation

Uncertainty quantification (UQ) is the process of learning how precisely the
parameters are constrained by the data. This is different from a point estimate,

11



which means giving the “user” your best guess at the parameter values. It
is better for the statistician also to communicate a level of confidence in the
supplied numbers: how close are the numbers to being right? The modern
Bayesian statistician will use the data to determine a posterior distribution of
the parameters. This distribution has information on parameter uncertainties,
and also on relations between parameters. There are posterior correlations.

How significant the posterior uncertainties and posterior correlations are
depends on the application. In science and engineering, parameter estimates
are used to predict what the system will do in situations where you do not
have data yet. A more sophisticated form of UQ is finding the uncertainty of
these predictions. It may be that the application model is insensitive to certain
parameter variability in the same way the fitting model is. On the other hand, if
a physician wants to know which artery in a patient is damaged, it may matter
more if the answer is wrong.

The pre-Bayesian approach, the frequentist approach, to uncertainty quan-
tification is confidence intervals and confidence regions. Bernstein theorems
relate frequentist and Bayesian estimates of uncertainty, but always in the limit
of large data sets. We describe a simple theorem of this type, which applies
to the case of n independent samples from a PDF that depends on parame-
ters. The frequentist point estimate is the maximum likelihood point, which is
a random point that depends on the (random) data. In the limit of large n, the
maximum likelihood point is approximately Gaussian with mean close to the
true value and covariance determined by the Fisher information. The Bayesian
posterior, for large n, is also approximately Gaussian, with (approximately) the
same mean and covariance.

5.1 Maximum likelihood distribution for large n

We write f(y|z) for the PDF for random variable Y with parameters z. Let
Yy, for Kk =1,...,n be iid. samples of f with parameter set x,. The likelihood
function is

L{Yi} o) = f[ F(Yile) (15)
The maximum likelihood point estimate ;f T is
X = arg m;ixL({Yk} |z) .
For large n, and with some non-degeneracy hypotheses on f, there is a central

limit theorem analysis of the distribution of X.
The analysis starts with the log likelihood represention

9(ylz) = log(f(yl))

The maximum likelihood point also maximizes log(L), so

Ve log[ L({Y}} |2)] = 0

12



In terms of g, this is

n

> Vag(ViX) =0. (16)

k=1
We analyze X = T, in two steps. First we use the central limit theorem to
quantify the residual in equation (16) when X is replaced by .. Then a Taylor
series analysis relates this residual to the error, X = z,. Two matrices arise. It
seems to be a coincidence that these are equal.

The residual is the amount by which an equation fails to be satisfied. This

term is used in numerical analysis and in statistics. Define the residual in (16)
with z, as

n
R=> V.g(Yilz.) .
k=1
The central limit applies because this is the sum of a large number of indepen-
dent terms. The expected value of a term is

B[V, g(Y]2.)] = / Vog(ulz.) f(ylz.) dy

flylz.)

- / V.S (ylz.) dy
=0.

fylz.) dy

The last line is because f is a probability density as a function of y for each .
Therefore,

/ V. f(yles) dy = V. / Fyla)dy = V,1=0.

The cancellation in the second line, with f(y|z.) in the denominator and nu-
merator, is where x = x, is used.

Now that E[R] = 0, the nature of R is determined by the covariance matrix
of the summands. If V' is a column vector with mean zero, the covariance matrix
is

cov(V) =E[VV'] .

The covariance of V,g(Y|x,) is a matrix called I, the Fisher information

t
I = cov(Vyg(Y|zy)) = E {(ng(YM*)) (ng(Yh:*)) } . (17)
For future reference, note that the entries of I are
[0 ) 0y ()
B f2(Y,2s)
:/8mif(yw*)8zjf(y|x*)
f(yvx*)

dy

13



We can see that I has something to do with parameter uncertainty by ask-
ing about the case I = 0. In that case V,g(y|z.) = 0, which implies that
Vif(ylz.) = 0. If f does not depend on z, it will not be possible to use f to
determine x. The definition (17) implies that I is positive semi-definite. We
assume, as is usually true in applications, that I is non-degenerate and positive
definite. In that case, the central limit theorem says that if n is large, then R
is approximately normal with mean zero and covariance nl, with I being the
Fisher information (17).

The second step in characterizing X — 2, uses a Taylor approximation in
(16). Let H be the Hessian matrix of g evaluated at z,

Hi; = axiaxjg(mx*) .

This H is a random variable because it depends on the random Y ~ f(y|z.).
The Hessian matrices for the data values Yy will be written Hy, = H(Y)). The
Taylor approximation is

Va9l X) = Vaglyle,) + Hw) (X —a.) -

With this approximation, (16) becomes

~

R—i—M(X’—x*)zO , X-z.,~-M'R (18)

with .
M=) H. (19)
k=1

The relation between M =~ nE[H| and I is the coincidence that makes I so
important.
The calculation that led to I can be continued:

E[0s,00,9(Y]x.)] = E[aﬂ <W)]

‘E[ (¥, ] E{ P Y.2,)

The first expectation on the last line vanishes for a reason we just saw. Since
Y ~ f(y‘x*)v

(P Fhe

)} = /8xi8mjf(y|:c*)dy = 0,0, 1=0.

Therefore
E[H(Y|xz.)] =-1.

Since I is positive definite, the law of large numbers applies to the sum (19) up
to statistical fluctuations:

M = —nl +O(y/n) .

14



The approximations for R and M now characterize X —x4, asymptotically for
large n. We saw that R is approximately normal with mean zero and cov(R) ~
nl. We also saw that M is approximately deterministic with M ~ nI. The
formula (18) then expresses (approximately) X — z, as a linear function of
a mean zero Gaussian. This makes X — x, itself mean zero Gaussian, with
covariance (M is symmetric, so (M‘l)t =M-t=M™1

~

cov [X —x*} ~ cov[M*1 ()A( — x*)}
~ M 'cov [)? — x*} Mt

~ (i[l) (nl) <i11>

cov [)? - ;1:} %rl . (20)

Q

This is the famous and very useful asymptotic characterization of the error in
maximum likelihood estimation. The covariance decays like 1/n, which means
that the actual estimation error decays like 1/4/n. The inverse of the information
matrix indicates that the more “information” there is in the dependence of f
on z, the more accurately x can be determined.

5.2 Large n behavior of the Bayesian posterior

The Bernstein theorem for this case (independent samples, non-degeneracy hy-
potheses) is that the posterior is (approximately, for large n) normal with mean
(approximately) the true parameter set and covariance (20). This result is use-
ful even if you're a frequentist. If you are a frequentist wanting the covariance
matrix of X, you can get it by sampling the posterior. If you're a Bayesian, this
gives you some confidence that the Bayesian posterior has correct information
about the remaining parameter uncertainty.

We study the “posterior” without a prior, which is the likelihood function. If
x is the parameter set, generated at random if you believe the official Bayesian
story, then the posterior of z, given n independent samples Y}, ~ f(y|z), is just
the normalized likelihood function (15),

X~ Fa) = s L )

(Apologies for the notation, f(y|x) is the PDF of samples, F(z) = F(z|{Yx})
is the posterior.) We assume that F(z) = e~ ®®) and that ¢(x) is well approx-
imated by a quadratic, at least for likely values of x. This is the situation of
the Laplace method used in Assignment 1. The picture (quadratic or unlikely)
can be verified using large deviation theory. That theory shows that x values
far from the posterior mean, far enough so that the quadratic approximation is
invalid, are very unlikely.
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The calculations that give us a picture of ¢ are similar to the calculations
above related to Fisher information. Here, we write (still using the notation

g =log(f))
¢(r) = —log(F(x))

= 9(Yila) .
k=1

We find the minimum of ¢ by setting the derivative with respect to x equal to
zero. This is the maximum likelihood point (16). The maximum likelihood point
is the mode of the posterior, if you use a “flat prior”. If you have a non-trivial
prior, the maximum of the posterior is called MAP, or mazimum a posteriori.
We will see that the MAP point and the maximum likelihood point are close
(with high probability) if the prior allows it. The Hessian of ¢ is the negative
of M in (19). The analysis above shows that this is approximately nl, in terms
of the Fisher information, I.

Putting in a prior usually does not change this picture much. If z is the true
value that generates the data {Y}}, and if w(z) is continuous, and if 7(z) # 0,
then the “true” posterior F = %ﬂ'L has the same asymptotic behavior as the
posterior with a flat prior. To be specific, the MAP point, the maximizer of F,
converges to the actual value as n — oo. Also, the posterior distribution about
the MAP point converges to a Gaussian with covariance %I ~!. These facts are
easy to verify.
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