
Monte Carlo Methods, Courant Institute, Spring 2017

http://www.math.nyu.edu/faculty/goodman/teaching/MonteCarlo17/

Always check the class message board on the NYU Classes site from home.nyu.edu before doing

any work on the assignment.

Assignment 1. Due February 6

Corrections: none yet.

1. (This exercise has two purposes. One is to understand why a sampler
might not work well in high dimensions. Part of the “curse of dimension-
ality” is that low dimensional intuition may be wrong in high dimensions.
Another is to understand why some functions have good Gaussian approx-
imations. The analytical method is called Laplace’s method.) Let Cn be
the cube in n dimensions, symmetric about the origin, whose side is length
2. This may be written Cn = [−1, 1]

n
. The n dimensional volume of Cn

is voln(Cn) = 2n. If x ∈ Rn, then x ∈ Cn if |xk| ≤ 1 for all k. You can
generate a “random” point X ∈ Cn by taking Xk = 2Uk − 1, where the
Uk are independent standard uniforms. This X has uniform probability
density inside Cn, which is f(x) = 2−n = 1/voln(Cn) if x ∈ Cn, and
f(x) = 0 if x /∈ Cn. Let Bn be the unit ball in n dimensions, so x ∈ Bn if
(x21 + · · · + x2n)1/2 ≤ 1. Clearly Bn ⊂ Cn. We can generate X uniformly
distributed in Bn by generating X uniformly distributed in Cn and ac-
cepting it if X ∈ Bn. The efficiency of this algorithm is the ratio of the
volumes

Zn =
voln(Bn)

voln(Cn)
.

This exercise derives an approximate formula for Zn. The formula shows
that shows that Zn → 0 as n→∞, exponentially. Therefore the sampling
method impractical for large n.

Note: It is possible to find the large n behavior of I(n) (below) using the
change of variables r2/2 = s to express it in terms of the Γ function, whose
asymptotics are available on wikepedia – Stirling’s formula. Please don’t
do it this way. The asymptotics of Γ are found using the method of this
problem, so that approach is not actually easier.

Note: The unit sphere in n dimensions is Sn−1 = {|x| = 1}. A point x in
n dimensional space may be written x = rω, where r ≥ 1 is the length,
and ω ∈ Sn−1. The n− 1 dimensional surface element on Sn−1 is written
dω. The n− 1 dimensional “surface area” (n− 1 dimensional volume) of
Sn−1 is called ωn−1 and is given by

ωn−1 =

∫
Sn−1

dω .
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Some values are ω1 = 2π (the circle in 2D) and ω2 = 4π (the sphere in
3D). For the unit sphere S2 in 3D, you may have seen a formula like dω =
cos(φ)dθdφ in terms of spherical polar angles. We don’t need formulas
like this here. We only need the general polar coordinate integration rule
dx = rn−1dωdr, which means that∫

Rn

f(x) dx =

∫ ∞
0

∫
Sn−1

f(rω)rn−1dωdr .

(a) Show that

vol(Bn) =
ωn−1
n

.

You can do this by

vol(Bn) =

∫
x∈Bn

dx .

(b) Show that

ωn−1 =
(2π)n/2

I(n)
,

where

I(n) =

∫ ∞
0

rn−1e−r
2/2 dr . (1)

Hint: integrate

(2π)
n/2

=

∫
x∈Rn

e−|x|
2/2 dx

in polar coordinates.

(c) Write I(n) =
∫
e−φ(r) dr and identify φ. Show that φ has a unique

maximum value achieved at r∗. Calculate φ′′(r∗), φ
′′′(r∗), and pos-

sibly one more. Let q(r) be the quadratic Taylor approximation to
φ(r) about r∗, which is

q(r) = φ(r∗) + 1
2φ
′′(r∗)(r − r∗)2 . (2)

Write the formula for

J(n) =

∫ ∞
−∞

e−q(r) dr .

(d) J(n) is an approximation of I(n). The error is written K(n) =
I(n)− J(n). Show that

K(n)

I(n)
→ 0 as n→∞ .

Hint: there are two kinds of r values: those where the quadratic
approximation (2) is accurate, and those where φ and q are much
smaller than values that matter. For this exercise, you can take the
“values that don’t matter” set to be |r − r∗| > np with 0 < p <
1
6 . When |r − r∗| = np, then e−q does not matter, and q(r) is still
relatively close to φ(r) (use φ′′′ to verify this).
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(e) Write the large n asymptotic approximation of Zn that shows that
sampling uniformly in the ball by rejection from the cube is an ex-
ponentially bad idea.

2. (Probability distributions usually depend on parameters. It may not be
enough that a sampler “works” for each parameter value. It may need to
be efficient uniformly over the parameter. This Exercise is an example of
such a sampler. This exercise also demonstrates that some careful anal-
ysis can lead to good samplers.) Let Sn for n = 0, 1, . . ., be independent
exponential random variables with rate parameter λ. Let these be the
inter-arrival times for the arrival times Tn, which means that T0 = S0,
and Tn = Tn−1 +Sn for n > 0. The sequence Tn is a Poisson process with
arrival rate parameter λ. The goal is to find a sampler that samples Tn
using an amount of work that is bounded as n→∞. A direct simulation
of the Poisson process takes order n work, because you have to generate
all the inter-arrival times from S0 up to Sn. For simplicity, we take λ = 1.

(a) Show that the probability density for Tn is fn(t) = tn

n! e
−t if t ≥ 0.

Hint: Tn = Tn−1 + Sn, with Sn independent of Tn−1, allows you to
find fn from fn−1.

(b) Determine the behavior of fn(t) for typical Tn values using the method
of Exercise 1. Find the most likely value of Tn by maximizing fn,
then make a Gaussian approximation of fn about this value, tn∗.

(c) You can find the mean and variance of Tn from the representation
of Tn as a sum of independent Sk for k ≤ n. You can estimate the
mean and variance of Tn from the Gaussian approximation of part
(2b). Show that these ways of getting the mean and variance give
(approximately?) the same result.

(d) Explain why it is not a good idea to use the Gaussian approximation
as a proposal distribution for rejection sampling of fn.

(e) Explore using a double exponential as a proposal distribution. That
is gn(t) = 1

Z e
−αn|t−tn∗|. Calculate the normalization constant Z. To

find the optimal Z you need to solve the two maximization problems,
one for t > tn∗ and one for t < tn∗. Do not worry about negative T
values. Those are rare for large n, and can be rejected for any n.

(f) What formula for αn is suggested by the Gaussian approximation?
You can choose αn so that the proposal distribution has the same or
similar variance as the true distribution.

(g) Determine wether this αn leads to a sampler whose efficiency does
not go to zero as n→∞. If so, you are done. If not, can you adjust
αn to make the sampler uniformly efficient?

3. (Bayesian posterior). Imagine an experiment measuring radioactive decay
at n times 0 ≤ t1 < · · · < tn. The measured value for time ti is Yi. We
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want to fit these measurements to a simple exponential decay model

y = Ae−λt .

The probability model is that the measured Yi is equal to the true value
y(ti) plus mean zero variance σ2 gaussian observation noise. That is

Yi = Ae−λti + σξi , where ξi ∼ N (0, 1) .

The model has three parameters (A, λ, σ2). Suppose the prior for these is
π(A, λ, σ). Write an expression for the likelihood function

L(A, λ, σ|Y1, . . . , Yn) .

Write an expression for the posterior in terms of L and π. Is there a
simple closed form formula for the normalization constant? We want to
use a prior of the form

π(A, λ, σ) ∼ 1[0,a](A)1[0,l](λ)1[0,s](σ) .

The indicator function 1[a,b](x) is equal to 1 if a ≤ x ≤ b and zero other-
wise. We would like to make π uniformative by taking a = ∞, or l = ∞
or s =∞. Two of these are possible, in that the posterior is normalizable,
but one of them is not possible (the posterior would have infinite mass for
any non-zero normalization constant). Which choice is not possible?

4. (Programming exercise.)

Let f(x) be the probability density f(x) = 1
Zx(1 − x) for 0 ≤ x ≤ 1

and f(x) = 0 otherwise. Write a program that generates N independent
samples of f and makes a histogram of the results. You should plot this
histogram with the theoretical PDF on the same plot to see quantitative
agreement for large N . Choose bin size ∆x so that the bins with the most
hits get around 100 hits (between 20 and 2000, you should experiment with
this). Draw one standard deviation error bars on the histogram values.
Note how many of the error bars contain the true value.
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