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1 Simulation

I use the term simulation to mean producing a random object with a given
description. This is different from Monte Carlo, which I take to mean computing
quantities that themselves are not random. For example, simulation might mean
making sample paths of a Markov chain. Evaluating the expected value of a
function of the sample path is Monte Carlo. The distinction was emphasized to
me by Malvin Kalos. In this terminology, the phrase Monte Carlo simulation
is an oxymoron. This section describes some tricks for simulating discrete time
and continuous time Markov chains with a discrete state space, first in discrete
time then in continuous time.

A stationary Markov chain with states {1, . . . , n} is described by its transi-
tion matrix P . At each time t = 0, 1, 2 . . ., the state of the chain is a random
variable Xt which is one of the n states. The entry Pij is the i → j transition
probality

Pij = P (Xt+1 = j | Xt = i) .

The definition of a stationary (or time homogenous) Markov chain is that you
get path probabilities from these by multiplication. If X0 = x0 is known and
not random, the probability of the sequence (X1, . . . , XT ) is

P (X1, X2, . . . , XT ) =

T−1∏
t=0

PXt−1,Xt .

This is equivalent to the Markov property

P (Xt+1 = j | Xt = i)

= P (Xt+1 = j | Xt = i , and Xt−1 = i1 , · · · , X1 = it−1 ) .

You can simulate a discrete time finite state space Markov chain using the
discrete selection algorithm from Week 1. If you know Xt = i, let N = j
with probability Pij and take Xt+1 = N . This is not the best simulation
method for most Markov chains you meet in practice. Either n is too large for
this to be practical, or the chain has special structure that makes the generic
sampling method unnecessary. In particular, MCMC (Markov chain Monte
Carlo) sampling rarely uses an explicit transition matrix. Instead, the trick of
detailed balance is used to avoid having to know the numbers Pij exactly.
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2 Continuous time processes

For a continuous time Markov chain, Xt ∈ {1, . . . , n} is defined for real numbers
t. There are transition rates

Rijdt = P (Xt+dt = j | Xt = i) .

To be a valid transition rate matrix, the row sums must be zero:

n∑
j=1

Rij = 0 ,

and the off diagonal entries must be non-negative:

Rij ≥ 0 , if i 6= j.

One approximate simulation algorithm is to choose a small ∆t and simulate
a discrete time Markov chain with transition probabilities

Pij = δij + ∆tRij . (1)

Here, δij is the Kronecker delta. The number δij is the (i, j) entry of the
identity matrix, which is δij = 1 if i = j and δij = 0 if i 6= j. The exact
transition probabilities for time ∆t are

P (∆t) = e∆tR = I + ∆tR+
∆t2

2
R2 + · · · .

Therefore, the approximation (1) is first order accurate in the sense of numerical
analysis. To get an accurate solution, you would like to take a small ∆t. But
if you do that, you have to to take many steps to advance to a given time T .
Moreover, most of those steps are “wasted” in the sense that nothing happens.
For small ∆t, it is most likely that the state does not change:

P (Xt+∆t 6= Xt) = O(∆t) .

The simulation strategy is not very accurate and spends most of its time doing
nothing.

There is an exact and method for simulating a continuous time Markov
chain that is usually much faster. It is called the embedded Markov chain or
kinetic Monte Carlo. in chemistry, it is sometimes called Gillespie’s stochastic
simulation algorithm, or SSA. It simulates only the transitions and the transition
times. A sample path of a continuous time Markov chain may be described by
the sequence of occupied states and the occupation times. The occupied states
are Yk ∈ {1, . . . , n}. The transition times are 0 < T1 < T2 < · · · . We start at
time T0. These satisfy the relation

Xt = Yk , if Tk ≤ t < Tk+1 .
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A non-trivial transition occurs at time Tk if Yk−1 6= Yk.
To describe the algorithm, suppose Xt = i and ask what might happen in

time dt. The probability of a transition is

P (Xt+dt 6= Xt) = λidt ,

where
λidt =

∑
j 6=i

P (Xt+dt = j | Xt = i) =
∑
j 6=i

Rijdt .

Since Xt is a Markov process, the transition time is an exponential with rate
λi. Conditional on having a transition in time dt, the probabilities for the new
state are (using Bayes’ rule)

Qij = P (Xt+dt = j | Xt+dt 6= i)

=
P (Xt+dt = j and Xt+dt 6= i)

P (Xt+dt 6= i)

=
Rijdt

λidt

Qij =
Rij
λi

(2)

To simulate a continuous time Markov chain up to time T , you go from
transition to transition Tk+1 until Tk+1 > T . If Yk = i, you generate the next
transition time adding an exponential random variable to Tk:

Tk+1 = Tk −
1

λYk

log(Uk) .

Then you choose Yk+1 using the transition probabilities (2). Of course, Uk is
uniformly distributed in [0, 1].

People often talk about continuous time discrete state processes in terms of
a bell. They will say “a bell rings and ... ”. Here, suppose there is a transition
at time Tk. We stay in state Yk until a bell rings at time Tk+1. The waiting
time, which is Tk+1 − Tk is an exponential with rate λYk

. When the bell rings,
we make a transition to a new state, chosen by probabilities (2).

3 Variance reduction

Suppose Â is a Monte Carlo estimate of A. The error is the sum of bias, which
is E[Â]−A, and statistical error, which is Â−E[Â]. Statistical error is usually
larger than bias. Improving accuracy normally means reducing statistical error,
which is called variance reduction.

There are many variance reduction methods. The nature of the problem
determines which methods or methods might help. As a rule of thumb, the
simpler the problem, the more difference variance reduction can make. “Simple”
means things like low dimension, direct samplers, smooth functions, etc. You
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might think you will not encounter a problem like this, but “simple” problems
are very common. They occur as sub-problems in complicated problems. They
also occur by themselves. For example, financial institutions value some options
by Monte Carlo. One single option valuation Monte Carlo is simple by Monte
Carlo standards/ But they need to re-evaluate options very quickly (much less
than a second) and in large numbers (thousands of options).

4 Control variates

Suppose X ∼ f is a random variable with known probability density, V (x) is a
known function, and we want to estimate

A = E[V (X)] .

A control variate is a different function W (X) whose expected value

B = E[W (X)]

is known. The more closely W (x) resembles V (x), the more variance can be
removed. If W resembles V , then U(X) = V (X) − αW (X) may have less
variance than V (X). We make a Monte Carlo estimate of

A− αB = E[U(X)] ,

then we add back the known αB to get an estimate of A.
Suppose we have N independent samples Xk ∼ f . The direct estimate of A

is

Âd =
1

N

N∑
k=1

V (Xk) . (3)

The variance of this estimator is

var
(
Âd

)
=
σ2
V

N
.

The control variate estimator is

Âcv =
1

N

N∑
k=1

(V (Xk)− αW (Xk)) + αB . (4)

The variance of this is

var
(
Âcv

)
=
σ2
U

N
,

where

σ2
U = var(U(X))

= var(V (X)− αW (X))

= var(V (X))− 2α cov(V (X),W (X)) + α2 var(W (X))

σ2
U = σ2

V − 2ασV,W + α2 σ2
W . (5)
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The optimal α minimizes (5), which leads to

α =
σV,W
σ2
W

. (6)

We substitute back into (5) to get the greatest variance reduction

σ2
U = σ2

V −
σ2
V,W

σ2
W

= σ2
V

(
1−

σ2
V,W

σ2
V σ

2
W

)
σ2
U = σ2

V

(
1− ρ2

V,W

)
, (7)

which involves the correlation coefficient

ρV,W = corr(V (X),W (X)) =
cov(V (X),W (X))√
var(V (X)) var(W (X)

. (8)

These formulas show that the variance reduction depends on the correlation
coefficient between the target V and the control variate W . The correlation
coefficient is a dimensionless measure of the relationship between V and W . It
is between −1 and 1. You drive the variance of the control variate estimator to
zero by driving the correlation coefficient to ±1.

Control variates in specific problems often come from simple approximate
solutions.

It is unlikely that you will be able to evaluate the optimal α (6) analytically.
It is not common to know cov(V,W ) but not E[V ]. One approach is to guess
a good α to use in (4). Another approach is to estimate the optimal α from
Monte Carlo data. This would replace α in (4) by some α̂ that is a function

of the numbers V (Xk) and W (Xk). This makes the estimator Âcv a nonlinear
function of the data, which might make us worry whether the central limit
theorem applies.

An informal analysis shows that using α̂ is almost the same as using the
exact α, if your goal is to estimate A. Here (in notation statisticians often use)
ε∗ will represent the estimation error for quantity ∗. For example, if α̂ is the
estimate of α, then the estimation error is εα = α̂− α. We also use an overbar
to represent sample means, for example in

V =
1

N

n∑
k=1

Vk =
1

n

N∑
k=1

V (Xk) .
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The relevant estimation errors for this discussion are defined by

V = A+ εV

W = B + εW

σ̂2
W =

(
W −W

)2
= σ2

W + εWW

σ̂V,W =
(
V − V

) (
W −W

)
= σV,W + εVW

α̂ =
σ̂V,W

σ̂2
W

=
σV,W + εVW
σ2
W + εWW

= α+ εα (9)

With α̂ in (4), the overall estimation error is found by calculating

Â = V − α̂W + α̂B

= A+ εV − (α+ εα)(B + εW ) + (α+ εα)B

= A+ εV − αεW − εαεW .

If we had used the exact but unknown α, the result would have been

Â = V − αW + αB

= A+ εV − α(B + εW ) + αB

= A+ εV − αεW .

The statistical errors differ by εαεW . If you have a lot of data, the difference
between the statistical errors should be much smaller than the errors themselves
(next paragraph). This shows that estimating α, at least when there is a lot of
data, is nearly as good as using the exact α.

The central limit theorem suggests that for large N , the statistical errors are
on the order of N−1/2. This is clear, for example, for εV , given that

E
[
ε2
V

]
=

1

N
σ2
V .

For εWW , we calculate(
W −W

)2
= W 2 −

(
W
)2

= E
[
ε2
W

]
+ εW 2 − (B + εW )

2

= E
[
ε2
W

]
−B2 + εW 2 − 2BεW + (εW )

2

= σ2
W + εW 2 − 2BεW + (εW )

2
.

From this, we see that

εWW = εW 2 − 2BεW + (εW )
2
.

The central limit theorem says the first two terms on the right are order N−1/2.
The last term is a product of two, so it is order N−1, which is smaller. The point
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of this ε method is to derive results like this. We see when you put statistical
approximations into nonlinear formulas. In this case the nonlinearity was just
a square.

The nonlinearity is more complicated for εα. It is estimated from (9), as-
suming ε� σWW , using Taylor series:

α̂ = (σVW + εVW )

(
1

σ2
W

− εWW

σ4
W

)
+O(ε2

WW )

=
σVW
σ2
W

+
1

σ2
W

εVW −
σVW
σ4
W

εWW +O(ε2
WW ) .

The first term on the right is α. The rest is

εα =
1

σ2
W

εVW −
σVW
σ4
W

εWW +O(ε2
WW ) .

This shows, at least for large N , that εα also is of order N−1/2.
It is possible, clearly, to use more than one control variate. If the control

variates are W1, . . . ,Wm, then the optimal control variate estimator is

Âcv = V −
m∑
j=1

αjW j +

m∑
j=1

αjBj .

The optimal coefficients αj are found by a multi-variate version of (6), which
statisticians will recognize as linear regression coefficients. The necessary co-
variances may be estimated from data, though the more control variates there
are, the larger N is needed to estimate all of them accurately enough.

5 Rao Blackwellization

This is named after statisticians C. R. Rao and David Blackwell. It is the
principle that partial averaging reduces variance. Suppose (X,Y ) is a pair of
random variables with some joint distribution f(x, y). Suppose X by itself has
marginal density g(x). Suppose the average of V (X,Y ) over Y is W (x), then
the variance of W is less than the variance of V . In formulas, suppose x has n
components and Y has m components. the marginal density of X is and that

g(x) =

∫
f(x, y) dy .

The conditional density of Y given x is

f(y|x) =
f(x, y)

g(x)
.

The conditional expectation of V (X,Y ), conditioned on X = x is

W (x) =

∫
V (x, y)

f(x, y)

g(x)
dy . (10)
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The Rao Blackwellization principle is, except in trivial cases where they are
equal,

varg(W (X)) < varf (V (X,Y )) .

If you can replace a random variable by a partial average, the variance goes
down. This is a consequence of the orthogonality relation

E
[
(V (X,Y )−A)

2
]

= E
[
(W (X)−A)

2
]

+ E
[
(V (X,Y )−W (X))

2
]
. (11)

Here A = E[V (X,Y )] = E[W (X)]. A statistician might remember this formula
as the total sum of squares being equal to the explained plus the unexplained
sums of squares.

A general abstract version of the same thing involves the abstract definition
of conditional expectation. Suppose ω (the abstract version of (X,Y )) has
probability measure P and sigma algebra F . Suppose G ⊂ F is a sub-algebra.
If V (ω) is a function of the random variable and

W = E[V | G] ,

then var(W ) < var(V ), except in trivial cases of equality. The analogue of (11)
is

E
[
(V −A)

2
]

= E
[
(W −A)

2
]

+ E
[
(V −W )

2
]
.

The abstract Rao Blackwellization principle is that whenever you can substitute
an the expected value for a random sample, you reduce the variance. This can
be a very large variance reduction, or a reduction so small that it is not worth
the trouble.

Some variance reduction tricks can be understood as instances or the Rao
Blackwellization principle.

5.1 Antithetic variates

Many probability distributions, particularly centered Gaussians, are symmetric
with respect to x↔ −x. If f(−x) = f(x) and Xk (k = 1, . . . , N) is a sample of
f , then a consistent estimator of Ef [V (X)] is

Âav =
1

2N

N∑
k=1

[V (Xk) + V (−Xk)] . (12)

The variance of Âav is less than the variance of the direct estimator (3).
The antithetic variates estimator may be seen as an instance of the Rao

Blackwell principle. It is possible to choose a sample Y ∼ f as follows. First
choose Y ∼ f , then choose s = ±1 with equal probabilities. Finally, choose
Y = sX. The expectation over Y is the same as the expectation over X, by the
symmetry of f . The expectation over Y is the same as the average over the pair
(X, s) The antithetic variates estimator (12) is the same as averaging over s.
This justifies the claim that antithetic variates reduces variance. Of course, the
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estimator (12) uses twice the number of evaluations of V . If it is more expensive
to evaluate V than to sample f , then we might prefer to use 2N independent
samples of f .

Antithetic variates give large variance reductions in case V (x) is a smooth
function with ∇V (x0) 6= 0 and f(x) centered about x0 and concentrated close
to x0. In that case, V (x) ≈ V (x0) + ∇V (x0)(x − x0). If f is symmetric
about x0, then the linear term ∇V (x0)(x− x0) makes zero contribution to the
expectation. The antithetic variates estimator (12) also gives zero contribution
from the linear term.

5.2 Stratified sampling

Systematic sampling means choosing some aspect of the samples in a determin-
istic systematic way, while possibly allowing other aspects of the samples to
be random. Stratified sampling is a simple instance of this idea. Suppose the
sample space, Ω, is broken into L disjoint pieces of equal probability:

Ω = ∪Lj=1Ωj ,

with

P(Ωj) =

∫
Ωj

f(x) dx =
1

L
.

The subsets Ωj are strata. Suppose the overall number of samples, N , is chosen
so that about M = N/L samples should be in each stratum. Stratified sampling
means choosing exactly M samples in each stratum.

The probability density of stratum Ωj is fj(x) = Lf(x) if x ∈ Ωj and
fj(x) = 0 otherwise. Stratified sampling chooses a subsample of size M from
each stratum:

Xj,k ∼ fj(x) , for k = 1, . . . ,M .

The stratified Monte Carlo estimate is

Âss =
1

L

L∑
j=1

(
1

M

M∑
k=1

V (Xj,k)

)

=
1

N

L∑
j=1

M∑
k=1

V (Xj,k) .

On the top line, the quantity in parentheses is the estimate of the average of
V (x) in the stratum Ωj , and the outer sum gives the average over strata.

The stratified sampling estimator has less variance than the direct estimator
because it has less randomness. In the direct estimator, the number of samples
landing in a particular stratum is random. The stratified sampler fixes these
numbers all to be equal to M . We can see this directly by computing the
variance

var

[
1

M

M∑
k=1

V (Xj,k)

]
=

1

M
varfj [V (X)] .
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The variance of V (X) over the stratum Ωj is the expectation of
[
V (X)− V j

]2
,

where V j is the average of V (X) over Ωj . The variance of the direct estimator
depends on the overall variance of V (X), which is higher.

It is not necessary that the strata all have the same probability. If

pj =

∫
Ωj

f(x) dx ,

then Mj = pjN is the number of samples to take in Ωj . This helps make the
connection to partial quadrature (below).

5.3 Partial quadrature

Partial quadrature means doing some of the Monte Carlo integral by determin-
istic quadrature and the rest by Monte Carlo. Suppose the random variable
may be written (X,Y ) with PDF f(x, y). Suppose that the marginal density
for X is g(x) and is known. Consider doing the integral over x and y using a
deterministic quadrature over x and Monte Carlo in y. A weighted quadrature
rule over x is a collection of points xk and weights wk so that∫

u(x)g(x) dx ≈
∑
k

wku(xk) .

Now suppose it is possible to sample the conditional density Yk ∼ f(y|xk). Then
it is possible to form the partial quadrature estimator

Âpq =
∑
k

wkV (xk, Yk) . (13)

This estimator is slightly biased. Suppose u(x) is the conditional expectation

u(x) =

∫
V (x, y)f(y|x) dy .

The partial quadrature estimator (13) does not require you to know u. The
expected value is

E
[
Âpq

]
=
∑
k

wkExk
[V (xk, Y ] =

∑
k

wku(xk) .

Therefore the bias is the error in the quadrature formula∫
u(x)g(x) dx−

∑
k

wku(xk) .

The variance of the partial quadrature estimator depends on the fixed-x
variance

σ2(x) = E
[
(V (x, Y )− u(x))

2
]

=

∫
(V (x, y)− u(x))

2
f(y|x) dy .
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The terms on the right of (13) are independent, so

var
(
Âpq

)
=
∑
k

w2
kσ

2(xk) .

Stratified sampling and partial quadrature are related ideas. For example,
suppose x is one dimensional. Suppose the x axis is divided into n pieces of size
∆x each. A deterministic integration rule might take xk to be the center of the
k − th piece. Stratified sampling would take Xk to be random in this interval.
Taking the xk to be deterministic is generally more accurate, because the bias
that comes from the quadrature rule is probably much less than the statistical
error that comes from a random choice.

5.4 Latin hypercube sampling

Suppose there are independent variables X ∼ f and Y ∼ g and we want to know
A = E[V (X,Y )]. Suppose that each variable can be stratified. Stratifying X
means that there are disjoint sets in the X−space, Bj , so that P(X ∈ Bj) = 1

L .
Suppose the sets Cj stratify Y in the same sense. A stratified sample of X
would be a collection of samples Xj ∈ Bj , for j = 1, . . . , L. These could be in a
different order, which could be written jk, for k = 1, . . . , L. so that if jk1 = jk2
then k1 = k2. This means that the indices j1, . . . , jL are a permutation of
1, . . . , L.

A latin hypercube sample ((X1, Y1), . . . , (XL, YL)) comes with an associated
permutation jk. It has Yk ∈ Ck and Xk ∈ Bjk , for k = 1, . . . , L. Consider an
L × L square of boxes, with the rows corresponding to the Y−strata and the
columns corresponding X−strata. A latin hypercube sample has exactly one
sample in each row and one sample in each column. Latin hypercube sampling
means choosing a permutation “at random” (each permutation being equally
likely), then choosing the Yk and Xk from the appropriate strata. It is easy to
choose a random permutation (choose the first index “at random”, then choose
the next index at random from the remaining ones, and so on).

Another stratified sampling strategy would be to create L2 strata in (X,Y )
space of the form Bj × Ck. One stratified sample would be a sequence of L2

(X,Y ) pairs. A latin hypercube sample is a sequence of L pairs, which is a lot
shorter, say, if L = 100.

It may not be immediately obvious that latin hypercube sampling is “cor-
rect” in the sense of being unbiased:

E

[
1

L

L∑
k=1

V (Xk, Yk)

]
= A .

This is true because each box Bj × Ck is equally likely to be chosen, which
means that if you choose k at random, then

P((Xk, Yk) ∈ Bj × Ck) =
1

L2
.
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Therefore, if you choose a term at random from the sum, which means choosing
k at random, then

E[V (Xk, Yk)] = A .

Latin hypercube sampling, like much of Monte Carlo, is a clever idea.
The method just described, with strata Bj and Ck could be called “latin

squares sampling”. If there were three independent variables (X,Y, Z) that can
be stratified, a latin cube sample would be a sequence (Xk, Yk, Zk) with one
“hit” in each X−stratum, one in each Y−stratum, and one in each Z−stratum.
For more than three independent stratified the method is hypercube sampling.

5.5 Low discrepancy sequences, quasi Monte Carlo

This is an approach to integration in d dimensions. The curse-of-dimensionality
calculation shows that product form quadrature rules are impractical for large d,
or even moderate d. If there are m points in each direction, there are N = md

points in all. This grows exponentially as a function of d. Low discrepancy
sequences are quadrature strategies for d dimensional integration that are better
than product quadrature.

A low discrepancy sequence is Xk ∈ Cd, where Cd is the unit cube in d di-
mensions. The sequence is uniformly distributed if, for any continuous function
V (x),

lim
N→∞

1

N

N∑
k=1

V (Xk) =

∫
Cd

V (x) dx . (14)

A random i.i.d. sequence (uniformly distributed) does this, with an error (the
difference between the sum and the limit) that goes to zero like N−1/2. The
deterministic sequence is a low discrepancy sequence if the error goes to zero
faster than this.

It takes some time to describe good low discrepancy sequences. One popular
one is the Sobol sequence. This one has errors that decay something like

C log(N)d

N
.

For any fixed d, this is eventually better than N−1/2, but for large d you need
very large N for this. For this reason, low discrepancy sequences are most
helpful when d is not very large. They are more useful as the deterministic part
of a partial quadrature strategy. In that case, it is important to find variables
that contain as much of the overall variance as possible. In problems involving
Brownian motion, the Brownian bridge construction (below) is helpful for this
purpose.
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6 Brownian motion and the Brownian bridge
construction

A Brownian motion is a random function function of t, written Xt, defined
for t in the range 0 ≤ t ≤ T . By convention we take X0 = 0 unless we say
otherwise. The increment of Brownian motion over the interval [t1, t2] is just
the difference Yt1,t2 = Xt2 − Xt1 . For a Brownian motion, the increment is a
mean zero Gaussian with variance equal to the length of the interval:

E[Xt2 −Xt1 ] = 0

E
[
(Xt2 −Xt1)

2
]

= t2 − t1 .

Moreover, increments from disjoint intervals are independent. If t1 < t2 ≤
t3 < t4 ≤ t5 · · · , then the increments Yt1,t2 , Yt3,t4 , etc., are independent. The
Brownian motion path also is a continuous function of t.

Consider times t0 = 0, and tk+1 > tk. We abuse notation by writing Xk =
Xtk for the positions of the Brownian motion path at times tk. Let X =
(X1, X2, . . . , Xn). We write the PDF fn(x1, . . . , xn), using the independent
increments property. First, the first increment is Yt0,t1 = X1 − X0 = X1 is
normal with mean zero and variance t1. Therefore its PDF is

f1(x1) =
1√

2πt1
e−x

2
1/2t1 .

Since t0 = 0 and X0 = Xt0 = 0, it is harmless to write this in the seemingly
more complicated form

f1(x1) =
1√

2π(t1 − t0)
e−x1−x0)2/2(t1−t0) .

Independent of X1, the next increment is Gaussian with mean zero and variance
t2−t1. This means that ifX1 is known thenX2 = X1+Yt1,t2 is normal with mean
X1 and variance t2 − t1. Therefore, the joint density of (X1, X2) is the product
of the marginal density of X1 and the conditional density of X2 conditioned on
X1. That is

f2(x1, x2) =
1√

2π(t1 − t0)
e−(x1−x0)2/2(t1−t0) 1√

2π(t2 − t1)
e−(x1−x0)2/2(t2−t1)

=
1

Z(t1, t2)
e
−1
2

[
(x1−x0)2

(t1−t0)
+

(x2−x1)2

(t2−t1)

]
.

The second line shows how convenient it can be not to write the normalization
constant explicitly, because it is complicated and often not important. Contin-
uing in this way leads to

fn(x1, . . . , xn) =
1

Z(t1, . . . , tn)
exp

[
−1

2

n∑
k=1

(xk − xk−1)2

tk − tk−1

]
. (15)
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The normalization constant is

Z(t1, . . . , tn) = (2π)
n/2

(
n∏
k=1

(tk − tk−1)

)1/2

.

These formulas show that the Brownian motion values at any sequence of times
are distributed as a multi-variate Gaussian. I am aware of the conflict of no-
tation, that Z represents a standard normal and the normalization constant in
(15). I hope it doesn’t cause too much confusion.

A Brownian motion path is a function X(t) for t in some range. The path
cannot exist in the computer because it takes an infinite number of numbers
to describe it. A computer approximation is the values of Xt at a sequence
of times tk = k∆t. Generating a path means finding a set of numbers XkXtk

(another conflict of notation) whose PDF is (15), with tk − tk−1 = ∆t. The
independent increments property leads to a simple direct sampler for this. First
generate X1 ∼ N (0,∆t) as

√
∆t Z1, then generate X2 ∼ X1 + N (0,∆t)as

X2 = X1 +
√

∆t Z2, and so on. A sequence of i.i.d. standard normals Z1, . . . , ZN
turns into the values of a Brownian motion path Xk = Xtk using X0 = 0 and

Xk = Xk−1 +
√

∆t Zk .

This is not the only way to do it, but it is the simplest.

6.1 The Brownian bridge construction

Many variance reduction methods are ways to exploit your understanding of
what the most important components of X are. It may be that V (x) is more
sensitive to some components of V than to other components. If so, we can look
for ways to relate X to a lower dimensional model with just the most important
components, or to use the most important component or components in partial
quadrature. Mathematically, this may involve a change of coordinates.

The Brownian bridge construction is a coordinate change that identifies the
most important components of Brownian motion in many cases. The Brownian
bridge parametrization of Brownian motion allows for remarkable variance re-
duction in many applications. You can find examples from finance in the work
of Russ Caflisch and Bill Morokoff. This section “recalls” enough of the basics
about Brownian motion to describe it.

The Brownian bridge construction consists of first choosing the end point,
then the midpoint, then the two quarter points, then the 4 eighth points, and
so on. That is we first choose XT , then XT/2, conditional on the value of XT ,
then the two values XT/4 and X3T/4, etc. To start, XT is Gaussian mean zero
and variance T , which we can do as (all Z random variables are independent
standard normals):

XT =
√
TZ1 .

We then need the conditional distribution of XT/2, given XT and X0 = 0. This
conditional density, as a function of the unknown xT/2, is the same (up to a

14



normalization constant) as the joint density. Look to (15) for the joint density,
and you get the conditional density as

f2(xT/2|xT ) =
1

Z
exp

[
−1

2

(
x2
T/2

T/2
+

(XT − xT/2)2

T/2

)]
.

The random variable is xT/2 and the exponent depends quadratically on this
quantity. A quadratic is characterized by its minimum (in this case) and the
coefficient of x2

T/2. We find the minimizer by differentiating with respect to
xT/2 and setting the derivative to zero.

0 = ∂xT/2

(
x2
T/2

T/2
+

(XT − xT/2)2

T/2

)

=
2

T/2

(
xT/2 − (Xt − xT/2)

)
=

2

T/2

(
2xT/2 −XT

)
.

The most likely value of XT/2, which is the same as mean for a Gaussian, is 1
2XT .

The coefficient of x2
T/2 is what you see when you let xT/2 go to infinity, which

is 2
T/2 . Therefore, the conditional variance of XT/2 is the reciprocal of this,

which is T
4 . This shows that the conditional distribution of XT/2 is Gaussian

with mean 1
2XT and variance T/4. If we did not know XT , the unconditional

variance of XT/2 would be T/2. Knowing XT adds information and removes
uncertainty – hence the lower variance. This conditional XT/2 distribution may
be sampled using

XT/2 =
1

2
XT +

√
T

4
Z2 .

Note that the conditional mean, which is 1
2XT , is on the line connecting X0 = 0

to XT . Continuing, we sample the conditional distribution of the quarter points
using

XT/4 =
1

2
XT/2 +

√
T

8
Z3

X3T/4 =
1

2

(
XT/2 +XT

)
+

√
T

8
Z4 .

At the next level, normals Z5, Z6, Z7, and Z8 would be used to create values
for XT/8, X3T/8, X5T/8, and X7T/8. For example, X5T/8 = 1

2 (XT/2 +X3T/4) +√
T
16 Z7.

The Brownian bridge construction is useful in Monte Carlo for systematic
sampling. In many applications of Brownian motion, the first variables Z1, Z2,
etc., have more impact on the answer than the later ones. Suppose there are L
levels and N = 2L times, ti = i∆t, with ∆t = T/N . Then the Brownian motion
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path at those times is determined by Z1, . . . , ZN . Let V (X) be some function of
Brownian motion. Then this V is ultimately a function of the Brownian bridge
variables, which we write as V (Z1, Z2, . . .). In many applications it happens that
the variance of V (z1, Z2, . . .) (which is V with the first Z fixed) is significantly
smaller than the overall V . Systematic sampling over Z1 may reduce the overall
variance in such cases.

7 Importance sampling and rare event simula-
tion

Suppose R is some event and we want

A = P(X ∈ R) =

∫
x∈R

f(x) dx . (16)

Rare event simulation is the problem of estimating A when A is very small.
Direct simulation is a poor approach in the sense that you need many samples
to estimate A accurately. More precisely, the relative error in Â, an estimate of
A, is

Â−A
A

.

If A = 10−5 and Â = 3 · 10−5, the error is “only” Â − A = 2 · 10−5, but the
relative error is 2. The estimate is off by a factor of 3. Direct estimation suffers
from this if A is small.

Suppose X1, . . . , Xn are independent samples of f , and Yi = 1 if Xi ∈ R and
Yi = 0 otherwise. The number of hits is

N =

n∑
k=1

Yi .

Each Y is a Bernoulli random variable with mean A and variance A(1 − A).
The standard deviation of N is

σN =
1√
n

√
A(1−A) ≈

√
A

n
.

The second approximation is valid when A is small, so 1 approximates 1−A to
a high relative accuracy. Since â−A is on the order of σN , the relative error is
of the order √

A
n

A
=

1√
nA

.

This shows that the relative accuracy depends on the expected number of hits
(which is nA), not the number of samples (which is n). It takes a reasonable
number of hits to get even a rough idea of A. If A is very small, most of the
samples will not be hits, and will therefore be wasted.
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There are other Monte Carlo computations that depend on rare events. The
quantity A = E[V (X)] may be determined by rare events in the sense that (just
think of ε and δ as small numbers)

P(V (X) > εA) ≤ δ . (17)

For example, consider the moments of a standard normal

M2n = EN (0,1)

[
X2n

]
= (2n− 1)(2n− 3) · · · · 3 · 1 .

For 2n = 12 (the twelth moment), we have

A = M12 = 11 · 9 · 7 · 5 · 3 = 135135 .

On the other hand,

P
(
X2n ≥ 22n

)
= P(|X| ≥ 2) ≈ .052 = δ .

Take the ε in (17) corresponding to |X| = 2 and you get ε = 22n/M12 = .03.
The probability that V (X) is more than 3% of the answer is about 5%. This
can be put in a form more relevant for Monte Carlo error bars. The difficulty
of estimating A is proportional to the dimensionless measure

D =
σV (X)

A
.

The relative error after n independent samples is of the order of D/
√
n. In this

example, with n = 6,

D =

√
E[X12]− E[X6]

2

E[X6]

=

√
11 · 9 · 7 · 5 · 3− (5 · 3)2

5 · 3
=
√

11 · 9 · 7/(5 · 3)− 1

= 6.7 .

For n = 12 the corresponding number is D = 54 (check this!). This suggests
that if you use n = 1002 = 10, 000 samples, the relative accuracy is on the order
of

54√
10, 000

=
54

100
= .54% .

Rare event sampling is a way to get better than 54% error after ten thousand
samples.

There are several approaches to rare event sampling and variance reduction.
Many of these call for MCMC methods, so we talk about them later. Impor-
tance sampling is an approach based on understanding the mechanism of the
rare event. The understanding is used to create a different probability density,
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g(x), that puts more weight on the parts of probability space relevant for the
rare event. We will see that if this is not done carefully, the variance can be
increased. A supposed variance reduction method will become just a variance
altering method.

For any probability g, the target quantity may be written

A = Ef [V (X)]

=

∫
V (x)f(x) dx

=

∫
V (x)

f(x)

g(x)
g(x) dx

A = Eg[L(X)V (X)] , where L(x) =
f(x)

g(x)
. (18)

Here, L is the likelihood ratio, a term borrowed from statistics. The original rare
event problem (16) takes V to be the indicator function V (x) = 1R(x), which
takes the values 1R(x) = 1 if x ∈ R and 1R(x) = 0 if x /∈ R. The variance that
is relevant for the direct estimator is

σ2
d =

∫
(V (x)−A)

2
f(x) dx .

The variance for the importance sampling estimator is

σ2
is =

∫
(L(x)V (x)−A)

2
g(x) dx .

The goal of this section is to study f and V and learn how to identify a g so
that σis is as small as possible.

To find an importance function, we try to identify the mechanism by which
the rare event X ∈ R happens. A “mechanism”, when there is one, is a small
region of R where that contains most of the probability that is in R. To say
this differently, rare events are not predictable, but they happen in predictable
ways. We cannot say when a rare event will happen, but we can say how it will
happen.

A direct application of “how rare events happen” philosophy is to find the
most likely point in the rare event set:

x0 = arg max
x∈R

f(x) .

One might hope that f(x0) is an estimate of the probability (16), and that x0

suggests the mechanism. But this cannot be exactly right because f(x0) is a
probability density, not a probability. To get a probability, you need to know
something about the the size of the set in R where f(x) is not too different
from f(x0). Subsection ?? gives an example where this direct approach works.
Subsection 7.2 gives an example where you have to work harder. There the
philosophy works only in some generalized sense.
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7.1 Asymptotic methods of integration

Mathematical analysis of rare events proceeds by introducing a small parameter,
ε. The probability density f or the event R are made to depend on ε in a way
that Pε[X ∈ Rε] → 0 as ε → 0. The event R is rare if R does not come close
to the “center” of f where the probability is large. To make this happen as
ε→ 0, we can make Rε move away from the center, or we can fix R and make
fε increasingly concentrated about a point x∗ /∈ R. Following tradition, we take
the fε approach here, though the Rε approach is equivalent.

We have seen that probability densities often are expressed as exponentials.
Here is a density that becomes concentrated about a point

fε(x) =
1

Zε
e−φ(x)/ε . (19)

The astute reader will see that this is equivalent to the Gibbs Boltzmann dis-
tribution from Week 1, with ε playing the role of temperature, and β = 1/ε.
This subsection discusses methods for estimate integrals involving fε in the limit
ε → 0. The Laplace method of asymptotic integration is for integrals involving
fε that include a neighborhood of x∗, the minimizer of φ and the maximizer of
f . The other method, which is simpler and doesn’t seem to have a name, is for
integrals that exclude a neighborhood of x∗. The Laplace approximation is the
basis of the BIC (Bayesian Information Criterion) for Bayesian model selection.

Suppose φ(x) is a smooth function of x ∈ Rn so that φ(x) > φ(x∗) if x 6= x∗.
Let H = D2φ(x∗) be the Hessian matrix of φ at x∗. We know H is positive semi-
definite, because x∗ is a local minimizer of φ. The minimum is non-degenerate
if H is positive definite. The Laplace approximation for this case is∫

e−φ(x)/ε dx = (2π)
n/2 εn/2√

det(H)
e−φ(x∗)/ε (1 +O(ε)) . (20)

This formula and O(ε) error are true provided that φ has partial derivatives up
to order 4, and x∗ is a non-degenerate global minimum, and if φ(x) → ∞ as
|x| → ∞ fast enough. It suffices, for example, that φ(x) ≥ C1 + C2 |x|p for any
p > 0.

The most significant content of the Laplace approximation formula (20) is
the exponential e−φ(x∗)/ε. If we write A(ε) for the integral on the left, the
simplest Laplace approximation is

A(ε) =

∫
e−φ(x)/ε dx ∼ e−φ(x∗)/ε .

This tells us that A(ε) → 0, or A(ε) → ∞, exponentially as ε → 0, depending
on the sign of φ(x∗). Multiplying the exponential term is the prefactor

(2π)
n/2 εn/2√

det(H)
.
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The prefactor behaves like a power of ε as ε→ 0. The prefactor is usually harder
to identify than the the exponential factor. The exponential factor just depends
on φ(x∗), not on the dimension, or the behavior of φ near x∗. The prefactor con-

tains a dimension dependent constant, (2π)
n/2

, a dimension dependent power
of ε, and derivative information on φ. The prefactor is particularly hard to
identify in rare event problems involving paths, which are infinite dimensional.
Theorems about rare events are often called large deviation theorems, because
large deviations are rare. If you can only identify the exponential and not the
prefactor, the statement would be

lim
ε→0
−ε log(A(ε)) = φ(x∗) .

We do not give a complete proof of the Laplace formula (20), the main idea
was present in Assignment 1. Most of the integral is determined by a small
neighborhood of x∗. Near x∗, the exponent may be approximated by the lowest
order Taylor approximation that leads to a finite integral, which is, as we saw
last week,

φ(x) ≈ φ(x∗) + 1
2 (x− x∗)tH (x− x∗) .

If we replace φ(x) by this Taylor approximation, the integral becomes exactly
the Laplace approximation, without the O(ε) correction. The correction comes
from corrections to the Taylor expansion. The cubic correction term is

C(x− x∗) = 1
6

∑
ijk

∂xi
∂xj

∂xk
φ(x∗) (xi − x∗i) (xj − x∗j) (xk − x∗k) .

The quartic correction term is

Q(x−x∗) = 1
24

∑
ijkl

∂xi∂xj∂xk
∂xl

φ(x∗) (xi − x∗i) (xj − x∗j) (xk − x∗k) (xl − x∗l) .

The Taylor approximation that uses these terms is

φ(x) ≈ φ(x∗)+ 1
2 (x− x∗)tH (x− x∗)+C(x−x∗)+Q(x−x∗)+O

(
|x− x∗|5

)
.

The integral, using the approximate φ up to order four, is

A(ε) ≈ eφ(x∗)

∫
e−

1
2ε (x−x∗)tH(x−x∗)e−

1
ε (C(x−x∗)+Q(x−x∗)) dx .

A re-scaling change of variables lets us understand the relative sizes of the terms
in the exponent. Let y = 1√

ε
(x− x∗). The quadratic term transforms as

1
2ε (x− x∗)tH (x− x∗) = 1

2y
tHy .

The cubic and quartic terms transform as

1
εC(x− x∗) =

√
εC(y) , 1

εQ(x− x∗) = εQ(y) .
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The differential transforms as dx = εn/2dy. The integral takes the form

A(ε) ≈ εn/2 eφ(x∗)

∫
e−

1
2y

tHye−(
√
εC(y)+εQ(y)) dy .

We can expand the small terms in the second exponential to order ε

e−(
√
εC(y)+εQ(y)) = 1−

√
εC(y) + ε( 1

2C(y)2 −Q(y)) .

Then

A(ε) ≈ εn/2 eφ(x∗)

( ∫
e−

1
2y

tHy dy

−
√
ε

∫
e−

1
2y

tHyC(y) dy

+ ε

∫
e−

1
2y

tHy( 1
2C(y)2 −Q(y)) dy

)
.

The top line gives the main term of the Laplace approximation (20). The second
line, the O(

√
ε) term, integrates to zero because C(y) is odd and the exponent

is even. The third line gives the O(ε) correction in (20).
These notes will not give a complete mathematical proof of the Laplace

approximation formula. But it is not hard, should a reader have the interest
and background, to give a proof along the lines of the problem from Assignment
1. You can split the integration domain into a part within O(ε5/12) of x∗, where
the above calculations are valid, and the rest, which integrates to something
exponentially smaller. The power p = 5

12 is chosen so that p < 1
2 , which

makes the outside integral exponentially smaller, and so that p > 1
3 , so that

1
ε |x− x∗|

3 � 1 in the inside integral, making the Taylor expansion of the
exponential valid there. The reader who wants to learn something, and have a
more elegant proof, should look up the Morse lemma.

The other integral approximation is for one dimensional integrals over a
range that does not include x∗. Let

A(ε) =

∫ ∞
x0

e−
1
εφ(x) dx .

Suppose φ′(x) > C > 0 for all x ≥ x0. Then most of the “mass” of this integral

is at the left endpoint, and the exponential part of A(ε) should be e−
1
εφ(x0) We

find the prefactor and correction terms using Taylor series, as for the Laplace
approximation. This is, near x0,

φ(x) ≈ φ(x0) + φ′(x0)(x− x0) + 1
2φ
′′(x0)(x− x0)2 .

This approximation in the A(ε) integral gives (using Laplace approximation
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calculations)

A(ε) ≈ e− 1
εφ(x0)

∫ ∞
x0

e−
1
εφ
′(x0)(x−x0)e−

1
2εφ
′′(x0)(x−x0)2 dx

= εe−
1
εφ(x0)

∫ ∞
0

e−φ
′(x0)ye−

ε
2φ
′′(x0)y2 dy

≈ εe− 1
εφ(x0)

∫ ∞
0

e−φ
′(x0)y

(
1− ε

2
φ′′(x0)y2

)
dy

A(ε) ≈ ε

φ′(x0)
e−

1
εφ(x0)

(
1− ε φ

′′(x0)

φ′(x0)2

)
. (21)

The leading order prefactor is ε
φ′(x0) . It would be the exact answer if φ were

linear.
In applications of these approximations, we do not always bother to put

the integral into the precise forms given. For example, suppose X ∼ N (0, 1)
is a standard normal, and we want an approximate expression for P(X > x) =
1−N(x) when x is a large positive number. The integral for this is

P(X > x) =
1√
2π

∫ ∞
x

e−y
2/2 dy .

We see that φ(y) = y2/2, and φ′(x) = x. Therefore

P(X > x) ≈ 1√
2π

1

φ′(x)
e−φ(x)

=
1√
2π

1

x
e−x

2/2 .

This is reasonably accurate already when x = 2. The approximation gives

P(X > 2) ≈ 1√
2π

1

2
e−2 = .026695 .

The exact answer is .02275. The relative error is (.026695 − .02275)/.02275 =
18%. The correction term in (21) suggests that the relative error is approxi-
mately φ′′(x)/φ′(x)2 = 1/x2, which suggests that it decays by a factor of 4 if
you increase x from 2 to 4. In fact, the relative error at x = 4 is 5.4%, which is
a little larger than 18%/4 = 4.5%.

7.2 Cramer’s theorem

Suppose Yk are independent with common density g(y) and mean (the purpose
of the subscript will be clear soon)

x0 = E0[Y ] =

∫
yg(y) dy .
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Cramer’s theorem gets at the probability that the empirical mean of n samples
is very different from x0. If x > x0, we want to estimate

P(X ≥ x) ,

where X is the empirical mean

X =
1

n

n∑
k=1

Yk .

Cramer’s theorem estimates this probability when n is large, provided the proba-
bility density g has exponential tails, which means that the exponential moments
are finite:

Z(λ) = E
[
eλY

]
=

∫
eλyg(x) dy <∞ , (22)

at least for a range of λ values. The result is that the probability is exponentially
small:

P(X ≥ x) ∼ e−nC(x) .

The derivation also gives the prefactor. It suggests a way to do rare event
sampling in this case.

We start by writing the probability density, f(x), for X.

f(x) =

∫ ∫
· · ·
∫
g(y1)g(y2) · · · g(yn) δ

(
x− y1 + · · ·+ yn

n

)
dy1 · · · dyn .

This is because X = x is equivalent to x = 1
n (Y1 + · · ·+ Yn). (Reasoning

with delta functions may be tricky. For example, X = x is also equivalent to
nx = Y1 + · · · + Yn. You can check that our f is a probability by integrating
with respect to x and getting 1. You can derive an equivalent expression with-
out delta functions but with convolutions. Our formula is more convenient for
calculations.) The trick of Cramer’s theorem has several natural motivations,
none of which are presented here. It is that if nx = y1 + · · ·+ yn, then

enλx = eλy1 · · · eλxn .

Therefore

enλxf(x) =

∫
· · ·
∫
eλy1g(y1) · · · eλyng(yn) δ

(
x− y1 + · · ·+ yn

n

)
dy1 · · · dyn .

Now, eλyg(y) is not a probability density, but it can be normalized to be a
probability density

g(y, λ) =
1

Z(λ)
eλyg(y) . (23)

Therefore

Z(λ)−nenλxf(x)

=

∫
· · ·
∫
g(y1, λ) · · · g(yn, λ) δ

(
x− y1 + · · ·+ yn

n

)
dy1 · · · dyn . (24)
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The integral on the right is the probability density of X if Y ∼ g(y, λ). The
density g(·, λ) given by (23) is the original density modified by an exponential
twist. For positive λ, this twist “pulls” the expected value to the right. The
twisted expectation is

xλ = Eλ[Y ] =

∫
yg(y, λ) dy =

1

Z(λ)

∫
yeλyg(y) dy .

If λ > 0, then xλ > x0. In fact, xλ is a strictly increasing function of λ.
Therefore the inverse relation is well defined. For “any” x, there is a λ(x) so
that xλ(x) = x.

Here’s the important observation (motivation exists but isn’t given here): If
we use λ(x) so that Eλ[Y ] = x, then the central limit theorem gives an estimate
of the right side of (24). If Eλ[Y ] = x, then X has the approximate density

N (x, σ
2

n ), where the appropriate variance is

σ2 = varλ(x)(Y ) = Eλ

[
(Y − x)

2
]

=
1

Z(λ)

∫
(y − x)

2
eλyg(y) dy .

If X ∼ N (x, σ
2

n ), then the right side of (24) is

fλ(x)(x) =
1√

2π σ
2

n

.

Therefore

f(x) ≈
√
n√

2πσ2
exp
{
−n [xλ(x)− log(Z(λ(x))]

}
. (25)

8 Exercises and examples

1. Control variates often help estimate the difference between the true answer
and an analytic approximation. In an earlier lecture we discussed using a
Gaussian to approximate the probability density

f(x) =
1

Z(β)
e−βφ(x)

when β is large (low temperature). We suppose the minimum of φ is at
x = x0. The leading order Taylor series approximation of φ about x0 is
given by the Hessian matrix H = φ′′(x0). It is

φ(x) ≈ φ(x0) + 1
2 (x− x0)tH(x− x0) .

The problem will be to estimate the specific heat, for which we need

Eβ [φ(X)] =

∫
φ(x)e−βφ(x) dx∫
e−βφ(x) dx

.
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We apply the weighted direct sampling idea from last week. This leads us
to the problem of evaluation

A(β) =

∫
φ(x)e−βφ(x) dx .

We write this as an expectation with respect to the Gaussian probability
distribution of the low temperature approximation

g(x) =
det(H)1/2

(2π)
d/2

e−β(x−x0)tH(x−x0)/2

After some algebra, we find

A(β) =
(2π)

d/2
e−βφ(x0)

det(H)1/2
Eg

[
φ(X) e−β(φ(X)−φ(x0))

]
.

Now (finally coming to the point), there is a formula for Gaussian expec-
tation of (x − x0)tH(x − x0). Independent of H, depending only on the
dimension,

Eg
[
(x− x0)tH(x− x0)

]
= d .

Therefore, we are in the situation of Section 4, with

V (x) = φ(x) e−β(φ(x)−φ(x0)) , W (x) = (x− x0)tH(x− x0) .

25


