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1 Rare events

Rare event simulation is the problem of finding the probability of very unlikely
events. A direct approach would be to take n samples, take N to be the hits,
the number of times the event happened, and take

p̂ =
N

n
.

We saw that the accuracy is approximately

relative accuracy =
σp̂
p
≈ 1

E[N ]
1
2

.

This was assuming independent samples, but the MCMC error estimate is pes-
simistic too. To understand the formula, if you do 100, 000 = 105 samples and
get 5 hits, then the accuracy is related to 5, not 105. Many applications call for
estimating probabilities this small, or for doing other estimations that depend
on this with such small probabilities.

A related problem is estimating the evidence integral

Z(Y ) =

∫
L(Y |x)π(x) dx . (1)

You could do this by sampling the prior (π), but if you have good data that
strongly constrain x, then most samples of the prior are poor fits to the data.
It is unlikely that a random X ∼ π resembles the x values that determine Z.
We now have reasonably effective ways to sample the posterior

ρ(x|Y ) =
1

Z(Y )
L(Y |x)π(x) .

It is ironic that Monte Carlo was invented as a way to estimate integrals, but
estimating this integral is harder than sampling the distribution.

This class discusses two approaches to rare event simulation. One class of
strategies is importance sampling motivated by large deviation theory. Large
deviation theory is a group of theorems in probability theory that concern prob-
abilities that depend on a parameter such as n → ∞ or ε → 0. The theorems
are motivated by the idea that pn ∼ e−Cn as n → ∞. A typical theorem (see
Section 2) says this in the weak form

lim
n→∞

− 1

n
log(pn) = C .
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The proof of a large deviation theorem, like the one in Section 2, usually identi-
fies a “mechanism”, which is a description of a typical sample that meets the rare
criterion. The hope is that this may be interpreted as an importance function
(change of probability distribution) that makes the rare event more likely.

The other broad approach seeks very rare events as being the result of a
sequence of reasonably likely events. You can view this as a sequence of hurdles
that an event much go over to be in the target class. A simple example is in
Section 3. These seem preferable to methods derived from large deviation theory
because you don’t have to start out with such a clear idea of the mechanism.
Unfortunately, this is debatable. If you don’t understand the mechanism, you
are likely to create a sequence of hurdles that leads to unlikely rare events,
events that are not typical of the rare event class you are looking for.

The method of Section 3 is an example of methods that use not just one
or two probability distributions, but a sequence of them, ρk. For a well chosen
sequence, neighboring distributions ρk and ρk+1 have a reasonable “overlap”, in
one of several senses. This means that it is not hard to go from ρk to ρk+1. Two
instances of this idea are thermodynamic integration for estimating integrals like
the evidence integral, Section 4, and simulated tempering or parallel tempering
of Section 5

2 Cramer’s theorem

Cramer’s theorem describes the probability that the sample mean of n i.i.d.
random variables is completely wrong. More precisely, suppose f(x) is the PDF
of a one component random variable and

Ef [X] = µ .

The sample mean is

Xn =
1

n

n∑
k=1

Xk .

Take a > µ and ask for
pn = Pr

[
Xn ≥ a

]
.

Cramer’s theorem is an approximate formula for Pn for large n, which applies
if X has “light tails”.

We give a derivation of the approximate formula for pn that is similar to
the usual derivation but has the advantage that is also identifies the prefactor.
The prefactor contains a power of n, so the estimate of pn cannot be accurate
without it. The idea behind these proofs is to modify the distribution with an
exponential twise (not a good term, but it stuck). The twisted distribution has
expected value a. The prefactor comes from the central limit theorem.

The “twisted” distribution is the PDF

fλ(x) =
1

Z(λ)
eλx f(x) . (2)
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The normalization factor is

Z(λ) =

∫ ∞
−∞

eλxf(x) dx . (3)

Cramer theory works as long as Z(λ) < ∞. This happens if f(x) goes to zero
at a fast enough exponential rate for the integral (3) to converge. Otherwise the
probability pn behaves in a different way and typical samples for a > µ have a
different character. We define the un-normalized sum as

Sn = X1 + · · ·+Xn . (4)

The PDF will be gn(s), so Sn ∼ gn(·). The PDF is given by

gn(s) =

∫
· · ·
∫
δ(s− x1 − · · · − xn) f(x1) · · · f(xn) dx1 · · · dxn . (5)

We will use the central limit theorem and the twisted density (2) to estimate
gn(na). Then one of our approximate integration methods (which we called
“Watson’s lemma”) gives the approximate probability. The trick is to choose λ
so that a is the expected value in the twisted distribution

a = Eλ[X] =
1

Z(λ)

∫ ∞
−∞

xeλxf(x)dx . (6)

Call this number λ∗(a). It is “easy to see’ that if λ∗ exists, and if the problem
is not trivial, the it is unique.

The trick is to see that the integrand in (5) is equal to zero unless s =
x1 + · · ·+ xn. Therefore, in the integral,

1 = e−s+x1+···+xn = e−sex1 · · · exn .

We also multiply by n factors of Z(λ) 1
Z(λ) . Finally, we use/abuse the common

convention
F (λ) = log(Z(λ)) , Zn = e−nF (λ .

The result is

gn(s) = e−s+nF (λ)

∫
· · ·
∫
δ(s− x1 − · · · − xn) fλ(x1) · · · fλ(xn) dx1 · · · dxn .

This is true for any λ. We rewrite it and put in λ∗:

gn(an) = e−(a−F (λ∗))n

∫
· · ·
∫
δ(an−x1−· · ·−xn) fλ∗(x1) · · · fλ∗(xn) dx1 · · · dxn .

(7)
Here is the point of the choice of λ∗. The PDF fλ∗ has mean value a and the
integral on the right is the probability density that na is exactly the sum of of
the Xk. For large n, the PDF of

∑
Xk is approximately normal (in the twisted

fλ∗ distribution) with mean an and variance nσ2
λ∗

, with

σ2
λ∗

=

∫
(x− a)2fλ∗(x) ds . (8)
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The Gaussian PDF consists only of the pre-factor when evaluated at its mean.
The pre-factor, for variance nσ2

λ∗
, is

1√
2πnσλ∗

.

Therefore,

gn(an) ≈ 1√
2πσ2

λ∗(a)

1√
n
e−n(a−F (λ∗)) . (9)

Exercise 1 asks you to estimate pn from this.
I don’t know how Cramer came to the idea of exponential twist. You can

see the structure in examples. A physicist might find the exponential twist (2)
natural. If you want E[X] to move from µ to a, you have to “pull”, which means
apply a force. The potential corresponding to a force λ is λx. The probability pn
is an integral over the set

∑
xk ≥ an. An approximate formula for pn would be

an approximate integration method. You can view the central limit theorem as
an approximate integration method, and one of the only approximate integration
methods that gets better when the dimension increases. Our other methods,
Watson’s lemma and the Laplace method, require care in high dimensions.

The proof suggests an importance sampling method with

(X1, · · · , Xn) ∼
n∏
k=1

fλ∗(xk) . (10)

The twisted estimator is: first make M samples from the twisted distribution
(10), then use the twisted estimator

p̂ =
1

M

M∑
k=1

L( ~Xk)1∑
Xk,j>na . (11)

The factor 1∗∗ is the indicator function that is equal to 1 if
∑
j Xk,j > a.

There are some technical things we need to do to implement this sophisti-
cated estimation strategy. For one thing, we have to compute the function Z(λ)
and solve the equation (6). Actually, we can differentiate to get

F ′(λ) =
1

Z(λ)
Z ′(λ) =

1

Z(λ)

∫
xeλxf(x) dx .

Therefore, (6) is equivalent to f ′(λ) = a. These integrals may be calculated
and the equation solved by numerical integration and One variable Newton’s
method. Those calculations would be fast compared to the work it takes to
sample. This is a general feature of large deviation inspired methods – some
deterministic computational problem to solve to find the “mechanism”. There,
that is just identifying λ∗. In other instances (e.g., work by Professor Vanden
Einden and others) it requires solving a partial differential equation. Even then,
the PDE solve is cheap compared to sampling.
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Once we have λ∗, we have to sample the twisted distribution (2). After
a hard class on Monte Carlo methods, we expect to know enough to do this
efficiently. Rejection sampling is often used here. A piece of philosophy is that
we can do hard MC methods because we are able to sample from distributions
efficiently.

3 Histogram bifurcation

Histogram bifurcation methods estimate pn by estimating sr defined by

Pr(Sn > sr) = 2−r .

Suppose we choose a one-step sample size m and choose m independent samples
with Xk,j ∼ f . Then we can estimate s1 by

# {X1,j > s1} =
1

2
m .

This says that half the sample is above s1 and half is below. Define the “Cramer
set”

Cs ⊂ Rn =

 ~X |
n∑
j=1

Xj > s

 .

We are looking for sr so that

Pr(Csr ) = 2−r .

If we estimate this by sampling from the un-twisted distribution, we will be
doing direct rare-event sampling, which is a bad idea. Instead, we use the fact
that

Pr( ~X ∈ Csr+1
| ~X ∈ Csr ) =

1

2
. (12)

This suggests a way to estimate sr+1 from sr.
Let ρs be the probability distribution defined by the constraint Cs

ρs(~x) =
1

Pr(Cs)

{ ∏
f(xj) if

∑m
J=1 xj > s

0 otherwise .

Suppose we have ŝr, which is an estimate of sr. Then we calculate ŝr+1 by using
MCMC to get m samples from ρŝr and then choosing ŝr+1 so that half of the
samples are greater than ŝr+1. You can say that ŝr+1 bifurcates (cuts in half)

the histogram of S for ~X ∼ ρsr .
The proof of Cramer’s theorem suggests that there is an efficient Gibbs sam-

pler for ρs that works by resampling Xi successively for i = 1, · · · , n. Suppose
you want to resample component Xi. You make a proposal Y ∼ f and accept
if the new sample is in Cr: n∑

j=1

Xj

+ Y −Xi > s .
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Otherwise you reject Y and keep the old value Xi. The probability that Y is
accepted is related to the “overlap” between f and fλ. This overlap is “healthy”
even when pn is exponentially small. This makes it practical to simulate ρs with
reasonable auto-correlation time.

These repeated bifurcation methods (and related method below) suffer from
a buildup of error The error ŝr+1 depends on the error in ŝr and in the new error
from one more bifurcation. An overall error bound for the estimate of pn would
have to take into account the number of bifurcations needed to get there. Since
the bifurcation errors are approximately independent, this might scale like the
square root of the number of bifurcation steps. The bifurcation method is not
cheap, but is it much cheaper than the direct method. It could be optimized –
maybe the factors should not be 1

2 . Maybe all the simulations should not have
the same length?

Finally, a piece of philosophy. The Cramer theory and algorithm depend
on the integrals (6) being finite. This fails in “fat tailed” distributions that do
not have very fat tails. For example, it fails for the log-normal distribution,
which has finite moments of all orders. When the exponential moments (6)
become infinite, then the mechanism of S > na changes. It is likely that the
bifurcation algorithm also starts to perform poorly in that case, because the
Gibbs sampler has a harder distribution. The bifurcation algorithm requires
less knowledge from analysis than the importance sampler, but it does require
some knowledge.

4 Thermodynamic integration

Thermodynamic integration is a method for estimating integrals like (1). It uses
a sequence of stages, as the bifurcation method does. Each stage gains a factor,
so you get many factors using many stages. The idea is to define a sequence of
likelihood distributions Lβ(x) We then define

Z(β) =

∫
Lβ(x)π(x) dx .

Note the simplified notation with that data Y not given explicitly. The likeli-
hoods should be chosen, for 0 ≤ β ≤ 1 so that Z(0) is known and Z(1) is the
target. The

5 Simulated tempering

6 Exercises

1. Use Watson’s lemma and the formula (9) to estimate pn(a). The expo-
nential factor is the same but the constant and the power of n in the
pre-factor change. Be careful to integrate with respect to s and not a.
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2. Discuss the details of implementing the Cramer inspired importance sam-
pling estimator (11).

(a) Write a formula for the likelihood ratio.

(b) Use Cramer theory (arguments like Section 2) to estimate var(p̂).
Don’t worry about the constant. Just show that the relative accu-
racy goes like a power of n rather than an exponential as the direct
estimator does.

3. Code the single component Gibbs sampler from Section 3. Take f(x) to
make X uniformly distributed in [−1, 1]. Use this to estimate

E[, S | S > s] .

You will have to several histogram splittings to get to large values of s.
Compute the auto-correlation function and estimate the autocorrelation
time of the MCMC sequence Sk. The surprising result is that τ < 1.
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