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1 Introduction to Markov chain Monte Carlo

Markov chain Monte Carlo, called MCMC is part of most Monte Carlo calcula-
tions. If you have a probability distribution in more than one or two variables
that comes from a real application, it’s likely that MCMC is the best way to
create samples. My original plan for this course was to do more classes before
introducing MCMC, but most interesting examples rely on it.

A direct sampler is an algorithm that uses a few uniform random numbers
and creates an independent sample of X. Some complex objects have direct
samplers, such as the path Xt of Exercise 6 of Week 1. Every time you call
the path routine, you get a path that is independent of the ones you got be-
fore. Suppose ρ(x) is a PDF that we want samples of. We call this the target
distribution. MCMC produces a sequence Xk that have Xk ∼ ρk(x). Usually
ρn 6= ρ, but

ρk → ρ , as k →∞ . (1)

These Xk are approximate samples of the target distribution, but not exact.
They can be used in place of exact samples for many purposes. For example,
suppose you want

B = Eρ[V (X)] .

[We write B instead of A because A is something else this week.] The approxi-
mate samples lead to estimators

B̂N =
1

N

N∑
k=1

V (Xk) . (2)

If Xk are independent samples of ρ, then this estimator is unbiased. Otherwise

E
[
B̂N

]
=

1

N

N∑
k=1

Eρk [V (X)] . (3)

The right side converges to B as N →∞ because the ρk converge to ρ (1). But
the left side is not equal to B for any fixed N . The estimate is biased.

An issue that can be more serious than bias is statistical error. The error
bar of the MCMC estimate depends on

σ2
N = var

(
B̂n

)
. (4)
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The Xk are not independent, so

σ2
N 6=

1

N2

N∑
k=1

var(V (Xk)) . (5)

The best MCMC known method may leave the right side much larger than the
left side. The true formula is

σ2
N =

1

N2

N∑
j=1

N∑
k=1

cov(V (Xj), V (Xk)) . (6)

We can re-write this to separate out the diagonal terms with j = k and the off di-
agonal terms with j 6= k. The covariance is symmetric, so cov(V (Xj), V (Xk)) =
cov(V (Xk), V (Xj)). Therefore,

σ2
N =

1

N2

 N∑
k=1

var(V (Xk)) + 2

N∑
j=1

N∑
k=j+1

cov(V (Xj), V (Xk))

 . (7)

The second sum on the right involves auto-correlations or auto-covariances,
which are covariances between the same variable at different times. We will
spend a lot of time talking about the auto-correlation time, which measures
how important these auto-correlations are. All of this may seem complicated
and unpleasant, but there are many distributions where this is the best way to
sample.

The method is called Markov chain Monte Carlo because it the Xk are steps
in a Markov chain. [Andrey Andreyevich Markov was a brilliant Russian mathe-
matician from the late 1800’s and early 1900’s. In Russian, including the middle
name is a well deserved sign of respect. Aside from probability, Markov made
important contributions to number theory.] A Markov chain is a sequence of
random variables X1, X2, . . . that is defined by an initial state, X0, and transi-
tion probabilities, R. The chain is stationary (or homogeneous) if the transition
distributions Rk do not depend on k. In this course, we will understand Markov
chain to mean stationary Markov chain. Once X0, X1, . . . , Xk are given, R
determines the distribution of Xk+1 from Xk. We write

Xk+1 ∼ R(·|Xk) . (8)

This means that R(·|y) is a probability distribution as a function of the first
variable for every y. The distribution is different for each y.

A simple Python implementation would involve a function Rsamp(y, rg)

that would return a sample of the distribution R(·|y) using the random number
generator rg. The code will make X[j,k] be component j of Xk. This assumes
tt X0 = X0 is given and the generator rg has been instantiated.

X = np.array([d,(n+1)]) # allocate a d by (n+1) numpy array

X[:,0] = X0 # copy the given initial state

for k in range(n): # (k+1) goes from 1 to n

X[:,(k+1)] = Rsamp( X[:,k], rg) # take one MCMC step
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The command X[:,0] = X0 copies the d components of the one index array X0

to the d components X[0,0], ..., X[(d-1),0]. This uses the slice mecha-
nism in Python, which you should look up if you’re not familiar with it.

A probability distribution ρ is invariant under R if

Xk ∼ ρ =⇒ Xk+1 ∼ ρ . (9)

We also say that R preserves ρ. The first fundamental theorem of MCMC
(called the Perron Frobenius theorem) is that if R is nondegenerate (definition
below), and Xk ∼ ρk, then (1) holds. This says that if R preserves ρ, then
the distribution of Xk converges to ρ as k → ∞. This convergence holds for
any initial state or distribution X0 ∼ ρ0. The second fundamental theorem of
MCMC (called the ergodic theorem for Markov chains) says that the MCMC
estimator (2) converges to the right answer:

B̂N → Eρ[V (X)] , as N →∞ . (10)

This goes beyond convergence of the probability distribution ρk because conver-
gence of the estimators depends on different samples becoming distinct samples
of ρ. To see what this means, suppose R is the trivial transition distribution
Xk+1 = Xk. This preserves ρ, because Xk ∼ ρ =⇒ Xk+1 ∼ ρ (trivially). This
trivial chain is not “nondegenerate” (“not nondegenerate” means “degenerate”)
in the sense we have not yet given. But this chain has

B̂N = V (X0) for all N .

The MCMC convergence (10) obviously does not hold. To summarize, for a
nondegenerate Markov chain that preserves ρ, the distribution of Xk converges
to ρ as k →∞ (Perron Frobenius) and the samples “wander around the sample
distribution” enough that it samples the whole distribution in the sense of (10)
(ergodic theorem).

After all this introduction, here is the main point. Suppose you have a target
distribution ρ and there is no practical direct sampler. It is likely that there is
a practical MCMC sampler. That means, there is a transition distribution R
that is practical and preserves ρ. Many (or most?) interesting distributions are
sampled in this way.

MCMC typically (but not always!) have variance (7) that is much larger
than it would be for independent samples. For independent samples, we saw
that

σ2
N =

var(V (X))

N
. (11)

One of the most unfortunate facts in MCMC is that for large N

σ2
N ≈

τ

N
var(V (X)) . (12)

That is, the MCMC estimator has variance that is larger than a direct estimator
(if that were possible) by a factor of τ , which is called the auto-correlation time.
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This may be written as

σ2
N ≈

1

Neff
var(V (X)) , where Neff =

N

τ
. (13)

This says that the “effective” number of samples, Neff is smaller than the actual
number of samples by a factor of the suto-correlation time. The auto-correlation
time is the number of MCMC steps needed to produce one sufficiently indepen-
dent sample. Someone doing MCMC often is happy to achieve τ as small as
10. For τ = 10 you need ten times the number of MCMC steps as independent
samples to achieve a target accuracy. This can be frustrating.

Reducing τ is a major theme of MCMC research with many beautiful and
powerful methods. This is an active and fast moving area.

An MCMC computation is not serious unless it comes with an estimate of
τ . We saw that it is easy to estimate the static variance, which is var(V (X)).
This gives an error bar for a direct sampler. It is harder to estimate τ for
MCMC samplers. It can be challenging to find reliable error bars for MCMC
computations. Still, an MCMC computation without an error bar is not serious.

As a example, suppose the target distribution for a one component random
variable is ρ = N (0, v). [I put v instead of σ2 for the variance because there
will be other variances in this discussion.] Define the MCMC algorithm to be

Xk+1 = aXk + bZk , Zk ∼ N (0, 1) i.i.d. (14)

This preserves the target ρ if Xk ∼ N (0, v) =⇒ Xk+1 ∼ N (0, v). If Xk is
Gaussian, then Xk+1 is Gaussian, being the sum of independent Gaussians. We
only need the mean and variance, assuming E[Xk] = 0 and var(Xk) = v. The
mean is automatic, because

E[Xk+1] = aE[Xk] + bE[Zk] = a · 0 + b · 0 = 0 .

The variance calculation uses the fact that Xk and Zk are independent. There-
fore

var(Xk+1) = var(aXk) + var(bZk)

= a2var(Xk) + b2var(Zk)

= a2v + b2 .

Then var(Xk+1) = v leads to the equation

v = a2v + b2 .

We can choose any a with |a| < 1 and choose

b =
√
v
√

1− a2 .

The distribution of Xk will converge to N (0, v) as k → ∞. If you start with
X0 = 0 then

X1 = bZ1 , X2 = abZ1 + bZ2 , . . . Xk = ak−1bZ1 + · · ·+ bZk .
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The variance is a geometric series

var(Xk) = a2(k−1)b2 + · · ·+ b2

=
1− a2k

1− a2
v(1− a2)

= (1− a2k)v .

This converges to v as k →∞. To be clear: this is a model problem to illustrate
MCMC. This is not the best way to sample N (0, v). Direct sampling is better.

2 Detailed balance and Metropolis

Detailed balance is the trick behind many MCMC samplers. Let us suppose
that R is given by probability densities so there is a function R(x|y). This
may be called the transition probability density or the transition kernel. Then
if Xk ∼ ρk, then

ρk+1(x) =

∫
R(x|y)ρk(y) dy . (15)

The condition that ρ preserved by R may be written

ρ(x) =

∫
R(x|y)ρ(y) dy . (16)

The problem of MCMC is: given ρ, to find an R(x|y) so that

• R(·|y) may be sampled in a practical way. For any y, R(x|y) is a proba-
bility distribution as a function of x.

• R satisfies (16).

The integral equation (16) is hard to check because it involves a d variable
integral. If you could calculate integrals like that, then you would not need
Monte Carlo to calculate

E[V (X)] =

∫
V (x)ρ(x) dx .

The balance condition (16) is an integral condition and is hard to check.
Detailed balance is an algebraic condition that implies the balance condition

(16) and is easy to check. The condition is written informally as a “balance”
between transition rates

Prρ(x→ y) = Prρ(y → x) . (17)

In order to have an x→ y transition, you first have to be at Xk = x. This has
probability density ρ(x), which is what Prρ(·) means. Then you have to choose
to go to y. This has probability density R(y|x). Together, the probability
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density of an Xk = x,Xk+1 = y, which is the probability density for the pair
(x, y), is

ρ(x)R(y|x) .

The detailed balance condition (17) may be expressed more formally as

ρ(x)R(y|x) = ρ(y)R(x|y) , for all y 6= x . (18)

Section 3 gives more motivation for the terms “balance” and “detailed balance”.
“Balance” is for the PDF at a single point x and transitions to or from all other
states y. “Detailed balance” is a balance condition that requires that from x
transitions to and from y should balance separately for each y. The term comes
from physics (statistical physics). It is a deep physical principle that systems in
“equilibrium” satisfy not only balance, but detailed balance.

The detailed balance condition (18) implies the balance condition (16). You
assume that detailed balance holds and integrate (18) over y∫

y

ρ(x)R(y|x) dy =

∫
y

ρ(y)R(x|y) dy .

The left side integral simplifies because R(y|x) is a probability density as a
function of y for every x, so

∫
R(y|x)dy = 1 and∫

y

ρ(x)R(y|x) dy = ρ(x)

∫
y

R(y|x) dy = ρ(x) . (19)

The right side is the right side of (16). It seems too easy.
Metropolis rejection, also called Metropolis Hastings rejection. is a way to

create a transition R that satisfies detailed balance. The overall Xk → Xk+1

transition has a proposal and an accept/reject step. The proposal is any tran-
sition probability P (y|x) that is a probability distribution as a function of y
for every x. The accept/reject step modifies P so get something that satisfies
detailed balance. Here are the details. You are at Xk and you want to gener-
ate a random Xk+1. First you create a random proposal Y ∼ P (·|Xk). Then
you choose, at random, whether to accept or reject Y . If you accept Y , then
Xk+1 = Y . If you reject Y , then Xk+1 = Xk and Y is forgotten. The acceptance
probability is A(y|x). It is a probability, so 0 ≤ A(y|x) ≤ 1 for all x and y. For
y 6= x, the probability density to propose and then accept y is

R(y|x) = P (y|x)A(y|x) . (20)

The acceptance probability is choses so that R satisfies detailed balance. The
condition (18) applied to (20) is

ρ(y)P (x|y)A(x|y) = ρ(x)P (y|x)A(y|x) .

This leads to
A(x|y)

A(y|x)
=
ρ(x)P (y|x)

ρ(y)P (x|y)
. (21)
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This one equation determines both A(x|y) and A(y|x).
Here’s how. You use the extra condition that the acceptance probabilities

should be as large as possible. This is supposed to help you generate really
different samples more quickly and have a smaller auto-correlation time. That
is a wish, a heuristic, but it is the basis of the Metropolis Hastings formulas
below. The right side of (21) is either larger or smaller than 1. If the right side
is larger than 1, we choose A(x|y) = 1 and then A(y|x) < 1 so the fraction on
the right also is larger than 1. In the other case, where the right side is smaller
than 1, we choose A(y|x) = 1 and A(x|y) < 1. If the right side is exactly equal
to 1 (unlikely but not impossible), we take A(y|x) = A(x|y) = 1. All of this is
contained in the Metropolis Hastings formula

A(x|y) = min

(
ρ(x)P (y|x)

ρ(y)P (x|y)
, 1

)
. (22)

The fraction on the right is the Metropolis Hastings ratio. Repeating what
we just said, if the ratio is less than 1, we choose A(x, y) to be the ratio and
A(y|x) = 1. You can see that the Metropolis Hastings ratio for A(y|x) is the
reciprocal and therefore larger than 1. If the ratio is larger than 1, we choose
A(x|y) = 1 and satisfy the detailed balance condition (21) by taking A(y|x) < 1.

You need three things to program the a Metropolis Hastings MCMC algo-
rithm.

1. A routine to evaluate ρ(x) for any x

2. A routine to generate a random sample X ∼ R(·|y) for any y.

3. A routine to evaluate P (x|y) for any pair (x, y)

Here is how a simple Metropolis Hastings sampler might look. The code uses
a sampler for the proposal distribution, called Psamp(x, rg), and an evaluator
of the proposal density, called P(x,y). You might notice that the two return

Y commands can be combined. If MH > 1, then U < MH, because U ≤ 1.

def Rsamp(X, rg): # one step of a MH sampler using proposal P

Y = Psamp(X, rg) # sample the proposal distribution

rhoX = rho(X) # evaluate the target density at X

rhoY = rho(Y) # evaluate the target density at the proposal

PXY = P(X,Y) # evaluate the proposal densities for ...

PYX = P(Y,X) # ... forward and backward steps

MH = ( rhoX*PYX )/( rhoY*PXY ) # Metropolis Hastings ratio

if ( MH > 1.): # A = 1 means accept with probability 1

return Y # return the proposal if accept

U = rg.random()

if ( U < MH ): # if A < 1, accept with probability A

return Y # if accept, return the proposal

return X # if reject, return X
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It often happens, particularly in statistical applications, that most of the
computational work goes into evaluating the target density ρ(x). In Bayesian
statistics, this is there the data and the data model are used. The code above
does twice as much work as it needs to because it evaluates both ρ(X) and ρ(Y ).
But it would not be evaluating ρ(X) is X had not been proposed (and been
a Y ) before. You can make the code run twice as fast by remembering ρ(X)
rather than re-computing it.

The need to evaluate P (x|y) is a serious drawback to the Metropolis Hast-
ings approach. Some proposal ideas involve generating intermediate random
variables, first Z from X then the proposal Y from X and Z. In this case, the
probability density of Y from X could involve an integral over z that cannot be
calculated analytically (because most integrals are impossible) or numerically
(curse of dimensionality).

A good Metropolis Hastings sampler comes from a good proposal distribu-
tion. One possibility, which is sometimes called the Metropolis Hastings method,
is to take Y to be a Gaussian about X with a certain characteristic distance r.
That means

Y ∼ N (X, r2I) . (23)

This makes the proposal density

P (y|x) =
1

(2πr2)
d
2

e−
1

2r2
|y−x|2 . (24)

Your code does not have to evaluate the prefactor because that cancels in the
Metropolis Hastings ratio (22). But it does have to evaluate the exponential
part, and to generate the proposal, as in

for j in range(d):

Y[j] = X[j] + r*rg.normal()

We sometimes call this vanilla Metropolis (vanilla ice cream is simple and plain
and maybe not as good as fancier flavors). Good MCMC codes usually have
more sophisticated proposal distributions, typically distributions that depends
on the problem in a deeper way.

The Gaussian proposal (23) has a symmetric proposal density: P (x|y) =
P (y|x), which you can see in (24). If the proposal is symmetric then it cancels
in the ratio (22), which simplifies to

A(x|y) = min

(
ρ(x)

ρ(y)
, 1

)
. (25)

The original Metropolis method has a symmetric proposal and simplified accep-
tance probability (25). The name “Metropolis” if from the paper with authors
Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller. Insiders sometimes call
it the MR2T2 algorithm, and they argue about which of the authors deserves
the most credit (hint, not the first one). The two Rosenbluths were father and
son. The two Tellers were wife and husband. Hastings suggested un-symmetric
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proposals and found the more complex formula (22). We often call this the
“Metropolis” method even though it was discovered by Hastings.

The vanilla proposal distribution 23 has a free parameter, r, which is the
proposal step size. This is chosen to make the resulting MCMC method as
effective as possible. If r is very small then proposals are likely to be accepted
(which is good), but the steps are small (which is bad because it takes many
steps to move a significant distance). If r is very large, then most proposals will
land in regions where ρ is small and therefore be rejected. There is a MCMC
“rule of thumb” that says you should adjust r so the acceptance probability is
about 40%. If the acceptance probability is too high, then you could have taken
larger steps. If the acceptance probability is to low, then you never go anywhere
because most of your proposals are rejected.

3 Discrete state space

You get more insight into MCMC and detailed balance from thinking about
what happens on a discrete state space. Suppose there are n states in a state
space S = {1, . . . , n}. The states are probably more complicated than just one
integer, but they can be labeled by integers. Then there are n probabilities ρj
for j = 1, . . . , n. These form the components of a row vector

ρ = (ρ1, . . . , ρn) .

The Markov chain moves around the state space, so Xk ∈ S. The transition
distribution is given by a transition matrix R with entries

Rij = Pr(Xk+1 = j|Xk = i) .

This may be written less formally as

Rij = Pr(i→ j) .

The Markov chain probability dynamics may be written in matrix/vector
form. This is useful in part because we can use eigenvalue/eigenvector analysis
to understand the algorithm. The probability distribution of Xk will be repre-
sented by a row vector ρk = (ρk,1, . . . , ρk,n). We calculate the dynamics of ρk
using basic probability

ρk+1,j = Pr(Xk+1 = j)

=

n∑
i=1

Pr(Xk+1 = j|Xk = i) Pr(Xk = i)

=

n∑
i=1

Rij ρk,i

= (ρkR)j (entry j of the row vector ρkR) .
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The matrix/vector form is
ρk+1 = ρkR . (26)

The condition that the MCMC dynamics preserves ρ is

ρ = ρR .

This says that ρ is a left eigenvector of R with eigenvalue one.
The fact that ρk → ρ as k → ∞ is related to the other eigenvalues of R.

Here is a quick review. The matrix R is n× n, so there is a basis consisting of
n eigenvectors or generalized eigenvectors. We assume for simplicity that the
Jordan form of R has no Jordan blocks bigger than 1× 1, which is the same as
assuming that there is a basis consisting of all eigenvectors. Exercise 4 shows
that this is true if R satisfies detailed balance. Let the left eigenvectors (row
vectors) be l1, . . . , ln. The corresponding eigenvalue equation is

ljR = λj lj , for j = 1, . . . , n .

Any row vector may be expressed as a linear combination of left eigenvectors.
In particular we may write

ρk =

n∑
j=1

ajklj .

The “expansion coefficients” for ρk in terms of the eigenvectors lj are a1k, . . . , ank.
We know ρ is an eigenvector, so we take l1 = ρ and λ1 = 1. The convergence
ρk → rho

The evolution equation (26) for ρk gives evolution equations for the expan-
sion coefficients

aj,k+1 = λjajk .

In particular, if aj,1 6= 0, then ajk → 0 as k →∞ if and only of |λj | < 1.
Eigenvalues are one way to understand the convergence of ρk to ρ. A good

Markov chain for MCMC (definition next week) has a transition matrix R with
these properties

• λ1 = 1, and λ = 1 is a simple eigenvalue with a one dimensional eigenspace
spanned by l1 = ρ. The invariant distribution is the eigenvector corre-
sponding to λ = 1.

• |λj | < 1 for j 6= 1. All other eigenvalues are “inside the unit circle”.

These two facts imply that there is a number I will write as g (for spectral gap,
but not exactly, details next week.) so that

‖ρk − ρ‖ ≤M(1− g)k . (27)

Here is a very vague explanation, with details next week. It illustrates a style
of reasoning math people will be familiar with and others may find odd at first.
We reason with inequalities that involve some number (like M and g) whose
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value we pretend not to care much about. No matter what M and g are, as
long as g > 0 and g < 1, the inequality (27) implies that ρk converges to ρ at
least fast as a geometric series.

The reasoning here depends on a few mathematical facts. One fact is that
if you have finitely many numbers and all of them are less than one, then the
maximum of them is less than one. Another fact is that if you multiply to add
numbers, you get a number. Finally, if you add a finite collection of positive
numbers, the sum is not more than the number of terms multiplied by the
maximum of the numbers. You will see these principles used here. Define

µ = max
j 6=1
|λj | .

We can call this number the reduced spectral radius, and note that 0 ≤ µ < 1.
[The full spectral radius of any square matrix A is the absolute value of the
largest eigenvalue. This is the radius of the smallest disk in the complex plane
that contains all the eigenvalues. Eigenvalues of a matrix are called spectrum.]
The formulas above imply that

ρk = a1ρ+

n∑
j=2

aj,0λ
k
j .

We will see (next week) that a1 = 1. The sum on the right, therefore, is ρk − ρ.
Take 1− g = µ, or g = 1− µ to be the spectral gap. This is the “gap” between
the largest of the rest of the eigenvalues and the unit circle. Then take

m = max
j 6=1
|aj | .

Now,
∣∣λ2
j

∣∣ ≤ (1− g)2 if j 6= 1. This implies that∣∣∣∣∣∣
n∑
j=2

aj,0λ
k
j

∣∣∣∣∣∣ ≤ nmax j 6= 1 |aj,0| (1− g)2

≤ nm(1− g)2

= M(1− g)2 .

This is (27). What we “proved” (full proof next week) is “there is a number M
and a g with 0 ≤ g < 1 so that · · · .

4 Exercises

Corrections
Exercise 4 corrected to talk about column vectors, not row vectors. The last
formula corrected to have 〈M∗Wu, v〉 (the u was left out).
Exercise 5 The proposal distribution originally given does not work (is re-
ducible). Instead, take the proposal distribution uniform in [x− r, x+ r].
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1. Write a formula for R(x|y) for the linear auto-regressive Markov chain
(14). Verify by direct integration that this satisfies the balance formula
(16). Verify by algebra that it satisfies the detailed balance formula (18).
Show that φn(y) = ∂ny ρ(y) is an eigenfunction of the kernel R in the sense
that

λnφn(x) =

∫
R(x|y)φn(y) dy .

[Hint. You already did the case n = 0. Try φ1 ∝ ye−
1
2v y

2

and see how it
works. The general trick uses integration by parts.] The spectral gap is

g = 1−max
n 6=0
|λn| .

Show that the spectral gap is small when a is close to 1. Explain why this
should be.

2. Many probability distributions are given in the form

ρ(x) =
1

Z
e−φ(x) . (28)

We saw this in the Bayesian posterior distribution. It is also true in many
physical applications. The Gaussian with a known explicit normalization
constant Z is the exception. Show that the Metropolis Hastings algorithm
does not require you to know the normalization constant Z.

3. The MALA algorithm (for “Metropolis adjusted Langevin algorithm”) has
proposals of the form

Y = x− a∇φ(x) +N (0, rI) .

(a) Write a formula for the proposal density and show that it is not
symmetric.

(b) (Harder) Find a relationship between a and r that maximized (ap-
proximately) the acceptance probability when a is small. If you know
stochastic calculus, this is related to the stochastic differential equa-
tion

dXt = −∇φ(Xt)dt+ CdWt .

with an appropriate C, which leaves ρ invariant.

4. Consider the vector space of n component column vectors. If W is a
symmetric positive definite matrix, we can define the W inner product as

〈u, v〉W = utWv .

Suppose W is a diagonal matrix with Wjj = ρj (the probability distribu-
tion). Then we write

〈u, v〉ρ =

n∑
j=1

ujρjvj .
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If M is any n × n matrix, then the adjoint of M with respect to W is
written M∗W and is defined by

〈u,Mv〉W = 〈M∗Wu, v〉W , for all u, v .

Find a formula for the entries of M∗ρ of the form M∗ρ,ij = (∗∗)Mji. Show
that if there is a positive definite W so that M∗W = M , then all the
eigenvalues of M are real. Show that R∗ρ = R if and only if R satisfies
detailed balance with respect to ρ.

5. Write a Metropolis Hastings MCMC sampler for the model problem dis-
tribution ρ = N (0, v). Use the proposal distribution that Y is uniform in
the interval [x− r, x+ r], r > 0 is the parameter of the algorithm. Apply
the method to estimating a moment B = E[X2q]. Start with X0 = 0. For
various values of N , generate M independent MCMC paths and generate
that many independent values of B̂N . Use these to estimate the bias and
variance of B̂N as a function of N . Demonstrate in this way that the
bias and variance go to zero as N goes to infinity. Your code will take a
very long time to run if you choose parameters carelessly. Try to identify
τ from the computational data. Experiment with various values of q to
see how the method works on harder problems. Experiment with various
values of a and r to see which ones converge well. As always, format your
output and put it into easy to read tables.
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