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1 Bayesian example
sec:Be

This section has philosophical and technical components. The philosophical
component is the reasoning behind Bayesian model identification, uncertainty
quantification (called UQ) and uncertainty propagation (UP). I will advocate a
particular view of these activities that I call Zen Bayesian because it is simple,
and because it takes considerable discipline and effort to maintain this level of
simplicity. May advocates of Bayesian statistics have more complicated strate-
gies, many of which I consider to be mistaken.

On the technical side, I want to motivate the fact that many sampling prob-
lems are multi-modal. I also want to motivate the interest in calculating the
Bayesian evidence, which is the normalization constant in the posterior distri-
bution.

Bayesian statistics and posterior sampling are a source of hard Monte Carlo
problems, starting with sampling, but not limited to sampling. Recall the frame-
work of Bayesian statistics. You have a dataset Y = (Y1, . . . , YN ) and a model
with parameters x = (x1, . . . , xd) that describes how the data were generated.

For example, suppose a signal is a superposition of simple oscillations with
unknown frequency and amplitude and phase offset. The exact signal at time
tj would be

yj =

m∑
k=1

Ak cos(ωk(tj − Tk)) . (1) eom

The Ak are unknown amplitudes. The ωk are unknown frequencies. The Tk
are unknown phase offsets. The number of modes in the model is M . Suppose
measurements have been made at times tj for j = 1, . . . , N . We model the
data values Yj as the true values yj given by (

eom
1) together with measurement

errors, which are modeled as independent Gaussians with a common variance
σ2. Altogether, there are d = 3m + 1 parameters, the 3m model parameters
and σ2.

The Bayesian picture is that the model parameters are chosen from a prior
distribution, which we describe by a PDF π(x). If the distribution π depends
on parameters (a typical case), whose are called hyper-parameters. If the hyper-
parameters themselves are random, their distribution is the hyper-prior. Once
the parameters are chosen, the data are drawn from a PDF called the likelihood
function Y ∼ L(·|X). The joint distribution of the parameters and the data is
given by Bayes’ rule

(X,Y ) ∼ L(y|x)π(x) .
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The posterior distribution is the conditional distribution of the parameters given
the data

X ∼ ρ(x|Y ) =
1

Z(Y )
L(Y |x)π(x) .

The normalization factor

Z(y) =

∫
L(y|x)π(x) dx . (2) ei

is the evidence integral. This terminology is explained in Exercise
ex:ei
2.

For our specific model (
eom
1), the observations are taken to have mean yj and

variance σ2. The N measurement errors are assumed to be independent. This
makes the PDF for the observations, conditional on the model parameters,

L(y|A,ω, T, σ) =
1

Z0
σ−Ne−

1
2σ2

∑N
j=1(Yj−yj)2 .

In this case, we know that the normalization constant is Z0 = (2π)
N
2 , but

this is irrelevant for most forms of MCMC sampling. The parameters A =
(A1, . . . , Am), and ω = (ω1, . . . , ωm), etc, enter L through yj and (

eom
1). It is

helpful to write this in the familiar exponential form

L(y|A,ω, T, σ) = el(y|A,ω,T,σ) .

The log likelihood function is

l(y|A,ω, T, σ) = − 1

2σ2

N∑
j=1

(Yj − yj)2 −Nσ . (3) ll

In practical computation, is is usually best to use the log likelihood function (
ll
3)

rather than the likelihood function itself. This is because the likelihood function
is likely to be outside the range of floating point arithmetic. The smallest 64
bit (double precision) floating point value is about 10−300. It is easy to make
values this small if you have 1000 data points. However, the log is well inside the
range of double precision arithmetic. In the language of statistical mechanics,
the target distribution is

ρ(x) = e−βφ(0) , φ(x) = −l(Y |x) , β = 1 .

The better fits have larger log likelihood and smaller potential.
I advocate what I call the Zen Bayesian philosophy. Instead of the fre-

quentist approach of producing a single sample, see Exercise
ex:ei
2, the statistician

should produce a collection of samples of the posterior distribution. The con-
sumer of the statistician’s analysis will be able to compare samples to see how
much parameters vary from sample to sample. There are visualization tools to
uncover correlations in the posterior distribution. This is common for models
that are ill conditioned. A model is ill conditioned if there are large changes in
parameters that make little change in the prediction. It may be, for example,
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that increasing x4 and decreasing x5 by the same amount has little influence in
the predicted values yj .

In order to produce the samples, I suggest running MCMC on the posterior,
estimating the auto-correlation time, and reporting samples from the Markov
chain Xk with the k values separated by some multiple of τ . It would be ideal
to return independent samples, but this is not possible with MCMC.

The collection of posterior samples is a Zen solution of uncertainty quantifi-
cation, or UQ. Uncertainty quantification means telling the consumer of a com-
putation how accurate the computation is likely to be. In parametric statistics,
you can interpret this as the uncertainty in the parameter estimates. Frequentist
statisticians are taught to report confidence intervals for each of the estimated
parameters. The problem with that is that this may not represent the true
shape of the posterior distribution. In the ill-conditioned model, for example,
the individual parameters x4 and x5 may have large error bars (confidence in-
tervals), but the sum may be much more accurately determined. Said another
way, a point estimate and a collection of confidence intervals determine a box in
parameter space. The true posterior may have a different shape. For example,
it may be multi-modal.

The need to specify a prior is a weakness of Bayesian statistics. The prior is
supposed to represent your prior understanding of the world before receiving the
data. In practice, our understanding may be sketchy and the prior somewhat
arbitrary. For example, the uncertainty in the amplitudes in the oscillator model
(
eom
1) might span several orders of magnitude. This might mean that A = 1 or
A = 10, or A = 1000 are all plausible. You might think of taking π(A) to be
uniform in a range such as [1, 1000]. This has the drawback that 1 < A < 10 is
very unlikely. One solution to this is the Jeffries prior, which is uniform in log
space:

Pr(α ≤ log(A) ≤ α+ dα) =


dα

log(Amax)− log(Amin)
if Amin ≤ α ≤ Amax

0 otherwise .

The problem with this is that it excludes the range 0 < A < Amin. We might
take Amin to be the smallest amplitude that is detectable, which would make it
dependent on the measurement error, σ. This has the drawback that we have to
change the model of the outside world (the range of A) if we get a more sensitive
detector (reducing σ). The parameters Amax and Amin are hyper-parameters.

It is also hard, when making up a prior, to model prior correlations between
the amplitudes. Most often, people take a prior in which the amplitudes are
independent:

π(A1, . . . , Am) =

m∏
j=1

πj(Aj) .

Creating a prior distribution could be described as “replacing ignorance with
fiction”. You don’t know what it should be, but you are forced to create it. One
hopes that this fiction does not have a large impact on the results.
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A flat prior is π(x) = const. This is not a true probability density, but it
has the effect of taking away arbitrary choices in true priors.

2 Bayesian example
sec:es

In Bayesian statistics, one wants a sampler that applies “out of the box” (with
lots of problem specific tuning) to a generic problem. Generic sampling prob-
lems often are “ill conditioned”, which means that the target density has some
directions where it varies rapidly and some where it varies more slowly. Even
Gaussian distributions can go this. Suppose

ρ(x) =
1

Z
e−

1
2x
tHx .

Then ρ is narrow in directions of eigenvectors of H with large eigenvalue.
Gradient descent optimization has a similar conditioning problem. Suppose

we want to minimize φ(x) The gradient descent algorithm with learning rate s
is

xk+1 = xk − s∇φ(x) .

It is convenient to write this in terms of a search direction pk = −∇φ(x), so
xk+1 = xk + spk.

3 Exercises
sec:ex

ex:ge 1. Consider the linear Gaussian process

Xk+1 = AXk + Zk , Zk ∼ N (0, C) .

Suppose that A is symmetric and C is symmetric and positive definite.
Let ρk(x) be the PDF of Xk. Show that there is recurrence formula of the
form

ρk+1(x) =

∫
ρk(y)L(y, x) dy .

Find an explicit Gaussian like formula for L. A left eigenfunction of L
with eigenvalue λ is a function that satisfies∫

v(y)L(y, x) dy = λv(x) .

Show that the invariant distribution ρ is an eigenfunction with eigenvalue
λ = 1. Let rj be the eigenvectors of A and suppose

Arj = µjrj .

These are real because A is symmetric. Show that

vj(x) = rk · ∇ρ =

d∑
i=1

rji∂iρ
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is an eigenfunction with eigenvalue µj . More generally, show that if µjm
is a family of eigenvalues of A, then

v =
∏
m

rm · ∇ρ

is an eigenfunction of L with eigenvalue λ =
∏
µjm . Assuming that these

are all the eigenfunctions, show that the spectral gap for L is the spectral
radius of A.

ex:ei 2. One use of the evidence integral is model selection. We want to find which
of a family of models best fits the data. The maximum likelihood estimate
of frequentist statists, given model i, is the parameter combination that
gives the best fit:

X̂i = arg max
x

Li(Y, xi) . (4) ml

This is a point estimate because you are giving a single “best guess” of
the parameter, which is a point in parameter space. One model selection
idea would be to take the model that best fits the data

î = arg max
i

Li(Y, X̂i) . (5) bf

This can lead to over-fitting, which means that the model has so many
parameters that it can fit any data.

Suppose the models are Mi with parameters xi ∈ Rdi , priors πi(x), and
likelihood functions Li(y|xi). Let Zi(Y ) be the evidence integral for model
i and data Y . In a Bayesian approach, we would specify priors for the
model, which means model i is chosen with probability ri. Once the model
is chosen, the Bayesian picture says we choose the parameters XI ∼ πi(xi)
and then the data Y ∼ Li(y|Xi). Derive the following formula for the
posterior probabilities

si(Y ) = Pr( model i |Y ) =
Zi(Y )ri∑
j Zj(Y )rj

.

The posterior probability is the prior probability amplified or reduced by
the evidence for the model.

ex:dbs 3. We have at least two samplers for a distribution ρ(x) = 1
Z e
−βφ(x). One is

the Hamiltonian sampler together with Verlet time stepping and resam-
pling of the momentum. Another is MALA, which stands for Metropo-
lis adjusted Langevin. The Langevin sampler, in continuous time (which
doesn’t exist in the computer but can exist in our thoughts) is the stochas-
tic differential equation, which is (not entirely properly) called the Langevin
equation

dX = −∇φ(X)dt+
√

2β dWt .

5



The dWt is the increment of Brownian motion in a time dt. For ∆t small
but not zero, the Euler Maruyama approximation calculates an approxi-
mate trajectory Xk ≈ Xk∆t using

Xk+1 = Xk −∆t∇φ(Xk) ∆t+
√

2β∆tZk .

Here Zk ∼ N (0, I) are independent Gaussians with mean zero and covari-
ance I in d dimensions. The continuous time Langevin process preserves
the target distribution exactly. For small ∆t, the Euler approximation
preserves a distribution that is close to ρ. The disadvantage of small ∆t is
that many steps are required to get an effectively new sample (large auto-
correlation time). For large ∆t, the discrete time process has an invariant
distribution that is far from ρ. This can be fixed by a Metropolis rejection
step.

Take as target distribution a multi-variate double-well distribution that is
a Gaussian mixture

ρ = p1N (µ1, C1) + p2N (µ2, C2) .

The mixture coefficients p1 and p2 should be positive and have p1 +p2 = 1.
A simple case in d dimensions has µ=0, µ2 = (r, 0, . . . , 0), and C1 = C2 =
1
s2 I. The wells are distinct if r � s. Samplers are slow to go from well
to well if r

s is large. You can make many variations on this model, by
varying the mixture coefficients and the covariance matrices. It may be
that anisotropic (C1 or C2 not a multiple of I) covariance is harder than
isotropic covariance.

This is another research project. Please spend some time playing with
your codes and report some findings. But, to start,

(a) To Metropolize the discrete Langevin move, take the move to be a
proposal

Y ∼ Xk −∇φ(Xk)∆t+
√

2β∆tZk .

Figure out the Metropolis Hastings acceptance probability and apply
it to make an algorithm that samples exactly.

(b) Write a Hamiltonian sampler with parameters ∆t, n (the number
of Verlet steps between the acceptance/rejection test), and a (the
damping factor in the momentum resampler).

(c) Verify that your samplers are correct for the one dimensional case by
making a histogram of the samples and checking that they agree with
the target. Then try d = 2 and check that the mean and covariance
of the samples is correct.
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