
Numerical Methods II, Courant Institute, Spring 2012

http://www.math.nyu.edu/faculty/goodman/teaching/NumMethII/index.html

Always check the class bboard on the blackboard site from home.nyu.edu (click on academics, then

on Numerical Methods II) before doing any work on the assignment.

Assignment 2, due February 16

Corrections: The second part of (4) was corrected to have yn+1 instead of
yn on the right side. Question (3a) was modified to add a formal definition of
stability.

1. This question discusses the unstable method that shows why stability
theory is important. The differential equation is

ẋ = f(x) . (1)

The one lag linear multistep method is

xn+1 = a0xn + a1xn−1 + ∆t[ b0f(xn) + b1f(xn−1) ] . (2)

Assume that the time step ∆t is fixed. Write tn = n∆t as usual.

(a) Find equations for the coefficients a0, a1, b0, b1, that give rise to the
method with the highest formal order of accuracy. Since there are
four coefficients, we need four equations. These come from plugging
the exact solution of (1) into (2) and calculating the leading order of
the truncation error. You expand the left and right in Taylor series
about tn. It is convenient to write x(tn) just as x, d

dtx(tn) = x(1),
etc. For example, x(tn+1) = x+∆tx(1) + ∆t2

2 x(2) + ∆t3

6 x(3) +O(∆t4).
Also, f(x(tn−1)) = f −∆tf (1) = f − d

dt ẋ = f −∆tx(2), etc. You get
the four equations by setting the coefficients of ∆tk from the left and
right sides of (2) equal, k = 0, 1, 2, 3.

(b) Find the roots of the stability polynomial z2 = a0z + a1 and show
that at least one of them has |z| > 1. Conclude that this method will
not work.

2. Derive the third order BDF method that uses xn, xn−1, and xn−2 as well
as f(xn+1) to predict xn+1. Third order means that the local truncation
error is of order ∆t4. Is this method zero-stable?

3. Suppose the ODE ẋ = f(x) has solution operator x(t) = F (t, x(0)). Sup-
pose that ẋ = g(x) has solution operator x(t) = G(t, x(0)). Consider the
combined ODE

ẋ = f(x) + g(x) . (3)

A splitting scheme constructs an approximate solution of (3) from the
exact solution operators F and G or approximations to them.
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(a) Consider the scheme

yn+1 = F (∆t, xn)
xn+1 = G(∆t, yn+1)

}
. (4)

Show that this produces a first order accurate (and not second or-
der) and stable scheme for (3). For this problem, and for con-
vergence analysis of time stepping methods for ODE’s in general,
we use the following definition of stability. Suppose the discrete
scheme has the form xn+1 = H(xn, . . . , xn−p, ∆t). Suppose yn+1 =
H(yn, . . . , yn−p, ∆t) + ∆t rn. Then if xj = yj for j = 0, · · · , p, then
|xn − yn| ≤ C(tn)

∑
j≤n |rj |.

(b) Consider the case x ∈ R2, f =
(

a
0

)
and g =

(
0
b

)
, where a and b

are constants. Draw a picture to show how the splitting method (4)

produces motion in the direction
(

a
b

)
out of horizontal motion F

and vertical motion G.

(c) Consider the Strang splitting scheme

yn+ 1
2

= F (∆t/2, xn)
zn+ 1

2
= G(∆t, yn+ 1

2
)

xn+1 = F (∆t/2, zn+ 1
2
)

 . (5)

Show that this produces a second order accurate approximation to
(3), but not third order. People who do numerical computing get
good at Taylor series manipulations. (If there is a third order splitting
scheme, it is complicated and I don’t know what it is.)

(d) It seems at first that Strang splitting is more expensive than the first
order splitting scheme (4) because there are two applications of F
per time step. Show that this is not true. Hint: try to show that
F (∆t/2, F (∆t/2, x)) = F (∆t, x), which is because F is a solution to
an ODE.

(e) Explain in psuedocode (i.e. informal programming language) a scheme
that yields overall second order approximations to x(tn) using the
simpler scheme (4), and a well chosen starting procedure, and a spe-
cial something at time n.

(f) Show that you also get a second order method if you use second order
approximations to F and G. These approximations should be second
order in the sense that they have third order local truncation error.

4. This exercise takes you through a more modern approach to linear re-
currence relations that will be helpful later. Consider a linear recurrence
relation with p lage

xn+1 = a0xn + · · · + apxn−p . (6)
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If yn satisfies (6) and yj = xj for j = 0, . . . , p, then yn = xn for all n
(proof by induction on n, first for n = p + 1, then n = p + 2, etc.).

(a) There are special solutions of the form xn = zn. Show that there is
a solution of this kind for every value of z that satisfies the equation

zp+1 = a0z
p + · · · + ap . (7)

(b) As in class, define “supervector”

Xn =


xn

xn−1

...
x1

x0

 ,

And show that

Xn+1 = AXn with A =


a0 a1 · · · ap

1 0 · · · 0
0 1 0
...

. . . . . .
...

0 · · · 0 1 0

 .

This matrix A is the companion matrix for the recurrence relation
(6). Of course, we have Xn = AnX0.

(c) Show that for each solution of (7) there is an eigenvector of A with
eigenvalue z of the form

vz =


zp

zp−1

...
z
1

 .

(d) Show that if there are p + 1 distinct solutions of (7), then the cor-
responding eigenvectors vzk

for k = 0, . . . , p form a basis of Cp+1.
You may use the fact that if V is the matrix whose columns are the
vectors vzk

then det(V ) = ±
∏

j 6=k(zj − zk).

(e) Still assuming that there are p + 1 distinct roots, describe or find
a formula for the entries of V −1 using the Lagrange interpolation
formula.

(f) Assuming that the roots are distinct and that they satisfy the root
condition |zk| ≤ 1 for all k, show that ‖An‖ ≤ C independent of n
(i.e. there is a C independent of n so that ...).
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(g) Show that if the root condition is satisfied, then the solution of (6)
satisfies |xn| ≤ C (|x0| + · · · + |xp|), again with C independent of
n.

5. Programming. None this week so that people can dig out from last
week’s assignment.
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