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1 Introduction.

We now move from calculus of real functions of a real variable to complex
analytic functions of a complex variable. This is complex analysis. Complex
analysis will simplify some of our technical proofs. For example, it makes it
easy to see that

ζ(s) =
1

s− 1
+ f(s) , as s ↓ 1 ,

where f(s) is a differentiable function of s. The main point is as it was before:
the Dirichlet series

∑
n−s converges for s > 1 and goes to infinite as s ↓ 1. But

it will be easier to see that f(s) is differentiable. This will make it easier to
justify the crucial calculation

−ζ
′(s)

ζ(s)
=
∑

Λ(n)n−s =
1

s− 1
+ g(s) ,

where g(s) is also differentiable near s = 1.
Complex contour integration and the Cauchy theorems for it make complex

analysis powerful, not only as a technical tool. The prime number theorem is
the statement ∑

n≤x

Λ(n) = ψ(x) = x+ o(X) , as x→∞ . (1)

The function ψ(x) can be represented as a contour integral in the complex plane.
The “real” form of this integral is

ψ(x) =
−1

2π
xσ
∫ +∞

−∞

eit log(x)

σ + it

ζ ′(σ + it)

ζ(σ + it)
dt , (2)

for σ > 1. The complex form, which soon should seem simpler, is

ψ(x) =
−1

2πi

∫ σ+i∞

−σ−i∞

xs

s

ζ ′(s)

ζ(s)
ds . (3)

It may be that Euler discovered the zeta function and the Euler product that
connects ζ(s) to prime numbers. But Riemann discovered the integral formula
(3) and recognized that it leads to a proof of the prime number theorem (1).
Riemann’s proof was incomplete,1 mostly because the tools of modern complex
analysis were unknown to him. Riemann’s ideas were one of the big motivations
for mathematicians to figure out complex analysis.

1See the beautiful discussion of Riemann’s work in the book Riemann’s Zeta Function, by
Harold Edwards, formerly math professor at Courant.
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2 The complex derivative.

A real function of a real variable is f(x). A complex function of a complex
variable is written f(z). We write z = x + iy, with x and y being the real
and imaginary parts of z. We write f(z) = u(z) + iv(z) = u(x, y) + iv(x, y),
depending on whether we want to focus on f as a function of the single complex
variable z or on f as a function of the two real variables x and y.2

The complex plane is C. A typical point z ∈ C is z = x + iy. Of course, C
is the same as the real plane R2 with coordinates (x, y).3 In complex calculus,
it is common to replace y = f(x) with w = f(z). This is w = u + iv = f(z) =
f(x+ iy). For example, if f(z) = z3, then

w = z3

= (x+ iy)3

= x3 + 3x2(iy) + 3x(iy)2 + (iy)3

= x3 + 3ix2y + 3i2xy2 + i3y3

= x3 + 3ix2y − 3xy2 − iy3

=
(
x3 − 3xy2

)
+ i
(
3x2y − y3

)
.

If we write f(z) = z3 in the form u + iv, then u(x, y) = x3 − 3xy2 and v =
3x2y = y3.

The modulus of z is the length of the vector (x, y), which is the distance of
the point (x, y) from the origin:

r = |z| =
√
x2 + y2 .

The argument of z is that angle that the line from the origin to (x, y) makes with
the x axis. This is written θ = arg(z). The argument is not uniquely defined.
If we “wind” a point z once around the origin, then the argument changes by
2π. It is common to assume that θ is chosen with −π < θ ≤ π, which puts
a “branch cut” (the cut where the function θ(x, y) is discontinuous, something
like the international date line) along the negative real axis. What is important
is r ≥ 0 and (x, y) = (r cos(θ), r sin(θ)).

We work a lot with the exponential ea, where a ∈ C. Here are the rules.
This list is redundant, but (hopefuly) consistent.

• If a and b are any complex numbers, then

ea+b = ea = eb .

• If y is a real number, then

eiy = cos(y) + i sin(y) ,

2Traditional notation depends on the context. In analytic number theory, the zeta function
is written ζ(s), where s = σ + it There isn’t a standard notation for Re(ζ) and Im(ζ).

3Some mathematicians disagree with this, calling C the complex line. They view C as one
dimensional, even if that one dimension is complex.
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where cos and sin are the real functions of a real argument y.

• If z = x+ iy, then (the second line follows from the first)

ez = ex+iy = exeiy = ex cos(y) + iex sin(y)

|ez| = ex , arg(ez) = y + 2πk , for some integer k .

• For any z ∈ C and w ∈ C,

sin(z) =
eiz − e−iz

2i
, cos(z) =

eiz + e−iz

2i

eiz = cos(z) + i sin(z)

sin(z + w) = sin(z) cos(w) + cos(z) sin(w)

ez = 1 + z +
1

2
z2 +

1

6
z3 +

1

24
z4 + · · ·

sin(z) = z − 1

6
z3 + · · ·

cos(z) = 1 =
1

2
z2 +

1

24
z4 − · · · .

You can derive the second and third formulas from the first. The first may
be derived from the bottom three.

• If z = x+ iy with r = |z| and θ = arg(z), then

z = reiθ .

Taking a different definition of the argument has the possible effect of
replacing θ by θ ± 2π. This is OK here, because

ei(θ+2π) = eiθe2πi = eiθ (cos(2π) + i sin(2π)) = eiθ (1 + i0) = eiθ .

• If a > 0 and z = x+ iy, then

az = ez log(a) = ex log(a)eiy log(a) = axeiy log(a) .

These facts explain why the formulas (3) and (2) are the same.

The definition of derivative looks the same for complex and real functions:

df

dz
=

d

dz
f(z) = f ′(z) = lim

h→0

f(z + h)− f(z)

h
. (4)

To emphasize that z and h can be complex numbers, here is the definition
written out with the ε δ definition of limit: For any real ε > 0 there is a real
δ > 0 so that for any h ∈ C with |h| ≤ δ, we have (several properties of complex
numbers are used to go from the first to the second)∣∣∣∣f(z + h)− f(z)

h
− f ′(z)

∣∣∣∣ ≤ ε
|f(z + h)− f(z)− hf ′(z)| ≤ ε |h| .
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In particular, if
f(z + h)− f(z) = ah+O(|h|2) ,

then f ′(z) = a. If there is such an a, or if the limit exists, then we say f is
differentiable. A differentiable function of a complex variable is called analytic.4

A complex function given by a formula is likely to be analytic. For example,

d

dz
z3 = 3z2 .

There are more examples in the exercises.
Complex differentiation is not as much like ordinary differentiation as it

may seem. We call complex differentiable functions “analytic” to emphasize
the difference. If a real function is differentiable, we think of it as not being
like f(x) = |x| (with a corner at x = 0). We will see analyticity means much
more. The Cauchy Riemann equations give a suggestion of the difference. You
might think f(z) = f(x+ iy) = u(x, y) + iv(x, y) is differentiable if these partial
derivatives all exist

∂u(x, y)

∂x
,

∂u(x, y)

∂y
,

∂v(x, y)

∂x
,

∂v(x, y)

∂y
.

But that would be wrong. There are different expressions for f ′(z) in terms of
partial derivatives of u and v depending on the direction with which h → 0 in
(4). These expressions are equal if the complex limit (4) exists. If h→ 0 on the
real axis we write h = ∆x ∈ R and calculate

f ′(z) = lim
∆x→0

u(x+ ∆x, y) + iv(x+ ∆x, y)− u(x, y)− iv(x, y)

∆x

=
∂u(x, y)

∂x
+ i

∂v(x, y)

∂x
.

If h→ 0 on the imaginary axis, we write h = i∆y and calculate

f ′(z) = lim
∆x→0

u(x, y + i∆y) + iv(x, y + i∆y)− u(x, y)− iv(x, y)

i∆y

= i
∂u(x, y)

∂y
− ∂v(x, y)

∂y
.

If these two expressions for f ′ are equal, we equate the real and imaginary parts
to get the Cauchy Riemann equations

∂u(x, y)

∂x
= −∂v(x, y)

∂y
∂v(x, y)

∂x
=

∂u(x, y)

∂y

(5)

A good book on complex analysis has much more interesting discussion of com-
plex functions and their derivatives. The geometry of complex functions as
mappings R2 −→ R2 is interesting. But this is a course on number theory, so
we do this analysis as it comes up in the problems we’re working on.

4This originally meant that it is possible to analyze f using complex analysis.
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3 Contour integrals

The ordinary integral undoes the ordinary derivative. The complex contour
integral undoes the complex derivative. Suppose f(x) is a real function of a real
variable. You can integrate the derivative or differentiate the integral and get
back the original function. The definite integral of the derivative:∫ b

a

f ′(x) dx = f(b)− f(a) .

Differentiating the indefinite integral, if

F (x) =

∫ x

a

f(y) dy ,

Then
F ′(x) = f(x) .

These are forms of the fundamental theorem of calculus.
The complex contour is an integral along a path, or contour, in the complex

plane. A contour, which is a one dimensional continuous curve in C, may be
defined as the image of a real interval [a, b] ⊂ R, where the point t ∈ [a, b] is
mapped to the point ζ(t) ∈ C defined by5 ζ(t) = ξ(t) + iη(t). For example, here
is a contour that goes once around the unit circle: ζ(t) = eit = cos(t) + i sin(t),
for 0 ≤ t ≤ 2π. Here is a different contour that goes around the same circle the
other way: ζ(t) = e−it for 0 ≤ t ≤ 2π. These contours start and end at the
same place, but they take different routes and therefore are different contours. A
contour integral over the counter-clockwise contour (eit) may be different from
the integral over the clockwise contour (e−it). It is common to define a contour
in pieces. For example here is a contour that starts at ζ(0) = 0 and ends at
ζ(2) = 1 + i but gets there by first moving horizontally then vertically

ζ(t) =

{
t if 0 ≤ t ≤ 1

1 + i(t− 1) if 1 ≤ t ≤ 2 .

You can combine two contours ζ1 defined on [a1, b1] and ζ2 defined on [a2, b2]
into a single one if ζ2 starts where ζ1 ends (in formulas: ζ1(b1) = ζ2(a2)). The
idea is simple – first do ζ1 then do ζ2, but the formula is clunky:

ζ(t) =

{
ζ1(t) if a1 ≤ t ≤ a2

ζ2(t− a2 + b1) if b1 ≤ t ≤ b1 + (b2 − a2) .

We use a letter like Γ to denote the contour, and ζ to denote the parametriza-
tion of it. The “parameter” in “parametrization” is t. We write a point z on
the contour as a function of the parameter t. It is important that Γ is not just

5It is common to use Greek letters that seem to correspond to Latin letters. Here, ζ is a z
value, ξ is an x value and η is a y value. I think the association ξ ↔ x is incorrect. It should
be χ. But mathematicians use ξ more often. Sorry, Greeks.
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a subset of C, but is a path. If ζ1 and ζ2 cover the same points in C in the same
order, then we say that they represent the same contour. An example of this is
the two contours ζ1(t) = eit for 0 ≤ t ≤ 2π and ζt(t) = eit

2

for 0 ≤ t ≤
√

2π.
On the other hand, the contour ζ3(t) = eit for 0 ≤ t ≤ 4π is different be-
cause it “winds around” the origin twice, rather than once. The definition of
reparametrization is that there is a continuous monotone function s = r(t), with
r(a1) = a2 and r(b1) = b2), so that ζ2(r(t)) = ζ1(t). For the example contours
just given, a1 = a2 = 0, b1 = 2π, and b2 =

√
2π, and r(t) =

√
t.

The integral of a continuous real function over the real interval [a, b] is defined
using a sequence of partitions. A partition is a sequence a = x0 < x1 < · · · <
xn = b. The maximum spacing of a partition is

M = max
0≤k<n

∆xk = max
0≤k<n

xk+1 − xk .

The definition is6 ∫ b

a

f(x) dx = lim
M→0

n−1∑
0

f(xk)∆xk .

In this limit, n and M depend on the partition. We take a sequence of partitions
so that M → 0 and n→∞. The limit exists and the result is the same for any
sequence of partitions as long as M → 0.

The complex contour integral can be defined in a similar way. A partition
of a contour is a sequence of points on the contour in the order of the contour:
zk = ζ(tk) with z0 = ζ(a), zn = ζ(b), and tk+1 > tk. The maximum spacing is

M = max
0≤k<n

|∆zk| = max
0≤k<n

|zk+1 − zk| . (6)

The contour integral is ∫
Γ

f(z) dz = lim
M→0

f(zk)∆zk . (7)

If ζ2 is a reparametrization of ζ1, so that they define the same Γ, then the
definitions (6) and (7) are the same. The parameter values tk and sk, with
ζ1(tk) = zk and ζ2(sk) = zk, are different but related by the reparametrizing
function r. If f(z) is a continuous function of z for z in the contour, then the
limit as M → 0 exists. The proof from mathematical analysis that worked for
real integrals of a real variable works here.

We are ready for a form of the fundamental theorem of calculus for contour
integrals: If Γ is a contour from u = ζ(a) to v = ζ(b), and if the hypotheses
described next are hold, then∫

Γ

f ′(z) dz = f(v)− f(u) . (8)

6The sum on the right is a Riemann sum. Riemann’s contribution to mathematics include
the zeta function tricks, the definition of the Riemann integral, and much more.

6



The main hypothesis is that f(z) is uniformly differentiable with a continuous
derivative. There is a function f ′(z), defined for all z in the contour. Since the
points of the contour form a compact set in C because they are the image of the
compact set [a, b] under the continuous function ζ. This means that a continuous
function on the contour, such as f ′(z) is bounded. Uniformly differentiable, like
uniformly continuous, means that the same δ works for every z in the contour:

For any ε > 0 there is δ > 0 so that

|f(z + h)− f(z)− hf ′(z)| ≤ ε |h|
if |h| ≤ δ ,

(9)

The other hypothesis is that the contour is rectifiable, which means that
there is an L so that for any partition,

n−1∑
k=0

|zk1
− zk| ≤ L . (10)

The smallest L (the inf of all L) may be thought of as the length of Γ. Γ is recti-
fiable if it has a parameterization ζ that is a continuously differentiable function
of t. If you combine two rectifiable contours you get a rectifiable contour. All
the contours we use are combinations of continuously differentiable ones, so
they are all rectifiable. You can find examples of non-rectifiable contours in the
Wikipedia page on fractals.

Here is the proof of the fundamental theorem (8) using the hypotheses (9)
and (10). Choose ε > 0 and take δ so that inequality (9) is satisfied. Choose a
partition on the contour so that |zk+1 − zk| ≤ δ for all k. Suppose the points
zk form a partition with M ≤ δ. The inequality (9) may be written as

|f(zk+1)− f(zk)− f ′(zk)∆zk| ≤ ε |zk+1 − zk| .

We will add these inequalities and use cancellations of the form

[f(zk+2)− f(zk+1)] + [f(zk+1)− f(zk)] = [f(zk+2)− f(zk)] .

We use these inequalities for k = 0, 1, . . . , n − 1, and the fact that z0 = u and
zn = v and we get∣∣∣∣∣f(v)− f(u)−

n−1∑
k=0

f ′(zk)∆zk

∣∣∣∣∣ ≤ ε
n−1∑
k=0

|∆zk| ≤ εL .

The second inequality uses the inequality (10) that expresses the hypothesis
that the contour is rectifiable. As we let M → 0 and ε → 0 and δ → 0 (these
are not independent), the right side converges to zero and the sum on the left
side converges to the contour integral. Therefore∣∣∣∣f(v)− f(u)−

∫
Γ

f ′(z) dz

∣∣∣∣ = 0 ,
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which is the fundamental theorem (8).
Sometimes we calculate a contour integral using the parameterization ζ. If

ζ ′ exists, and if the rules of integral calculus apply, we should be able to write
dz = ζ ′(t)dt, and then ∫

Γ

f(z) dz =

∫ b

a

f(ζ(t))ζ ′(t) dt . (11)

The integral on the right is an ordinary (Riemann) integral of the function
g(t) = f(ζ(t))ζ ′(t) with respect to the real variable t. It doesn’t matter that
g(t) has complex values. It is possible to prove (11) directly from the limit
definitions of the integral. Suppose a = t0 < t1 < · · · < tn = b is a partition of
the interval [a, b] and zk = ζ(tk) is the corresponding partition of the contour.
Then if ∆tk ≤ δ then

|∆zk − ζ ′(tk)∆tk| ≤ ε∆tk .

The difference between the Riemann sum approximations to the integrals is∣∣∣∣∣
n−1∑
k=0

f(zk)
(
∆zk − ζ ′(tk)∆tk

)∣∣∣∣∣ ≤ Cε
n−1∑
k=0

∆tk .

The rest is an exercise, literally.
Parametrized contour integration is a way to get one of the most important

formulas of contour integration and all of complex analysis. We integrate on the
closed contour parametrized by ζ(t) = reit, (with dζ = ireitdt) for 0 ≤ t < 2π.
This is the circle of radius r around the origin, traced in the counter-clockwise
direction. It is often written∫ 2π

0

f(reit)ireitdt =

∮
|z|=r

f(z) dz .

The circle through
∫

(giving
∮

) tells us that the contour is closed. The ra-
dius r circle, centered about 0 and traced once around in the counter-clockwise
direction, is |z| = r. The very special important integral is∮

|z|=r
z−1 dz =

∫ 2π

0

r−1e−itireitdt = 2πi . (12)

The integral is independent of r because of the Cauchy integration theorem,
and also because the function is on the order of r−1 and the contour has length
r, so the factors of r cancel. If we would integrate zn on |z| = r, we also would
know that the integral is independent of r by Cauchy’s theorem. On the other
hand, the integral would be proportional to rn+1 (rn from zn and r from the
length of the contour). The only way this is possible is for the integral to be
equal to zero.

We end this section with a technicality, a version of the intermediate value
theorem for complex differentiable functions. Suppose Ω ⊂ C is an open set
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and that f(z) is defined and differentiable for every z ∈ Ω. Suppose u ∈ Ω and
v ∈ Ω and the the straight line contour parameterized by ζ(t) = u+ t(v− u) on
[0, 1] is contained in Ω. Then

|f(v)− f(u)| ≤
(

max
Γ
|f ′(z)|

)
|v − u| . (13)

You can prove this using the fundamental theorem and the parametrized contour
integral (11)

|f(v)− f(u)| =
∣∣∣∣∫

Γ

f ′(ζ(t))ζ ′(t)dt

∣∣∣∣ .
For our contour, ζ ′(t) = v − u, so

|f(v)− f(u)| ≤
(

max
Γ
|f ′(z)|

)∫ 1

0

|v − u| dt .

This is the inequality (13). The technicalities, the domain Ω that must contain
the line segment Γ, will be important later. For example, there is something
called a branch cut, which could be the negative real axis in the complex plane.
That is, z ∈ Ω unless z is real and z ≤ 0. The function f(z) =

√
(z) can be

defined on Ω but not on all of C. The value of
√

(z) is different if you approach
the branch cut from above or below. If

√
z > 0 for z > 0 real, then, taking ε > 0

to be real,

lim
ε↓0

√
−1 + iε = i

lim
ε↓0

√
−1− iε = −i

If u = −1−ε and v = −1+ε then |v − u| → 0 as ε→ 0 but |f(v)− f(u)| → 2 6= 0.
The shortest contour from u to v that stays in Ω is not short as ε→ 0.

4 Deforming contours

In the time of Euler, a mathematician might have calculated the integral

2

3
=

∫ 1

−1

x2 dx .

in the following way. Use a substitution x = eit, so that x = −1 when t = −π
and x = 1 when t = 0. The differential is dx = ieitdt. Therefore∫ 1

−1

x2 dx =

∫ 0

−π

(
eit
)2
ieit dt .

It is an exercise to calculate the right side and show that the answer is correct.
According to our definitions of contour integrals, this is the integral of f(z) = z2

over two distinct contours:

Γr = real interval [−1, 1] , parameterized by ζr(t) = t on [−1, 1]

Γ+ = upper half circle , parameterized by ζ+(t) = eit on [−π, 0] .

9



For us, it may not be obvious that∫
Γr

z2 dz =

∫
Γ+

z2 dz .

In fact, different contours from u to v can give different contour integrals.
Let Γ+ be as above, and let Γ− be a different route from −1 to 1:

Γ− = lower half circle , parameterized by ζ−(t) = e−it on [−π, 0] .

Then ∫
Γ+

z−1 dz =

∫ 0

−π
e−itieit dt

=

∫ 0

−π
idt

= πi .

Integrating on the other contour gives∫
Γ−

z−1 dz =

∫ 0

−π
eit − ie−it dt

=

∫ 0

−π
−idt

= −πi .

The conclusion is clear. Sometimes the integrals over two paths from u to v are
equal. Sometimes they aren’t.

We now know (thanks to Euler) that integrating on different contours gives
the same answer if you can deform one contour into the other one. Suppose Γ0

and Γ1 are two contours from u to v. A deformation of Γ0 to Γ1 is a continuous
family of contours Γs defined for 0 ≤ s ≤ 1 so that you get Γ0 for s = 0 and Γ1

for s = 1. In topology, a deformation like this is called a homotopy.
The deformations we use will be simple and explicit. The idea will be clear

if we consider a family of parameterizations ζ(t, s), defined for t ∈ [a, b] and
s ∈ [0, 1]. For each s, the function of t given by ζ(t, s) parameterizes the contour
Γs. We assume that ζ(t, s) is twice continuously differentiable as a function of
the two variables t and s. At some point in the calculation below, we use the
equality of mixed partials:

∂

∂s

(
∂ζ(s, t)

∂t

)
=

∂2ζ

∂s∂t
=

∂2ζ

∂t∂s
=

∂

∂s

(
∂ζ(s, t)

∂t

)
.

If we have a deformation like this, we can do the calculation (below) to see that

d

ds

∫
Γs

f(z) dz = 0 . (14)
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In particular, if Γ0 can be connected to Γ1 with such a differentiable deformation,
then ∫

Γ0

f(z) dz =

∫
Γ1

f(z) dz . (15)

This is the Cauchy integral theorem, which Euler knew before Cauchy.
The important thing usually isn’t the contours, but the function f . It is

necessary that f(ζ(s, t) should be differentiable for every s and t in this family of
deformed contours. For example, we can deform Γ− to Γ+ using the deformation

ζ(s, t) = sζ+(t) + (1− s)ζ−(t) .

This “straight line homotopy” (it’s a straight line as a function of s, not as a
function of t) works for any two parameterized contours. The problem is that
there might be an s so that Γs runs through a z value where f is not defined.
Take the straight line homotopy from Γ− to Γ+ and the function f(z) = z−1.
For s = 1

2 , this gives ζ( 1
2 , t) = cos(t) (check this) on the interval −π ≤ t ≤ 0.

For t = −π2 , this gives ζ( 1
2 ,
−π
2 ) = cos(−π2 ) = 0, where z−1 is not defined. This

cannot be fixed with a better proof, as we know the Γ+ and Γ− integrals are
different.

The proof of (15) is a calculation (explanations follow the calculation):

d

ds

∫
Γs

f(z) dz =
d

ds

∫ b

a

f(ζ(t, s))
∂ζ(t, s)

∂t
dt

=

∫ b

a

∂

∂s

(
f(ζ(t, s))

∂ζ(t, s)

∂t

)
dt

=

∫ b

a

(
f ′(ζ(t, s))

∂ζ(t, s)

∂s

∂ζ(t, s)

∂t
+ f(ζ(t, s)

∂2ζ(t, s)

∂s∂t

)
dt

=

∫ b

a

∂

∂t

(
f(ζ(t, s)

∂ζ(t, s)

∂s

)
dt

= f(v)
∂ζ(1, s)

∂s
− f(u)

∂ζ(0, s)

∂s
= 0 .

To go from line 1 to line 2, we moved the derivative with respect to s inside
the integral. It is written as a total derivative on line 1 and a partial derivative
with respect to s on line 2, because the integrand is a function of two variables.
To go from line 2 to line 3 we differentiate using the product rule and then the
chain rule. The chain rule for f(ζ(s, t)) is

∂

∂s
f(ζ(s, t)) = f ′(ζ(s, t))

∂ζ

∂s
. (16)

This is an exercise. Line 4 equals line 3 for the same reason line 2 equals line
3, because the s and t partial derivatives commute. Line 4 to line 5 is the
ordinary fundamental theorem of calculus, plus the fact that ζ goes from u to
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v, so ζ(0, s) = u for all s, etc. The last step is the fact if ζ(0, s) = u for all s,
then ∂ζ

∂s = 0.
There is another statement of the Cauchy integral theorem that refers to

closed contours that are simple or contractable. A contour is closed if it starts
and ends at the same place. In terms of a parameterization, this means ζ(a) =
ζ(b). A contour is simple if it has a parameterization with ζ(t1) 6= ζ(t2) for
a ≤ t1 < t2 < b. This means it never touches itself. A simple closed contour
divides C into an “interior” and an “exterior”, which is not so hard to prove if
the contour is rectifiable but pretty hard to prove if it is just continuous (i.e.,
has a continuous parameterization). The interior plus the contour itself form
a compact set. Suppose that f(z) is differentiable in a neighborhood of this
compact set. The Cauchy theorem states that∮

Γ

f(z) dz = 0 .

The circle in the integral sign indicates that it’s a closed contour.
You can prove this form of the Cauchy theorem by invoking Green’s theorem

(which is the two dimensional version of Stokes’ theorem and the two dimen-
sional version of the divergence theorem, in case you’ve never heard of it). This
theorem, also is either a little informal or rests on a significant foundation of
topology. Suppose the parameterization is ζ(t) = ξ(t) + iη(t) and the differen-
tiable function is f(z) = u(x, y) + iv(x, y). The contour integral, written in a
combination of old and less old notation, is∮

Γ

f(z) dz =

∮
Γ

(u(ξ(t), η(t)) + iv(ξ(t), η(t))(ξ′(t) + iη′(t)) dt

=

∮
Γ

(u+ iv)(dx+ idy)

=

∮
Γ

(udx− vdy) + i

∮
Γ

(vdx+ udy) .

Green’s theorem says the first integral is zero because

curl(u, v) =
∂u

∂y
− ∂v

∂x
= 0 ,

which is one of the Cauchy Riemann equations. The second integral is zero
because of the other Cauchy Riemann equation

div(u, v) =
∂u

∂x
+
∂v

∂y
= 0 .

As an example, let the contour be the circle of radius r about the origin that
starts at a = r (on the positive real axis) and ends at the same point b = r. A
contour that starts and ends at the same place is a closed contour. We will see
that it is very common to be able to evaluate integrals around closed contours.
If f(z) is analytic everywhere inside the contour, we may deform the contour

12



to a single point without changing the integral. Therefore, the integral around
such a contour is zero. But the integral may not be zero if f(z) is singular (not
analytic) somewhere inside the contour. For example, the function f(z) = z−1

is analytic except at z = 0, so it is not analytic at every point inside the circle of
radius r. Integration around a closed contour is often written

∮
. We calculate∮

|z|=r
z−1 dz . (17)

This notation is ambiguous because there are two ways to go around the contour,
clockwise and counter-clockwise. One generally should say which is intended,
but one often forgets to say if the direction is counter-clockwise. We use the
parametrization z = reiθ, which has dz = rieiθdθ, and z−1 = r−1e−iθ. The
integral (17) is ∫ 2π

0

r−1e−iθ rieiθ dθ = 2πi .

The factors of r cancel, making the integral independent of the contour, as it
should be.

5 Some functions

Most of the functions f(z) we use are either these examples or are built from
them as infinite sums or products.

eikz. On the real axis, this is purely oscillatory (it just goes round and round),
because eikx = cos(x) + i sin(x). Off the real axis it grows or decays “exponen-
tially”. If z = x+ iy, then

eikz = eikxe−ky .

If k > 0, then this decays for positive y and grown for negative y. If k < 0 it
does the opposite. The behavior of eikz as you leave the real axis depends on
the sign of k. The functions f(z) = cos(z) and f(z) = sin(z) grow exponen-
tially off the real axis no matter which way you go because they have complex
exponentials of both signs.

zp. You can write z in “polar coordinates” as z = reiθ. This is the same as
x = r cos(θ) and y = r sin(θ). It is understood that r = |z| ≥ 0. However,
the argument, θ is not completely determined. If z = reiθ, then z = rei(θ+2π).
It is a common convention to take −π < θ ≤ π. If you do this, then θ is a
discontinuous function of z, discontinuous at every point of the “branch cut” on
the negative real axis. For any real p, you can try to define

zp = rpeipθ .

If p is an integer (positive or negative), this gives a unique answer, regardless of
which θ you pick to represent z. If p is not an integer, the answer depends on
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which θ you pick. There is no “single valued” function (the definition of func-
tion includes being single valued, only one value of f(z) for each z, but complex
analysis people say this anyway) zp. Take f(z) =

√
z as an example. We can

define it for all z using
√
z =
√
re

iθ
2 , with −π < θ ≤ π, but this function is not

continuous, and certainly not differentiable, for z = −1, or any other point on
the negative real axis.

ns. Here, we write the complex variable as s = σ+ it. In exponential notation,
this is

ns = nσ+it = nσnit = nσeit log(n) .

This satisfies |ns| = nσ. Therefore, the Dirichlet series

ζ(s) =

∞∑
1

n−s (18)

converges absolutely if σ > 1. But it’s much more “interesting” to figure out
what happens with σ is fixed and t→∞.

6 The Cauchy integral formula and consequences

There are big differences between the possible behaviors of real differentiable
functions and complex differentiable functions. Many of these differences are
consequences of the Cauchy integral formula

f(z) =
1

2πi

∮
Γ

f(w)

w − z
dw . (19)

In the integral, w is the integration variable that we called z in the previous
sections and z is a parameter. The formula is valid (as we will soon see) if
Γ is a closed contour, such as a circle, that “winds around” z exactly once in
the counter-clockwise direction, and if f is differentiable inside Γ. A course
on complex analysis would explore the topological concepts of “winding” and
“inside” at length. But this course on analytic number theory will just suppose
Γ is a circle in the complex plane with radius r0 centered at a point z0, and
that |z − z0| < r, and that f is analytic for all z in some bigger disk of the form
|z − z0| < r1 with r1 > r.

The proof of the Cauchy formula (19) uses tricks that are used constantly
in complex analysis. The contour Γ may be parametrized by ζ(t) = z0 + r0e

it

for 0 ≤ t ≤ 2π. It may be deformed to a small contour about z, which we call
Γδ parametrized by ζδ(t) = z + δeit. We will take the limit δ → 0. We assume
δ < r0 − |z − z0|. You can draw a picture to see that δ < r0 − |z − z0| insures
that all of Γδ is inside Γ. One deformation of Γ to Γδ is the family of straight
line deformation

ζ(t, s) = (1− s)ζ(t) + sζδ(t) = (1− s)
[
z0 + r0e

it
]

+ s
[
z + δeit

]
.
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All the points of ζ(t, s) for all t ∈ [0, 2π] and s ∈ [0, 1] are in Γ, so f is differ-
entiable (in the complex sense). Therefore (put in the parametrized integral on
the second line)

1

2πi

∮
Γ

f(w)

w − z
dw =

1

2πi

∮
Γδ

f(w)

w − z
dw

=
1

2πi

∫ 2πi

0

f(z + δeit)

δeit
δeit idt

=
1

2π

∫ 2πi

0

f(z + δeit)dt .

Now, since f(w) is continuous near w = z, for any ε > 0 there is a δ > 0 so that

max
|z−w|≤δ

|f(w)− f(z)| ≤ ε .

Therefore, ∣∣∣∣ 1

2π

∫ 2πi

0

f(z + δeit)dt− f(z)

∣∣∣∣ ≤ ε .
This is the proof of the Cauchy integral formula (19), let ε→ 0.

We can use the Cauchy formula (19) to see that complex differentiable func-
tions of a complex variable are nothing like real differentiable functions of two
real variables (x, y). For example, the function f(x, y) = 1− x2− y2 is differen-
tiable in the real derivative sense. But functions differentiable in the complex
sense satisfy the maximum principle

|f(z)| ≤ max
|w−z|=r

|f(w)| . (20)

This is not true about f(x, y) = 1−x2− y2, since you can take z = 0 and r = 1
and get 1 ≤ 0. You prove this by taking Γ with z = z0 and putting absolute
values in the Cauchy formula (19).

As an example, take f(w) = cos(w) = 1
2

(
eiw + e−iw

)
. Then take z = 0

and r = π
2 . If you stick to the real axis, you’re trying to bound cos(0) = 1

by cos(±π2 ) = 0. This doesn’t work. But if you go off the real axis, you can
calculate, for example

cos( iπ2 ) =
1

2

(
e
π
2 + e

−π
2

)
= 2.51 > 1 .

In this case, the right side of (20) is larger than the left side. It’s a theorem,
which we won’t prove, that the two sides are equal only if f is constant.

You can differentiate the Cauchy formula (19) with respect to z and get
formulas for f ′, f ′′, etc. We assumed that f is a differentiable function of z,
so it may not be surprising to have a formula for f ′. But we did not assume
that f ′′ exists. The Cauchy formula proves f ′′ exists (details below). Real
differentiation is different. Let f(x) be the function with f(x) = 0 for x < 0 and
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f(x) = x2 for x ≥ 0. This function is differentiable with derivative f ′(x) = 0
for x < 0 and f ′(x) = x for x ≥ 0. But the second derivative at x = 0 does not
exist, because (since f ′(0) = 0)

d

dx
f ′(0) = lim

h→0

f ′(h)

h

This limit does not exist because the right side is 1 if h > 0 and it is 0 if
h < 0. You will be frustrated if you try to do this with a complex differentiable
function. It’s impossible.

You find the derivative formulas by differentiating the integral in (19) with
respect to z. The first result is

f ′(z) =
1

2πi

∮
Γ

f(w)

(w − z)2 dw . (21)

You can do this repeatedly to get

f ′′(z) =
2

2πi

∮
Γ

f(w)

(w − z)3 dw (22)

...

f (n)(z) =
n!

2πi

∮
Γ

f(w)

(w − z)n+1 dw . (23)

This implies that if a complex function is differentiable (in a disk of radius r
about the point z), then it has all higher derivatives also.

The formulas (23) lead to a family inequalities like the maximum principle,
but for derivatives. These allow us to show, for example, that if fn(z) is a family
of complex differentiable functions that converges uniformly to f(z), then f ′

converges to f ′ and similarly for higher derivatives. If

f(z) =

∞∑
1

an(z)

and the sum converges uniformly and absolutely, then

f ′(z) =

∞∑
1

a′n(z) ,

with the sum also converging uniformly and absolutely. This, also, is not true
about real differentiable functions. Consider the sum

f(x) =

∞∑
1

1

n2
sin(n2x) . (24)

The sum converges absolutely and uniformly, but the derivative sum does not
converge

f ′(x) ?
?
=?

∞∑
1

cos(n2x) .
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The sum on the right is infinite if x = 0. If you look in the complex plane, the
sum

∞∑
1

1

n2
sin(n2z)

does not converge uniformly in any disk in the complex plane.
For the bounds on derivatives, unlike the maximum principle, it matters

how close z is to the boundary of a disk of radius r about z0. Suppose f(z) is
differentiable in a disk of radius r about a point z0. This implies that f(z) is a
continuous function of z so this maximum is achieved:

M = max
|z−z0|≤r

|f(z)| . (25)

Let Γ be the contour parameterized by ζ(t) = z0 + reit. Then the integral
representation (21) leads to

f ′(z) =
1

2πi

∫ 2π

0

f(z0 + reit)

z0 + reit − z
ieitdt

|f ′(z)| ≤ 1

2π

∫ 2π

0

∣∣f(z0 + reit)
∣∣

|z0 + reit − z|
dt

≤M max
1

|z0 + reit − z|
1

2π

∫ 2π

0

dt (26)

|f ′(z)| ≤ M

r − |z − z0|
. (27)

The last step uses some plane geometry. The denominator in (26) is the distance
between a point w − z0 + reit on Γ and z inside Γ. A drawing should convince
you that the closest distance is r−|z − z0|. This is positive because |z − z0| < r,
which is what it means that z is inside Γ. You get the inequality (27) by noting
that you maximize the fraction by minimizing the denominator.

As another example, consider the function f(z) =
√
z defined for |z − 1| ≤ 1.

Let Γ be the contour centered at z0 = 1 with radius r = 1. For this function
and contour, M =

√
2 (where is this attained?) and |f(z)| ≤

√
2 for all z with

|z| ≤ 1. The derivative is f ′(z) = 1
2z
− 1

2 . This has |f ′(z)| → ∞ as z → 0, which
is a point of Γ. The derivative bound (27) allows this possibility.

These ideas apply to differentiation of series. Suppose the functions an(s)
are complex differentiable functions and are bounded in a disk of radius r about
s0 with bounds

Mn = max
|s−s0|=r

|an(s)| .

(We use s instead of z for the complex variable because we’re about to apply this
to the Dirichlet series (18)) As in the dominated convergence theorem, suppose

∞∑
1

Mn <∞ .
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Now let r1 < r be the radius of a smaller disk about s0. Then the derivative
bound (27) gives

M ′n = max
|s−s0|≤r1

|a′n(s)| ≤ Mn

r − r1
.

This implies that the derivative sum is also absolutely convergent and subject
to the dominated convergence theorem we proved before. We don’t have to
calculate a′(s) to know this. For example, we know that if s = σ + it and if
σ > 1, then

ζ ′(s) = −
∞∑
1

log(n)n−s

is absolutely convergent. We learn that ζ(s) is a complex differentiable function
of s for σ > 1. The details are an exercise.

7 Taylor series

If f(x) is a real function of a real variable x, we say f is analytic at x0 if there
is an r1 > 0 so that if |x− x0| ≤ r1, then

f(x) =

∞∑
0

f (n)(x0)(x− x0)n

n!
,

A complex function of a complex variable is called analytic if its Taylor series
converges in this way. A complex function of a complex variable is called analytic
at z0 if there is an r so that f ′(z) exists for all |z − z0| < r (the complex
derivative). These definitions are the same. If f is bounded (with bound M)
in a disk of radius r about z0, then the Taylor series converges to f(z) as long
as |z − z0| < r. Here is one of the proofs you might find in a complex analysis
book, but it is not the complex analysis version of the real calculus discussion
of Taylor series.

Suppose Γ is a contour that winds once around z0 with radius r. We rewrite
the representation formula (19) as

f(z) =
1

2πi

∮
Γ

f(w)

w − z0 + z − z0
dw

=
1

2πi

∮
Γ

f(w)

w − z0

1

1− z − z0

w − z0

dw .

Define the complex ratio on the right to be

q =
z − z0

w − z0
.

Define r1 = |z − z0| < r and ρ = r1
r < 1. Then (|z − z0| = r1 and |w − z0| = r)

|q| ≤ r1

r
= ρ < 1 .
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This implies that the geometric series

1

1− q
=

∞∑
0

qn

converges absolutely. The finite geometric series is

1 + · · ·+ qN =
1− qN+1

1− q
,

so we have an error bound for partial sums:∣∣∣∣∣ 1

1− q
−
n=N∑
n=0

qn

∣∣∣∣∣ =

∣∣qN+1
∣∣

|1− q|
≤ |q|

N+1

1− |q|
=
ρN+1

1− ρ
. (28)

We put the geometric series and bounds into the representation formula and
the derivative formulas (23) to get

f(z) =
1

2πi

∮
Γ

f(w)

w − z0

∞∑
0

(
z − z0

w − z0

)n
dw

=

∞∑
0

(z − z0)
n 1

2πi

∮
Γ

f(w)

(w − z0)
n+1

f(z) =

∞∑
0

(z − z0)
n f

(n)(z)

n!
.

We know the sum on the right converges to f(z) because of the remainder bound
that we got for geometric series:∣∣∣∣∣f(z)−

N∑
0

(z − z0)
n f

(n)(z)

n!

∣∣∣∣∣ ≤M ρN+1

1− ρ
. (29)

One consequence of the convergence of Taylor series is the uniqueness of
analytic continuation. Suppose f(z) has is defined in a disk or other simple set,
Ω0. An analytic continuation of f is a function g(z) defined on a bigger set Ω1

so that g(z) = f(z) for z ∈ Ω0. For example, let Ω0 be the interior of the unit
disk in the complex plane and define

f(z) =

∞∑
0

zn .

The function

g(z) =
1

1− z
is an analytic continuation of f because g(z) = f(z) if |z| < 1 and g(z) is
defined in Ω1, which is the whole complex plane except the point z = 1. The
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unique continuation theorem says that the analytic continuation, if there is
one, is unique. If h(z) and g(z) are analytic functions defined in Ω1 so that
h(z) = g(z) in Ω0, and if Ω1 is connected (definition hinted at below), then
h(z) = g(z) in Ω1.

The proof involves looking at the difference k(z) = g(z)− h(z).

8 Poles and residues

An analytic function has a simple pole at z = z0 if f(z) is a differentiable
function of z in some neighborhood of z0, but not at z0, and

f(z) =
r

z − z0
+ g(z) , (30)

where g(z) is analytic in a neighborhood of z0 that includes z0. The coefficient
r is the residue of f at z0. It may be found as the limit

r = res(f, z0) = lim
z→z0

(z − z0)f(z) .

If Γ is a contour that winds around z0 once in the counter-clockwise direction
(a circle or a deformation of a circle), then

r =
1

2πi

∮
Γ

f(z) dz . (31)

We prove this formula by taking the limit δ → 0 and deforming Γ to a circle of
radius δ about z0. The contribution from g vanishes in that limit.

Suppose f is defined and analytic in a neighborhood of z0 but possibly not
at z0 itself. If f has a simple pole at z0, then f “blows up” as z → z0 “like
1/ |z − z0|”. Exactly what it means to “blow up like” something can be different
from place to place. For example, we can define

Mδ = max
|z−z0|=δ

|f(z)| .

Then we can ask that there are constants 0 < C1 < C2 so that

C1 ≤ lim inf
δ→0

δMδ ≤ C2 .

Another surprising fact about analytic functions is that if f doesn’t blow up at
least like 1/ |z − z0|, then f doesn’t blow up at all. Not only is f bounded in a
neighborhood of z0, but there is a value of f(z0 so that the function is analytic at
z0 also. If f blows up slower than 1/ |z − z0|, then f has a removable singularity
at z0. This means that although we thought might be a “singularity” (a point
where f is not analytic), we were wrong. If you give the right value of f(z0)
the singularity is “removed” (actually, it was never there, but we can’t change
terminology).
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It is important to get the hypotheses of the removable singularity theorem
completely. We require that there is a ∆ > 0 so that if z 6= z0 but |z − z0| ≤ ∆
then f is differentiable in the complex sense at z. We also require that

δMδ → 0 , as δ → 0 . (32)

This seems to allow f(z) to blow up as z → z0, but slower than 1/ |z − z0|.
What about the function f(z) = z−

1
2 ? This function blows up like |z − z0|−

1
2

and seems to satisfy (32). But it’s singularity at z0 is not removable. There is

no analytic function defined in a neighborhood of z = 0 whose values are z−
1
2

near zero. The answer is that z−
1
2 cannot be defined in a continuous way near

z = 0. There has to be some branch cut where it is discontinuous.
To prove the removable singularity theorem, we show that the Cauchy rep-

resentation formula (19) holds for this f , where Γ = Γ+
∆, which is the circular

contour with radius ∆ that goes in the counter-clockwise direction about z0

(parametrized by ζ+
∆(t) = z + 0 + ∆eit for 0 ≤ t ≤ 2π).

f(z) =
1

2πi

∮
Γ+

∆

(33)

Of course, z must be inside this circle, which means |z − z0| < ∆. The hypothe-
ses of the representation formula (19) are not satisfied, because we don’t yet
know that f(z) is defined or differentiable at z0. We will show that. Once we
do, the theorem is proven. We define f(z0) to be the value given by (19). We
already showed that the function defined in this way is analytic.

The proof of (33) uses a more complicated closed contour

Γ = Γ+
∆ + Γ2 + Γ−δ + Γ4 .

By adding contours, we mean that we make the single contour Γ by tracing the
contours in the order written. It happens that each contour ends where the next
one starts, so together they form a single closed contour. Assume that δ < ∆.
We will get (33) in the limit δ → 0. The connecting contour goes from the
start/end point of Γ+∆ to the start/end point of Γ−δ . It is parameterized by
ζ2(t) = (1− t))(z0 + ∆) + t(z0 + δ), for 0 ≤ t ≤ 1. The inner contour is a circle
of radius δ in the clockwise direction (the “minus” direction), parametrized by
ζ−δ (t) = z0 + δe−it for 0 ≤ t ≤ 2π.

We call the circular contours Γ+
∆, and Γ−δ . The straight line parts are Γ2 and

Γ4, parameterized by ζ2(t) = (1− t)∆ + tδ and ζ4(t) = (1− t)δ+ t∆. The point
of this contour is that it wraps around any point z with δ < |z − z0| < ∆ in the
counter-clockwise direction (if z is not on Γ2). You should draw the picture to
show that this four part contour may be deformed to a small circle about z. The
point of wrapping around z is that we have the Cauchy integral representation

f(z) =
1

2πi

[∫
Γ+

∆

f(w)

w − z
dw

]
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The last contour is the reverse of Γ2. It is a straight line segment from the inner
circle to the outer circle parametrized by ζ4(t) = (1 − t)(z0 + δ) + t(z0 + ∆).
You integrate over Γ by adding the integrals over the pieces∮

Γ

g(w) dw =

∮
Γ+

∆

g(w) dw +

∫
Γ2

g(w) dw +

∮
Γ−δ

g(w) dw +

∫
Γ4

g(w) dw .

The closed contour integrals are written with
∮

and the non-closed ones with∫
.

We need only add them up and take the limit δ → 0. First,

1

2πi

∮
Γ

f(w)

w − z
dw = f(z) .

That’s the Cauchy integral formula (19). There are some details: if z is on
Γ2, we need to connect the inner and outer circles with a different path. You
have to check by drawing pictures (see also an exercise) that it is possible to
deform Γ to a small circle about z. The integrals over Γ2 and Γ4 cancel because
they integrate the same function in the opposite direction. The hypotheses (32)
implies that the inner integral vanishes in the limit δ → 0. In fact∣∣∣∣∣ 1

2πi

∮
Γ−δ

f(w)

w − z
dw

∣∣∣∣∣ ≤ 1

2π

∣∣Γ−δ ∣∣max

∣∣∣∣ f(w)

w − z

∣∣∣∣
≤ δ Mδ

min |z − w|

The min in the denominator is over the circle Γ−δ , which is shrinking to the point
z0. Therefore it converges to |z − z0| as δ → 0. If δMδ → 0 (the hypothesis)
then the Γ−δ integral converges to zero. This is the proof of the removable
singularity theorem.

With the technical theorem out of the way, we can get to the important
thing – poles and residues. Suppose f(z) is differentiable in a neighborhood
of z0 but “blows up” (has an actual singularity) as z → z0. We saw that the
singularity is removable unless lim supδ→0 δMδ > 0. Therefore, we ask what f
can look like near z0 if there is a C with

|f(z)| ≤ C |z − z0| .

This is easy because g(z) = (z− z0)f(z) has a removable singularity. Therefore
g(z) is analytic (has a convergent Taylor series) in a neighborhood of z0. We
write

(z − z0)f(z) =

∞∑
0

an(z − z0)n

= a0 + (z − z0)

∞∑
1

an(z − z0)n−1 .
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The sum on the right converges and defines an analytic function

h(z) =

∞∑
0

an+1(z − z0)n .

This shows that
f(z) =

a0

z − z0
+ h(z) . (34)

If Γ is a closed contour that winds once in the counter-clockwise direction about
z0 and stays in the region where

h(z) = (z − z0)f(z)− a0

z − z0

is analytic, then∮
Γ

f(z) dz = 2πia0 , where a0 = lim
z→z0

(z − z0)f(z) . (35)

A function that may be written as (34) is said to have a simple pole at z0. The
number a0 defined in (35) is the residue of the pole at z0.

It is possible for f to blow up in a more complicated way at z0. Suppose,
for example, that

|f(z)| ≤ C |z − z0|2 .

Then (z − z0)2f(z) has a removable singularity, so

f(z) =
a0

(z − z0)2
+

a1

z − z0
+ h(z) , (36)

where h is analytic in a neighborhood of z0. Here,

a0 = lim
z→z0

(z − z0)2f(z)

a1 = lim
z→z0

(z − z0)

(
f(z)− a0

(z − z0)2

)
.

It may not seem obvious that the a1 limit exists, but we have proven that it
does. Corresponding to (35) we have∮

Γ

f(z) dz = 2πia1 .

A function that satisfies (36) has a double pole, or a pole of degree 2, at z0. We
see that the residue from a closed contour integral about z0 depends not on the
leading order term, which would be a0, but on the next term. The leading order
term contributes zero because∮

Γ

1

(z − z0)2
dz = 0 .
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Clearly, there can be poles of any positive integer degree. If

|f(z)| ≤ C |z − z0|n

then f(z) has a pole of degree at most n. If f satisfies no inequality like this for

any n, then f has an essential singularity at z0. The function f(z) = e
1
z has an

essential singularity at z = 0.

9 Inverting a Dirichlet series

We practice many of the ideas described above as we derive the formula (3). If
we can interchange the Dirichlet sum and the contour integral, we have a sum
of contour integrals of the form ∫

1

s

xs

ns
ds .

We define y = x/n, so y > 1 is the same as n < x. The formula (3) seems to
follow from

1

2πi

∫ σ+i∞

σ−i∞

ys

s
ds =

{
0 if y < 1 ,
1 if y > 1 .

(37)

We show that this is true if σ > 0. “Show” is not exactly what we do. Instead,
this is an outline, and you are supposed to fill in the details and write out a full
proof. The steps that need filling in are marked in bold.

The contour is the vertical line in C with fixed real part σ and all t. The
contour may be parametrized by ζ(t) = σ + it, with −∞ ≤ t ≤ ∞. The
corresponding differential is ds = idt The parametrized integral is

1

2πi

∫ ∞
−∞

yσ+it

σ + it
idt .

This is an improper integral, so the definition is

lim
R→∞

∫ σ+iR

σ−iR

ys

s
ds . (38)

Step 1: Prove that the numbers (38) form a Cauchy sequence as R → ∞. To
do this, find an expression MR with MR → 0 as R→∞ and, if R′ > R, then∫ R′

R

ys

s
ds ≤MR .

For this, write ys = yσeit log(y) and take yσ outside the integral. You are left
with ∫ R′

R

eit log(y)

σ + it
dt .
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This integral (with R′ =∞) does not converge absolutely, because the denom-
inator goes to zero only like 1/t. However, the factor 1/(σ + it) goes to zero
very smoothly, and is nearly constant over each period of the oscillatory function
eit log(y). (Oscillatory only if y 6= 1, and we are interested in y > 1 or 0 < y < 1.)
Here is a trick for finding cancellation from oscillatory integrals which I learned
from a paper by the amazing (and difficult) Swedish mathematician Hörmander.
Note that

d

dt
eit log(y) = i log(y) eit log(y) .

Therefore

eit log(y) =
1

i log(y)

d

dt
eit log(y) .

We can integrate by parts to get (figure out the sign)∫ R′

R

eit log(y)

σ + it
dt =

1

i log(y)

∫ R′

R

[
d

dt
eit log(y)

]
1

σ + it
dt

=
1

i log(y)

[
eiR
′
log(y)

σ + iR′
− eiR log(y)

σ + iR

]

± 1

i log(y)

∫ R′

R

eit log(y) 1

(σ + it)2
dt .

The last integral does converge absolutely as R′ →∞ for fixed R.
Now suppose y > 1 and consider the closed contour ΓR,L, that consists of

4 pieces. The first piece is the integral (38). We will close this contour using a
box built on the left of this vertical piece. The top of the box is Γ2 that makes a
horizontal line from σ+ iR to −L+ iR, with L > 0 that will soon go to infinity.
The left side of the box, Γ3, is a vertical segment from −L + iR to −L − iR.
This may be parameterized by ζ3(t) = −L− it, for −R ≤ t ≤ R (moving down
from −L+ iR to −L− iR. The last part piece, Γ4, is a horizontal segment from
−L− iR to σ − iL.

Step 2: Show that ∫
Γ3

ys

s
ds→ 0 , as L→∞ .

This has to do with the behavior of y−L as L→∞ if y > 1.
With this we can take L =∞, which really means that Γ2 goes from σiR to

−∞+ iR.

Step 3: Show that ∫ −∞
σ

yu+iR

u+ iR
du→ 0 , as R→∞ .

You can pull yiL out of the integral. You can write yu = eu log(y) and note that
log(y) > 0 while u → −∞. Also, over all of Γ2, we have |1/(u+ iR)| ≤ 1/R
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(why?).

Step 4: Show that
1

2πi

∫
ΓR,L

ys

s
ds = 1 .

This is true for any y > 0, but it is irrelevant for (37) unless y > 1 because steps
2 and 3 don’t work.
Step 5: Show that if 0 < y < 1, the closed contour must complete to the

10 Exercises

1. Use the definition of the derivative of functions of a complex variable and
the properties of the complex exponential to verify the following differen-
tiation formulas

d

dz
z3 = 3z2

d

dz
zn = nzn−1

d

dz
ez = ez

d

dz
eaz = aeaz

d

dz
az = log(a)az , if a > 0 .

2. Use the proofs from basic calculus to prove the same formulas are true in
complex calculus. Assume that the functions f(z) and g(z) are analytic

d

dz
(f(z)g(z)) = f ′(z)g(z) + f(z)g′(z)

d

dz
f(g(z)) = f ′(g(z)) g′(z) .

3. Calculate, using the product rule, the chain rule, and implicit differentia-
tion

d

dz
ez

2

d

dz

1

z

(
hint: try f(z) = z, and g(z) = z−1.

)
4. Write the function f(z) = z−1 in the form f = u + iv. Find formulas

for u(x, y) and v(x, y). Calculate the partial derivatives of these functions
and check that they satisfy the Cauchy Riemann equations.

26



5. Finish the proof of the parametrized integration formula (11). Define the
maximum spacings for these to be

Mt = max ∆tk , Mz = max |∆zk| .

Show that Mz → 0 as Mt → 0. Take δ > 0 so that if Mt ≤ δ then∣∣∣∣∣
n−1∑
k=0

f(ζ(tk))ζ ′(tk)∆tk −
∫ b

a

f(ζ(t))ζ ′(t) dt

∣∣∣∣∣ ≤ ε

3
,

and if Mz ≤ δ, then something similar for∫
Γ

f(z) dz ,

and the thing relating ∆zk to ∆tk (with the rectifiability constant L re-
placed with b− a). Add these three inequalities to conclude that∣∣∣∣∣

∫
Γ

f(z) dz −
∫ b

a

f(ζ(t))ζ ′(t) dt

∣∣∣∣∣ ≤ ε

3
+
ε

3
+
ε

3
= ε .

6. Consider the definite integral

A =

∫ 1

−1

x2 dx =
2

3
. (39)

Consider the following “substitution”: x = eiθ and dx = ieiθdθ. If we
plug in the new variable, we get an expression for A as an integral over θ.
The range is from θ = −π, which corresponds to x = −1, to θ = 0, which
corresponds to x = 1:

A =

∫ 0

−π

(
eiθ
)2
ieiθ dθ . (40)

Calculate the integral using the facts of calculus (such as d
dθ e

3iθ = 3ie3iθ).
Draw the contours in the complex plane that the integrals (39) and (40)
correspond to. Explain how Cauchy’s theorem implies that the answers
are the same.

7. Calculate ∫
Γ+

z−2dz and

∫
Γ+

z−2dz ,

and see that they are the same. Integration over the two contours gives
the same result (though you’re not being asked to do the calculation) for
f(z) = zn for any integer n except n = −1.
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8. Consider the family of contours ΓR that go from 0 to π by first going
up, then over, then down. That is, ΓR goes from 0 straight up to iR,
then straight over to iR+ π, then straight down to π. Suppose f(z) is an
analytic function of z for all z. Write an explicit representation of∫

ΓR

f(z) dz

as a sum of ordinary integrals over the three parts. Compute the deriva-
tives of these three parts explicitly to see that the integral is independent
of R. You can start with

d

dR

∫ R

0

f(iy)idy = if(iR) .

9. Consider the integral ∫ π

0

eix dx .

Consider replacing this contour with ΓR from Exercise 8. Take the limit
R→∞ and show that you are left with∫ π

0

eix dx = ±i
∫ ∞

0

e−y dy + (a similar integral) .

Calculate the integrals on the left and right and check that they are equal.

10. Show that (27) is sharp in the following example. Let f(z) = 1
z . Take

z0 = 1 and r < 1. Show that M = 1
1−r (the constant in (25)). Show that

if z is real and 1 > z > 1− r, then the two sides of (27) are equal.

11. Let f(z) be an analytic (differentiable) function in a neighborhood of z0

with Taylor series

f(z) =

∞∑
0

an(z − z0)n

that converges to f for |z − z0| ≤ ∆. Assume that f is not “locally
identically zero”, which means that there is a sequence wk → z0 as k →∞
so that f(wk) 6= 0.

(a) Show that if there is no sequence like wk, then there is a δ > 0 so
that f(z) = 0 if |z − z0| ≤ δ. (This part is practice with ε − δ style
mathematical analysis.)

(b) Show that if f is not locally identically zero (there is no sequence like
wk), then there is an n, and a C > 0, and a δ > 0 so that

|f(z)| ≥ C |z − z0|n if |z − z0| ≤ δ .
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Hint: If an = 0 for all n then f is locally identically zero. Therefore,
there is a smallest n with an 6= 0. Define

g(z) =
∑
m>n

am (z − z0)
m
,

and show that |g(z)| ≤ B |z − z0|n+1
. Choose δ = |an| /(2B) (or

something like that).

(c) Show that 1/f(z) either is analytic in a neighborhood of z0 or has a
pole of finite order, not an essential singularity.

(d) Find a formula for the residue of 1/f(z) at z0 in the case the pole
has order 1 or order 2.

12. In this exercise, suppose s = σ + it with σ > σ0 > 0.

(a) Show that

an(s) = n−s −
∫ n+1

n

x−s dx

is analytic and that

|an(s)| ≤ Cn−1−σ0 .

(b) Show that

ζ(s) =
1

s− 1
+ r(s) , (41)

where

r(s) =

∞∑
1

an(s)

is an analytic (differentiable) function of s. Hint: The theory in the
notes shows that r is automatically differentiable if the sum that
defines it converges uniformly enough.

(c) Show that there is a function, called ζ(s), which: (1) is equal to∑
n−s for σ > 1, (2) is analytic for σ > 0 except for a pole at s = 1.

(This is an analytic continuation of the zeta function from σ > 1 to
σ > 0.)

(d) Show that

−ζ
′(s)

ζ(s)
=

∞∑
1

Λ(n)n−s

has a simple pole at s = 1 with residue 1. Be careful to state this
precisely: There is an open set that contains σ > 1 and a neighbor-
hood of s = 1 (including some s values with σ < 1 for s near 1) and
an analytic continuation of ζ ′/ζ to that open set, and that analytic
continuation has a simple pole, etc. Hint: Exercise 11 is useful.

13. Carry out the steps 1-5 to prove the formula (37). Write out a more or
less complete proof. This is a writing exercise and a math exercise. Most
math exercises have fewer steps. Part of the challenge is organization.
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