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1 Introduction.

This section serves two purposes. One is to cover the Euler product formula for
the zeta function and prove the fact that∑

p

p−1 =∞ . (1)

The other is to develop skill and tricks that justify the calculations involved.
The zeta function is the sum

ζ(s) =

∞∑
1

n−s . (2)

We will show that the sum converges as long as s > 1. The Euler product
formula is

ζ(s) =
∏
p

(
1− p−s

)−1
. (3)

This formula expresses the fact that every positive integers has a unique rep-
resentation as a product of primes. We will define the infinite product, prove
that this one converges for s > 1, and prove that the infinite sum is equal to
the infinite product if s > 1.

The derivative of the zeta function is

ζ ′(s) = −
∞∑
1

log(n)n−s . (4)

This formula is derived by differentiating each term in (2), as you would do
for a finite sum. We will prove that this calculation is valid for the zeta sum,
for s > 1. We also can differentiate the product (3) using the Leibnitz rule as
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though it were a finite product. In the following calculation, r is another prime:

ζ ′(s) =
∑
p


[
d

ds

(
1− p−s

)−1]∑
r 6=p

(
1− r−s

)−1
= −

∑
p

[log(p)p−s
(
1− p−s

)−2]∑
r 6=p

(
1− r−s

)−1
= −

{∑
p

log(p) p−s
(
1− p−s

)−1}
ζ(s)

ζ ′(s) = −

{∑
p

(
log(p)

∞∑
1

p−ks

)}
ζ(s) . (5)

If we divide by ζ(s), the sum on the right is a sum over prime powers (numbers
n that have a single p in their prime factorization). This is expressed using the
von Mangoldt function

Λ(n) =

{
log(p) if n = pk for an integer k > 0 and prime p

0 otherwise.
(6)

The final formula is
ζ ′(s)

ζ(s)
=
∑
n

Λ(n)n−s . (7)

To justify these calculations, we prove a theorem about differentiating an infinite
series term by term and a theorem about changing the order of summation.

The product and sum formulas for ζ(s) work together to prove the divergence
of the sum of (1). Using the sum formula (2), we show that ζ(s)→∞ as s ↓ 1.
The notation s ↓ 1 means that we take the limit as s approaches 1 through
values s > 1. However, we analyze the product formula (3) to see that ζ(s) is
bounded as s ↓ 1 unless the sum p−1 diverges.

Mathematicians often do things in more generality and with more abstrac-
tion than necessary for a particular problem. They do this to find the simplest
version of a problem. The abstract version may be simpler because it has less
irrelevant structure and detail. The abstract version also may serve to “kill two
birds with one stone”. One general fact justifies many particular calculations.
Mathematicians search for general formulations when they find more than one
problem of a similar form. For example, a mathematician may look at the zeta
function sum (2) and the derivative formula (7) and start talking about general
Dirichlet series of the form

f(s) =

∞∑
1

ann
−s . (8)

Any theorem about general Dirichlet series automatically applies to both exam-
ples, and to many more that are coming. When differentiating a series like (2),
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a mathematician may ask about the more general problem of differentiating a
function that is a general sum of functions like

f(s) =

∞∑
1

bn(s) . (9)

The question would be: find “nice” condition on the functions bn(s) that imply
that

f ′(s) =

∞∑
1

b′n(s) . (10)

Nice means that the condition is be easy to check and applies in many specific
examples we are interested in.

2 Sizes and conventions

For many of you this section will be as interesting as the safety instructions at
the beginning of a plane flight. But it has to be said, so ...

These definitions are for the limit x → ∞. The term asymptotic behavior
of a f(x) refers to approximate descriptions of f(x) that become increasingly
accurate as x→∞. I will write f(x) ≈ g(x) to mean that g(x) is an increasingly
accurate approximation of f(x) as x→∞.1 “Big Oh” and “little Oh” notation
are devices for being a little more formal with statements about relative size. If
g(x) ≥ 0 for x > 0 we write

f(x) = O(g(x))

if there is a C and an x0 so that if x > x0, then f(x) ≤ Cg(x). Some people
might want f(x) ≥ 0 in this definition, so we don’t say −x2 = O(x). If you want
to talk about absolute value, use absolute value signs as in |f(x)| = O(g(x)).
You are supposed to say “f(x) is of the order of g(x)”, but this can be misleading.
The actual definition allows the possibility that f(x) is much smaller than g(x).
For example, x = O(x2). This is the “big Oh”.

“Little Oh” is for saying one quantity is (asymptotically) smaller than an-
other. We say f(x) = o(g(x)) if

lim
x→∞

f(x)

g(x)
= 0 .

This presumes f(x) ≥ 0, or doesn’t quite capture our intent otherwise. An
equivalent definition of little Oh is that for any ε > 0 there is an x0 so that

f(x) ≤ εg(x) , if x > x0 .

1Specialists in analytic number theory use notations for this that are not shared by people
in other branches of mathematics or science. For example, they write f(x)� x not to mean
that f(x) is much smaller than x, but to mean f(x) = O(x). You may encounter notation
like this in the references. This class avoids these in favor of notation more common to other
parts of math and science.
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Bigger powers of x are always bigger in this sense, and constants and logs don’t
change that. For example

(log(x))
2
x

1
2 = o(x) .

Applied mathematicians often write f(x) ∼ g(x) to mean that f(x) and g(x)
are asymptotically equivalent, which means that the difference between them is
smaller than they are:

|f(x)− g(x)| = o(g(x)) .

Unfortunately, others use the ∼ symbol to mean other things, so I will use the
less formal f(x) ≈ g(x) for this. As an example, consider the logarithmic integral

li(x) =

∫ x

2

1

log(y)
dy .

This satisfies (it’s an exercise, literally. Look for it in the homework.)

li(x) ≈ x

log(x)
, which means

∣∣∣∣li(x)− x

log(x)

∣∣∣∣ = o

(
x

log(x)

)
.

Computer scientists write f(x) = Θ(g(x)) to mean f(x) = O(g(x)) and
g(x) = O(f(x)). It would be great if analytic number theorists would use this
notation, but they generally don’t.

Big Oh notation is used in formulas to indicate the size of a discrepancy.
For example, we will show that if s > 1, then

∞∑
N

n−s =

∫ ∞
N

x−s dx+O(N−s) .

This means that there is an N0 and a C so that if N > N0, then∣∣∣∣∣
∞∑
N

n−s −
∫ ∞
N

x−s dx

∣∣∣∣∣ ≤ CN−s .
Note that we are using N →∞ instead of x. The expression O(1) is interpreted
as g(x) = 1 being the constant function. For example, we will show that

ζ(s) =
1

s− 1
+O(1) , as s ↓ 1 .

This means that there is an s0 > 1 and a C so that if 1 < s < s0, then∣∣∣∣ζ(s)− 1

s− 1

∣∣∣∣ ≤ C · 1 = C .
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3 The zeta function and the prime number the-
orem, informally

Mathematicians spend as much time guessing as they do proving. One form of
guessing is “optimistic” formal manipulation of the kind that led to (7). You
will get a sense of which calculations are easy formulate in a mathematically
rigorous way. It may be argued that the non-rigorous version should be called
informal. If so, it is possible to become even less formal and more speculative.
Here is such an informal discussion of the role of the zeta function and the
logarithmic derivative in the prime number theorem.

The prime number theorem is about the large x behavior of prime numbers.
The counting function for prime numbers, the number of primes less than x, is

π(x) =
∑
p<x

1 . (11)

Two related functions are

φ(x) =
∑
p<x

log(p) , (12)

and
ψ(x) =

∑
n<x

Λ(n) =
∑
pk<x

log(p) . (13)

Informally, let ρ(x) be the “probability” that a given number about x is prime.
Or, we could say that ρ(x) is the density of primes near x. The theorem,
informally, is that for large x,

ρ(x) ≈ 1

log(x)
. (14)

If this is true, then the counting function should be approximately2

π(x) ≈
∫ x

2

ρ(y) dy ≈
∫ x

2

1

log(y)
dy . (15)

The last integral is the “logarithmic integral”, or

li(x) =

∫ x

2

1

log(y)
dy . (16)

It is not hard to show that

li(x) =
x

log(x)
+ o

(
x

log(x)

)
. (17)

2The integral diverges as x→∞. The statement is that π(x) and li(x) diverge in the same
way. Therefore, the lower limit y = 2 is irrelevant. We use 2 because log(y) blows up at y = 1,
which otherwise might have been a more natural lower limit.
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The actual, rigorous, prime number theorem is

π(x) =
x

log(x)
+ o

(
x

log(x)

)
. (18)

The prime number theorem also gives the large x behavior of φ(x) and ψ(x).
For φ(x), we have the informal formula

φ(x) ≈
∫ x

2

log(y)

ρ(y)
dy ≈ x .

The theorem is
φ(x) = x+ o(x) . (19)

It is hard to prove (18) or (19), but is is easier to show that either of these state-
ments implies the other. The third equivalent statement of the prime number
theorem is

ψ(x) = x+ o(x) . (20)

If you believe either the ψ estimate (20) or the φ estimate (19) then it is routine3

to prove that φ and ψ are close to each other

ψ(x)− φ(x) ≤ C log(x)x
1
2 . (21)

Note that ψ(x) ≥ φ(x) because the ψ sum (13) includes all the prime terms in
the φ sum (12), plus the extra terms from prime powers. “Close” is a relative
term, but the right side of the inequality (21) is smaller than φ or ψ. This is

because x
1
2 is smaller than x, and putting in the log doesn’t change this.

We come back to the log derivative function function, particularly as s ↓ 1.
The sum diverges when s = 1, so the behavior as s ↓ 1 may tell us how it
diverges. The closeness of φ(x) and ψ(x) is related to the fact that prime
powers are more rare than primes. Let us use this, and the idea of replacing
sums with integrals, in log derivative formula (7). In the integral, the log(y)
in the numerator is from Λ(n) and the log(y) in the denominator is from ρ(x).
With all these “approximations”, we get

ζ ′(s)

ζ(s)
≈
∫ ∞
2

log(y)

log(y)
y−s dy ≈ 1

s− 1
. (22)

It is “routine” to show that

ζ ′(s)

ζ(s)
− 1

s− 1

is bounded as s ↓ 1. This is “evidence” in favor of the prime number theorem.
For example, if ρ(x) were 2

log(x) , then the right side of (22) would be 2
s−1 . In

fact (22) is one of several ways of seeing that if the primes have a simple density,
then that density must be 1

log(x) .

3Routine means that it’s the kind of thing a practiced professional can do in an hour or so.
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This motivates Riemann’s approach to the prime number theorem. The
density of primes for large x (should such a density be meaningful) is related to
the behavior of ζ(s) (actually ζ ′(s)/ζ(s)) for s near 1. The hard part is to go
the other way, from understanding ζ near s = 1 to the large x density of primes.
Riemann’s approach to that was to look at ζ(s) when s = σ + it is a complex
number. It’s traditional to use σ and t for the real and imaginary parts of s
when you talk about ζ(s). It isn’t just s near 1 that matters, but σ near 1 for
all t. Much of this class is devoted to this.

4 Prime factorization and Euclid’s algorithm.

[Instructor’s warning: I am not very good at basic algebra and am reluctant to
copy it from a book. Therefore, this section might be longer than the slicker
version in another book. Feel free to look up gcd and unique prime factoriza-
tion in another source rather than reading this. However, I want to convey the
sense, which has been important in my mathematical career, that it is possible
to make proofs of lemmas once you have a general idea how things work. You
understand things better that way. It’s how I got the sense that I possibly could
do mathematics. This is what it looks like.

We say p is a prime number (a prime) if p is an integer p ≥ 2 and if p = ab
with a and b being positive integers, then either a = 1 or b = 1. Any integer
n ≥ 2 may be factored into primes, written as a product of primes. This is “easy”
to show. It is harder to show that prime factorization is unique. For example,
if n = p1p2 and n = p3p4, (all pk being primes), then either p1 = p3 or p1 = p4.
Primes in the prime factorization may be repeated, as in 28 = 2 · 2 · 7 = 22 · 7.
There may be more primes, as in 90 = 2 · 32 · 5. Let p1 < p2 < · · · be the list of
all primes. Unique prime factorization is the statement that for any n, there is
a sequence of non-negative integers rk so that

n = pr11 · p
r2
2 · · · · .

If rk = 0, then pk does not occur in the prime factorization of n. There are only
finitely many non-zero rk. The rk for a given n are unique.

Unique prime factorization will seem natural once you try many examples.
The same can be said for the Goldbach conjecture, which says that every even
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integer n > 2 may be expressed as the sum of two primes. Try it:

4 = 2 + 2

6 = 3 + 3

8 = 5 + 3

10 = 7 + 3 = 5 + 5

12 = 7 + 5

14 = 11 + 3 = 7 + 7

...

50 = 31 + 19 = 37 + 13 = 43 + 7 = 47 + 3

52 = 29 + 23 = 41 + 11 = 47 + 5

...

This section contains a proof of unique prime factorization of integers. At-
tempts to prove the Goldbach conjecture have not succeeded yet, but have led
to beautiful contributions to mathematics.

Here is the strategy of the proof, which goes back to Euclid in Alexandria
(Egypt, not Virginia) about twenty two centuries ago. Suppose, for example,
that n = p1p2 and n = p3p4. We want to show that p1 = p3 or p1 = p4.
We prove something more general. Suppose p is a prime and p divides n = ab
(asking that a ≥ 2 and b ≥ 2 but not necessarily prime). Then either p divides
a or p divides b. Said differently, if p is prime and does not divide a, then p
divides b. We will show (this is the heart of the matter) that if p does not divide
a, and if p is prime, then there are integers i and j so that 1 = ia + jp. This
may be written as We multiply n = ab by i, and use ia = 1− jp to get

in = (1− jp)b
b = in− jbp .

If this formula is true, and if p divides n, then p divides both terms on the right
side of the equation and therefore p divides b.

Here is the argument done more formally with the definitions and details.
If c and a are integers greater than one, and if a = kc for some (integer) k > 1,
then we write c | a and say c divides a or that c is a divisor of a. We write
c - a if c is not a divisor of a. We say d is a common divisor of a and b if d | a
and d | b. The greatest common divisor of a and b is written c = gcd(a, b), or
just c = (a, b). It is basic fact that there is a gcd and it is unique. If a and b
are positive integers, there is a unique positive integer c so that c | a and c | b.
Moreover, if d is any common divisor then d |c. For example, (30, 24) = 6, and,
since 3 |30 and 3 |24, we know 3 |6. We say that a and b are relatively prime if
(a, b) = 1.

The euclidean algorithm4 is a way to find the gcd by looking for integers i

4You’re really successful as a mathematician when your name stops being capitalized.
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and j (not necessarily greater than one or even positive) so that

(a, b) = ia+ jb . (23)

(In particular, if a and b are relatively prime, then you can write ia + jb = 1.)
This is done by finding the i and j that gives ia+ jb its smallest positive value.
This smallest value is the gcd.

We first show that c | (ia + jb) if ia + jb > 0. Since c | a, there is a k with
a = kc. Similarly, b = lc for some l. Therefore

ia+ jb = ikc+ jlc = (ik + jl)c .

This shows that ia+ jb = mc, with m = ik + jl.
Let L be the set of all numbers of the form ia+ jb for integer i and j. Let c

be the smallest positive element5 of L. Then c = 1 or c is some larger integer.
Either way, we claim that every other positive element of L is of the form kc.
This means that the positive elements of L have the form c, 2c, 3c, . . ., so L may
be called a lattice. All the numbers kc are in L, because kc = (ki)a + (kj)b.
Therefore, we have to show that there are no other positive numbers in L.
Suppose d = la+mb is an element of L that is not of the form kc for any integer
k. Then there is a k so that kc < d < (k + 1)c. The crux of the proof is that
d− kc ∈ L and 0 < d− kc < c, which contradicts c being the smallest positive
element of L. The second part, 0 < d−kc < c, is the same as kc < d < (k+1)c.
The first part, d− kc ∈ L, follows from the calculation

d− kc = la+mb− k(ia+ jb) = (l − ki)a+ (m− kj)b .

To put all this together, we have shown that a and b are positive elements
of L. We have shown that c is a divisor of every positive element of L. We also
shown that if d divides both a and b, then d divides c. This implies that c is
a common divisor of a and b and that any other common divisor of a and b is
a divisor of c. That makes c the greatest common divisor of a and b. It also
shows that the representation equation (23) may be satisfied. Since L, and the
smallest positive element of L, are uniquely defined, this proves that c = (a, b)
is unique.

Euclid gave this argument more in terms of an algorithm. You start with
0 < a < b (interchange a and b if necessary). You want to find c = (a, b). For
any integer k, c is also the gcd of a and b−ka. If there is a k with b−ka = 0, then
b is a multiple of a and (a, b) = a. Otherwise, (as in the main step the other way
we said it), there is a k so that 0 < b−ka < a. Choose that k and solve the gcd
problem with the new pair c = (b−ka, a). This continues either until b−ka = 1
(with the current a and b, not the original ones) or until b = ka. You can check
that at every step of the current a and b are integer linear combinations of the
original a and b. We say that a′ is an integer linear combination of a and b if

5The principle of induction may be viewed as saying that any set of positive integers has
a smallest element. You prove something by induction by looking at the set of numbers for
which it is false and taking the smallest element of that.
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there are integers so that a′ = ia + jb. In the terminology above, a′ ∈ L. The
algorithm seeks successively smaller positive elements of L until it’s impossible
to get any smaller.

For example, if b = 33 and a = 7, then subtracting a repeatedly gives the
sequence 26, 19, 12, 5,−2. We see that there is no b − ka = 0, so b is not a
multiple of a (33 is not a multiple of 7). We stop at b− 4a = 5 because 5 is in
the range {0, 1, . . . , 6}. But if we start with b = 35 and a = 7, the sequence is
28, 21, 14, 7, 0. We stop at 0 because it is in the range. We learn that 35 = 5 · 7,
so 7 |35.

A prime number is an integer p ≥ 2 that has no non-trivial divisors. The
trivial divisors are 1 and p. Let n ≥ 2 be another integer. Since (n, p) is a divisor
of p, the only possibilities are (n, p) = p, (p is a divisor of n), or (n, p) = 1 (p
and n are relatively prime).

We return to unique prime factorization, first in the example n = p1p2 =
p3p4. We want to show that p1 = p3 or p1 = p4. Said another way, if p |n, and
if n = p3p4, then p = p3 or p = p4. Suppose p 6= p3. Then (p, p3) = 1 and
ip+ jp3 = 1 for some integers i and j. We multiply the equation n = p3p4 by j
and substitute jp3 = 1− ip (as before) to get

jn = jp3p4

jn = (1− ip)p4
p4 = jn+ ipp4 .

But p is a divisor of both terms on the right side, the first by assumption and
the second by formula. Therefore, p is a divisor of p4, which means p = p4. The
same argument works more generally. Suppose n = ab and p | n, then either
p |a or p | b. In fact, if p does not divide a, then (p, a) = 1, so ip + ja = 1, and
jn+ ipa = b, so p is a divisor of b.

More generally, if p |abc then p |a or p | b, or p | c. To see this, note that we
already showed that if p - a, then p | bc. Therefore, if p - a, then p | b, or p | c.
This reasoning extends to any number of factors.

Finally, the general theorem. Suppose that n has a prime factorization of
the form

n = pr11 · p
r2
2 · · · · . (24)

We want to show that the powers rk are uniquely determined by n. We do
this by showing that the numbers rk are determined by the extent to which pk
divides n. That makes the rk uniquely determined by n and makes the prime
factorization (24) unique. A step in this direction is that if rk = 0, then pk - n.
This is where we use the divisibility stuff we just did. There are only finitely
many terms in (24) that are not equal to 1. If pk | n, then pk divides one of
these terms (we just showed). The only term pk possibly could divide is prkk ,
which implies that rk > 0. Now you apply the same argument to n/(prkk ),
which shows that pk does not divide n/(prkk . Therefore, n = prkk · m, where
pk does not divide m, and m has fewer prime factors (primes pj with rj > 0)
than n. Eventually, we see that the whole prime factorization expression (24)
is determined by divisibility.
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This paragraph and the next are for people who have taken or may take
more abstract algebra. In the discussion of gcd and prime factorization, we used
addition, subtraction, multiplication, and a cancellation property (if ab = ac,
then b = c) but not division. Addition and multiplication are commutative,
associative, and distributive. A ring is a system of objects with these properties.
Another ring is the Gaussian integers, which is the set of complex numbers
with integer real and imaginary parts. The set of polynomials in one variable
p(x) = anx

n + · · ·+ a0 is another ring.
We found the gcd (a, b) by considering the set L = {ia+ jb}, i and j elements

of the ring. This set has the properties that (i) if k is any element (not necessarily
in L) and d ∈ L, then kd ∈ L, (ii) if d ∈ L and e ∈ L, then d + e ∈ L. A
subset like this is called an ideal. If c is an element of the ring, there is the
principal ideal (c) = {kc , k in the ring}. For the ring of integers, we showed
that any ideal is a principal ideal. That makes the integers a principal ideal
domain, or PID. We did this by showing that there is a measure of size and
finding c as the smallest non-zero element of L. A ring with a measure of size
that works like this (look up details if interested) is called a euclidean domain.
We proved that a euclidean domain is a principal ideal domain. The Gaussian
integers (see Homework) and ring of polynomials are other examples of euclidean
domains. Any Gaussian integer may be factored, uniquely (see homework for
the fine print on uniqueness) as a product of powers of prime Gaussian integers.
Any polynomial may be factored, again uniquely, as a product of irreducible
polynomials. Many rings that some up in more advanced number theory are
not principal ideal domains. These rings do not have unique prime factorization.
The theory of rings and ideals was invented for these. The big theorem is that
(for the a big class of rings used in number theory) any ideal may be factored,
uniquely, as a product of prime ideals. Find a book on algebraic number theory
for details.

5 Infinite sums

Some of the material here is review of mathematical analysis. How much de-
pends on your analysis background.

Suppose an is a sequence of numbers. The infinite sum is6

A =

∞∑
1

an . (25)

The partial sums are

AN =

N∑
1

an = a1 + · · ·+ aN . (26)

6The numbers form a sequence the sum is a series. The Taylor series is the infinite sum.

11



The infinite sum is defined to be the limit of the partial sums:

A = lim
N→∞

AN . (27)

If the limit exists, we say the sum converges. The sum is not defined if the limit
does not exist. If AN → ∞ as N → ∞, we say the sum diverges, or possible
“diverges to infinity”. For example, consider the sum

∞∑
0

(−1)n ,

whose partial sums form the series

1, 0, 1, 0, 1, 0, 1, . . . .

I would say the partial sums “fail to converge” but I probably wouldn’t say they
diverge. Others might.

The sum converges absolutely if the sum

∞∑
1

|an|

converges. More generally, suppose bn ≥ 0 is a non-negative sequence. Then
the partial sums BN are a monotone non-decreasing sequence. Such a sequence
either has a finite limit or diverges to infinity. We write

∞∑
1

bn =∞

if the partial sums diverge to infinity. Otherwise, we say

∞∑
1

bn <∞

A sum converges absolutely if

∞∑
1

|an| <∞ . (28)

If a sum converges absolutely, then the sum converges. You can prove this (if
you don’t remember the proof) by showing that the partial sums form a Cauchy
sequence.

A sum converges conditionally if it converges but does not converge abso-
lutely. The “condition” is that we not change the order of the summands. It is
a theorem of mathematical analysis that the terms in a conditionally convergent
sum may be re-arranged to give any answer. An absolutely convergent sum con-
verges unconditionally, which means you can add the terms in any order and get
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the same answer. If a sum converges conditionally, we say it has cancellation,
the positive terms and the negative terms “cancel” each other to a large extent.
The sum of the positive terms alone would be infinite.

The geometric series makes a good example. If |z| < 1, then

S(z) =

∞∑
0

zn =
1

1− z
. (29)

We can prove this using the partial sums

SN =

N∑
0

zn =
1− zN+1

1− z
.

As a reminder, here is the algebraic trick that gives the formula for the partial
sums:

SN = 1 + z + · · · + zN

zSN = z + z2 + · · ·+ zN + zN+1

(1− z)SN = 1 + 0 + · · · + 0 − zN+1

SN =
1− zN+1

1− z
.

The geometric series converges absolutely for |z| < 1, because

∞∑
0

|zn| =
∞∑
0

|z|n =
1

1− |z|
<∞ .

Therefore, for example, you can add the even and odd terms separately, as in

∞∑
0

zn =

∞∑
0

z2n +

∞∑
0

z2n+1

=

∞∑
0

z2n + z

∞∑
0

z2n

=
1

1− z2
+ z

1

1− z2

=
1 + z

1− z2

=
1

1− z
.

This is a more complicated route to the same answer.
If a sum converges absolutely, you usually show it by “comparing” it to

(bounding it by, more properly) another sum you know converges absolutely.
For example if |z| < 1, then

∣∣z2∣∣ < |z| and

∞∑
0

∣∣∣zn2
∣∣∣ ≤ ∞∑

0

|z|n <∞ .
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This means that the function

f(z) =

∞∑
0

zn
2

is well defined, at least for |z| < 1.
For Dirichlet series, the comparison may be to an integral. The zeta function

sum (2) is “like” the corresponding integral∫ ∞
1

x−s dx =
1

s− 1
.

A term n−s is the area of a rectangle of width 1 and height n−s. This is “like”
the area under the curve x−s: ∫ n+1

n

x−s dx . (30)

We will look at this in more detail soon. But this isn’t quite what we need to
prove the sum converges. For that we need an “upper bound”, something larger
than n−s, but x−s < n−s if x > n, so the integral is smaller than n−s. There
are several ways to do this. One way is to find conditions under which

2x−s > n−s .

Some algebra shows that this is true if

x < 2
1
sn .

Since 2
1
s > 1, this is true for x in the range n ≤ x ≤ n+ 1 if n is large enough.

For n that large, we have

n−s ≤ 2

∫ n+1

n

x−s dx .

Another way7 is to note that of x ≤ n then x−s ≥ n−s. Therefore

n−s ≤
∫ n

n−1
x−s dx .

7In situations like this there are usually many ways to do things. If you compare your
homework with others in the class, you will discover that they often find clever tricks that
make your approach look unnecessarily complicated. Sometimes, you may be the one with
the more efficient approach. Efficiency in this kind of thing is not very important in the long
run.
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This implies that

∞∑
1

n−s = 1 +

∞∑
2

n−s

≤ 1 +

∞∑
n=2

∫ n

n−1
x−s dx

= 1 +

∫ ∞
1

x−s dx

= 1 +
1

s− 1
<∞ .

This proves that the zeta sum (2) converges absolutely. If we use the lower
bound (30) in the same way, we prove that

1

s− 1
≤ ζ(s) ≤ 1 +

1

s− 1
, for all s > 1 .

This implies, for example, that

ζ(s) =
1

s− 1
+O(1) , as s ↓ 1 .

As s ↓ 1 the sum ζ(s) and the integral blow up in the same way.
A convergence proof is called “efficient” if it doesn’t take very many words

to say it. An estimate8 is called sharp if the two sides are close to each other or
if there is no stronger inequality of the same type. Sometimes we use estimates
that are far from being sharp for the sake of efficiency. As an example, take
the convergence of the sum on the right side of (7). We can use the inequality
Λ(n) ≤ log(n). For most n, Λ(n) = 0. If n is a prime power n = pk, then Λ(n)
is k times smaller than log(n). Nevertheless, we have (the second inequality is
in the homework)

∞∑
1

Λ(n)n−s ≤
∞∑
1

log(n)n−s =
1

(s− 1)2
+O(1) , as s ↓ 1 .

This is efficient (quick and easy), but the final inequality isn’t sharp. We will
see that

ζ ′(s)

ζ(s)
=

∞∑
1

Λ(n)n−s =
1

s− 1
+O(1) , as s ↓ 1 .

This is sharper because (s − 1)−1 is much smaller than (s − 1)−2 when s is
close to 1. You might think you need at least some number theory to prove the
sharper bound, because it depends on the fact that Λ(n) = 0 for most n. The
sum of log(n)n−s really is about (s− 1)−2. Mathematicians spend a lot of time
guessing stuff like this, and they typically guess wrong, at least at first.

8Inequalities are often called estimates in this context.
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6 Limits of sums, differentiating a sum, domi-
nated convergence

We come to the promised formula for differentiating the Dirichlet series (4).
We do this much more generally by giving it as an example of term-by-term
differentiation (10). We do (10) as an example of the more general problem of
interchanging a sum and a limit. Define the sum

S(h) =

∞∑
1

cn(h) , (31)

and suppose that
lim
h→0

cn(h) = dn , for every n .

We want conditions that insure that

∞∑
1

dn = lim
h→0

S(h) . (32)

Part of what we want to know is that the limit on the right exists.
Here’s how the general pair (31) and (32) is related to the original issue (10).

Suppose the sum (9) converges absolutely for every s. Then we can write the
difference quotient as a sum of difference quotients

f(s+ h)− f(s)

h
=

∞∑
1

bn(s+ h)− bn(s)

h
.

This has the form (31), if we take

S(h) =
f(s+ h)− f(s)

h
,

and

cn(h) =
bn(s+ h)− bn(s)

h
. (33)

If bn is differentiable, then cn(h) → b′n(s) as h → 0. Therefore, the left side of
(32) is the right side of (10). The right side of (32) is the left side of (10).

Now, back to the general limit problem (32). It is a tradition in math exposi-
tion to begin a discussion like this with a counterexample. The counterexample
shows that the theorem is serious, and that you really do need some extra hy-
pothesis to insure that the desired conclusion is true. Not to disappoint, consider
the example (with h > 0)

cn(h) = he−nh .

We start the sum from n = 0 instead of n = 1 to make the algebra simpler:

S(h) = h

∞∑
0

cn(h) = h

∞∑
0

(
e−h

)n
=

h

1− e−h
.
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You can calculate that S(h)→ 1 as h→ 0. You can also see that

dn = lim
h→0

cn(h) = 0 , for all n .

In this example, the left side of (10) is zero and the right side is 1. We need
more hypotheses. It would be nice if the hypothesis were convenient, simple to
state and easy to check in the examples we care about, such as differentiating
the Dirichlet series.

One hypothesis that often is convenient is dominated convergence. Dom-
inated convergence means there is a dominating sequence, Dn that does not
depend on h, but so that

|cn(h)| ≤ Dn , for all n and h, (34)

and
∞∑
1

Dn <∞ . (35)

The inequality (34) states that the sequence Dn dominates the sequence cn(h).
for all h. The dominated convergence theorem states9 that if there is a domi-
nating sequence (35) with a finite sum (35), then (32) is true.

There are two ways to find a dominating sequence. One is be clever inequal-
ities. The other is by calculating the maximal function

Mn = sup
h
|cn(h)| .

Clearly Mn is a dominating sequence. If Dn is any other dominating sequence,
thenDn ≥Mn for all n. That makes the maximal sequence the sharpest possible
dominating sequence. Using the maximal sequence serves two purposes. First, it
gives you a concrete way to look for a dominating sequence, which may stop you
from spending hours lost in a forest of inequalities. Second, you may calculate
Mn and discover that the sum (35) is infinite. If that happens, you know there
is no dominating sequence.

In the example, the maximal function is

Mn = max
h

he−nh .

You can find the max by calculus. Differentiate with respect to h and set the
derivative to zero, and you find that the maximizing h is h∗ = n−1. Plug this
in, and you find

Mn = h∗e
−nh∗ = n−1e−1 .

9If you look up the dominated convergence theorem on the web or in a book, you are likely
to find something involving Lebesgue integration, or something involving abstract measure
theory. The version of the dominated convergence theorem given here is easier than those
general theorems but uses the same basic idea. It is an instance of the general measure theory
theorem, if the measure space is N and the measure is counting measure. It isn’t important
or possibly even helpful for you to understand this footnote.
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The sum is
∞∑
1

Mn = e−1
∞∑
1

n−1 =∞ .

This shows that there is no convergent dominating sequence, so the dominated
convergence theorem does not apply.

The proof of the dominated convergence theorem uses basic tricks for limits
and sums. You want to show that for any ε > 0 there is a δ > 0 so that∣∣∣∣∣

∞∑
1

dn −
∞∑
1

cn(h)

∣∣∣∣∣ ≤ ε , if |h| < δ .

Suppose there is a dominating sequence with a finite sum. First, choose N so
that

∞∑
N

Dn ≤
ε

3
.

Because of the individual limits, we may choose δn > 0 so that

|cn(h)− dn| ≤
ε

3N
, if |h| < δn .

Now take δ to be the minimum of the N numbers δn. This is larger than zero
because the min of finitely many positive numbers is a positive number. If
|h| < δ, then all the inequalities below are satisfied:∣∣∣∣∣

∞∑
1

dn −
∞∑
1

cn(h)

∣∣∣∣∣ ≤
∞∑
N

|dn|+
∞∑
N

|cn(h)|+
N∑
1

|dn − cn(h)|

≤ ε

3
+
ε

3
+N

ε

3N
= ε .

When I was a grad student, this kind of proof was called an “epsilon over three
argument”. The sums from N to infinity are tail sums. You bound the tail
sums using the dominating sequence. You get convergence in the central part
(the terms below N) using the individual limits. The numbers ε

3 and ε
3N in

arguments like this are found after lots of trial and error.
We apply this to the problem of differentiating an infinite sum term by term,

as (10). We just need there to be a single dominating sequence for the difference
quotients (33). One form of the intermediate value theorem is that there is a
ξn between s and s+ h so that

bn(s+ h)− bn(s)

h
= b′n(ξn)

If h0 > 0 and |h| ≤ h0, then |ξn − s| ≤ h0. Define the derivative maximal
function to be

Mn(s, h0) = sup
|ξ−s|≤h0

|b′n(ξ)| .
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The dominated convergence theorem then leads to the differentiation theorem.
If, for some h0 > 0,

∞∑
1

Mn(s, h0) <∞ ,

then the term by term differentiation formula (10) is true.
We apply this to the zeta derivative formula (4). This is supposed to be true

for any s > 1. The derivative maximal function in this problem is (Drop minus
signs because you take the absolute value. The max is at the left endpoint.):

Mn = max
|ξ−s|≤h0

log(n)n−ξ = log(n)n−(s−h0) .

If you choose h0 so that s− h0 > 1, then the Mn have a finite sum (homework
exercise).

7 Infinite products

An infinite product is the limit of finite partial products, just as an infinite sum
is the limit of finite partial sums. For a sequence of numbers an, the infinite
product is

P =

∞∏
1

bn . (36)

The finite partial products are

PN =

N∏
1

bn = b1a2 · · · bN . (37)

The infinite product converges if the limit of the partial products exists. In that
case, the infinite product is

P = lim
N→∞

PN . (38)

If any of the factors bn is equal to zero, then the infinite product is equal to
zero. This is because PN = 0 for N ≥ n.

If the partial products converge, the limit may be zero or some non-zero
number. If the limit exists and is not zero, it is necessary that

lim
n→∞

bn = 1 . (39)

Here is the “routine” proof. If the bn do not converge to 1, there are infinitely
many nk →∞, and an ε > 0 so that |bnk

− 1| ≥ ε. If PN → P 6= 0, there is an
N0 so that if N > N0, then (tried ε/2 first, that didn’t work)

|PN − P | <
εP

4
if N ≥ N0 . (40)
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Now choose nk > N0 and suppose bnk
> 1 + ε. By assumption,

Pnk−1 >
(

1− ε

4

)
P .

But, if ε is small enough so that 3
4ε−

1
4ε

2 > 1
2ε,

Pnk
= bnk

Pnk−1 > (1 + ε)
(

1− ε

4

)
P >

(
1 +

ε

2

)
P .

This contradicts (40). If you get lost in this simple argument (because I ex-
plained it badly), if bn is not close to 1, then Pn = bnPn−1 is not close to Pn−1.
Therefore, it’s impossible for both numbers to be very close to P . This pre-
sumes that P 6= 0. You can multiply 0 by an not close to 1 and still get 0. For
the rest of this section we make three assumptions: first, that PN → P 6= 0 as
N →∞, second, that bn > 0 for all n, third, that bn → 0 as n→∞. The third
assumption almost implies the second, except for finitely many n. Those don’t
effect the arguments here if bn 6= 0 there.

A simple and efficient way to understand infinite products, under the above
conditions, is to transform them to infinite sums using the log. Since bn > 0 for
all n,

an = log(bn)

is well defined. The partial sums of the logs are related to the partial products

AN =

N∑
1

an =

N∑
1

log(bn) = log

(
N∏
1

bn

)
= log(PN ) .

If

A = lim
N→∞

AN =

∞∑
1

an

exists, because a 7→ b = exp(a) is continuous, then

P = eA = lim
N→∞

eAN =

∞∏
1

bn

also exists. If the an sum converges absolutely, then the bn product also con-
verges absolutely. That means that the bn is the same no matter how the terms
are re-arranged.

There is a simple test for absolute convergence of an infinite product. The
test for absolute convergence of the sum is (28). Absolute convergence is a
property of the tails of the sequence, where an is close to 0 and bn is close to 1.
In that “regime”,

bn = ean ≈ 1 + an

and
an ≈ bn − 1 .
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It is “easy” to use this approximate relationship to prove that (28) holds if and
only if

∞∑
1

|bn − 1| <∞ . (41)

Early in this section we assumed that bn > 0 for all n. That, “clearly”, is
irrelevant if the absolute convergence criterion (41) is satisfied. It is irrelevant,
because convergence or absolute convergence is a property of the tail of the
sum. If the absolute convergence criterion (41) is satisfied, than all but a finite
number of the bn are positive. If an 6= 0 for all n, and if the product converges
absolutely, then the product is not zero. But consider Euler’s product formula
for sin(x),

sin(x) = x

∞∏
1

(
1− x2

π2n2

)
. (42)

This formula is the basis for some homework. The product converges absolutely
(exercise) and is equal to zero only if one of the factors is equal to zero. Those
are the zeros of sin(x).

Differentiation forumlas for infinite sums may also be found using the log
transform, if you also use the chain rule. The resulting formula is given in
Theorem 6 below. Now look back at the derivation of the zeta derivative formula
(5). You will see that we found this without using the log trick. You would,
hopefully, get the same answer using the log trick. In fact, you would get it
more quickly. If you try to justify (5), without knowing the log trick, it might
be frustrating but you could do it. Sometime during this process you might
discover the log trick see how easy it makes things.

8 The Euler product.

We can now give the proof that the Euler product (3) converges absolutely for

s > 1. If bn = (1− p−sn )
−1

, then clearly bn → 1 as n → ∞. A Taylor series
calculation shows that bn ≈ 1 + p−sn , so

∞∑
1

|bn(s)− 1| ∼
∞∑
1

p−sn <∞ .

I write ∼ above, rather than ≈ because the right side may not be a quanti-
tative approximation to the left side, but they are “like” each other as far as
convergence or divergence are concerned. We can add some “slop” and get the
rigorous upper bound ∣∣∣(1− p−sn )−1∣∣∣ < 2p−sn ,

which holds for all but finitely many pn for any range of s of the form |s− s0| < δ,
as long as s− δ > 1. This is done using the mean value theorem, for example.
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At last, we come to the Euler formula (3), which is the analytic number
theory of this set of notes. We already saw the geometric series formula, which
we write in the form (

1− p−sn
)−1

=

∞∑
r=0

p−rsn .

We substitute this into the Euler product on the right side of (3) and multiply
it out

∞∏
n=1

(
1− p−sn

)−1
=

∞∏
n=1

( ∞∑
r=0

p−rsn

)

=
∑(∏

k

prkk

)−s
.

The sum in the second line is over all sequences r2, r3, . . ., so that rk = 1 for
all but finitely many k. Because of unique prime factorization of integers, each
positive integer may be expressed in one and only one way as a product like
this. Therefore, the right side is equal to zeta function sum (2).

The formal proof has to show somehow that

lim
N→∞

PN = lim
N→∞

AN ,

where

PN =

N∏
1

(
1− p−sn

)−1
,

and

AN =

N∑
1

n−s .

We know both limits exist, because the sum and the product both converge
absolutely for s > 1. But this still isn’t comparing finite sum to finite sum,
because (1− p−sn )

−1
is an infinite sum. To compare finite sums to finite sums,

we replace the infinite geometric series with a finite approximation

(
1− p−sn

)−1 ≈ M∑
r=0

p−rsn .

The right side converges to the left side as M → ∞. Therefore, for any s > 1
and any N and any ε > 0, there is an M so that (it’s an “epsilon over three”
argument, but with four parts instead of three)∣∣∣∣∣∣

∏
n≤N

(
M∑
r=0

p−rsn

)
−
∏
n≤N

(
1− p−sn

)−1∣∣∣∣∣∣ ≤ ε

4
.
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Define

PN,M =
∏
n≤N

(
M∑
r=0

p−rsn

)
. (43)

We will choose N , M , and L large enough so that

|PN,M −AL| ≤
ε

4
(i)

|PN,M − PN | ≤
ε

4
(ii)

|P − PN | ≤
ε

4
(iii)

|A−AL| ≤
ε

4
(iv)

This will prove that |P −A| ≤ ε for any ε > 0, which proves that P = A. The
last two are the convergence of the zeta sum and product. The second we just
did. The first is simple, but takes some notation to explain.

The set of positive numbers is denoted by N, which stands for “natural”
numbers. For a given N and M , let H ⊂ N be the set of numbers with

n =
∏

prkk (44)

so that rk = 0 for k > N , and rk ≤ M for all k. That is, n ∈ H if its prime
factors are no larger than PN and the multiplicities are no larger than M . The
informal argument above for the Euler product formula is a rigorous proof of

PN,M =
∑
n∈H

n−s .

Clearly, for any L1, there are sufficiently large N and M so n ∈ H for every
n ≤ L1. Also, there is an L2 so that n ≤ L2 for every n ∈ H. Therefore
AL1

≤ PN,M ≤ LL2
. Since AL has a limit as L→∞ (and therefore is a Cauchy

sequence), it is possible to make (i) above hold. This proves the Euler product
formula (3). The differentiation formula is a consequence of the product formula
and the differentiation theorem Theorem 6 below.

In the end, we come back to the beginning and the divergence of the prime
sequence (1). You can prove this by contradiction. If the prime series would
converge, then the Euler product

∞∏
1

(
1− p−1n

)
would converge to a finite number. But we know that

lim
N→∞

N∏
1

(
1− p−1n

)
=∞ .
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Another way to say this, now that we have the dominated convergence theorem,
is that if the sum (1) were finite, it would be a dominating sequence for the zeta
sum with s ≥ 1, because

p−s ≤ p−1 if s ≥ 1 .

This would make the zeta Euler product converge uniformly in the interval [1, s0]
with s0 > 1.

9 Summary of theorems

Theorem 1.(Greatest common divisor). For each pair of positive integers, a
and b, there is a positive integer c = (a, b) so that if d | a and d | b, then d | c.
There are integers i and j, not necessarily positive, so that c = ia+ jb.

Theorem 2. (Unique prime factorization of integers). For each integer n ≥ 2
there is a unique set of primes p1, . . . , pk and exponents r1, . . . , rk so that
n = pr11 · p

r2
2 · · · .

Theorem 3.(Zeta convergence). The sum (2) converges for s > 1 and satisfies
the estimate

ζ(s) =
1

s− 1
+O(1) as s ↓ 1 .

Theorem 4.(Dominated convergence theorem). If an(s) is a sequence of con-
tinuous functions, and if there is a δ > 0 and a sequence Dn with |an(s)| ≤ Dn

for all n and |s− s0| < δ, and

∞∑
1

Dn <∞ ,

then

lim
s→s0

∞∑
1

an(s) =

∞∑
1

an(s0) .

Theorem 5.(Differentiating a sum). Let an(s) be a sequence of continuous
functions that satisfies the conditions of Theorem 4. Suppose the functions an
are differentiable and

|a′n(s)| ≤ En
for all |s− s0| < δ, and

∞∑
1

En <∞ .

Then, if |s− s0| < δ,

d

ds

( ∞∑
1

an(s)

)
=

∞∑
1

a′n(s0) .
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Theorem 6.(Infinite products). Let bn(s) be a sequence of differentiable func-
tions. If there is a sequence Dn so that if |s− s0| < δ then

|bn(s)− 1| < Dn

and
∞∑
1

Dn <∞ ,

then
∞∏
1

bn(s) = lim
N→∞

(
N∏
1

bn(s)

)
exists for every |s− s0| < δ. Moreover

lim
s→s0

∞∏
1

bn(s) =

∞∏
1

bn(s0) .

Suppose that, for all n and |s− s0| < δ,∣∣∣∣b′n(s)

bn(s)

∣∣∣∣ ≤ En ,
and

∞∑
1

En <∞ .

Then, if |s− s0| < δ, the product is differentiable and

d

ds

( ∞∏
1

bn(s)

)
=

( ∞∑
1

b′n(s)

bn(s)

)( ∞∏
1

bn(s)

)
.

10 Notes on references

Both Jameson and Apostol have good introductory material to complement
Section 1. The “big Oh” stuff in Section 2 you also can find in Jameson or
Apostol. The zeta function inequalities are also there. I don’t want to dwell on
this as much as they do in order to get to the number theory material sooner.
Elkies takes a different route to this material and assumes more mathematical
sophistication, so he is helpful in motivation and less helpful in mathematical
background. The number theoretic functions π(x), φ(x) and ψ(x) are defined in
all these sources, and also in Hardy and Wright. Jameson and Apostol present
the summation-by-parts trick (called Abel summation) that relates these. I chose
postpone Abel summation to make Section 3 less technical. We will do it later.
I recommend Hardy and Wright as the best source for prime factorization and
the euclidean algorithm, and anything to do with basic number theory.
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The analytical material in Section 5 and Section 6 may be found in Apostol
or Jameson, but I don’t know a simple reference for the version of the domi-
nated convergence theorem given here. That theorem is usually presented in the
context of measure theory. I recommend looking at Elkies for the Euler product
material. It’s expertly motivated and given in fewer words than these notes or
the other references.

11 Exercises.

1. Show that ∫ 2x

x

1

log(y)
dy =

x

log(x)
+ o

(
x

log(x)

)
.

2. A “hundred bit number” is a number whose expression base 2 has 100 bits,
with a 1 in the 299 bit. Such a number is in the range 299 ≤ n < 2100. Use
li(x) and its large x approximation to give a quantitative estimate of the
probability that a random number in this range is prime. Hint: The hard
part of this problem may be converging from log base 2 to log base e.

3. Show that the sum

−ζ ′(s) =

∞∑
1

log(n)n−s

converges absolutely if s > 1. Do this by comparing to the integral∫ ∞
2

log(x)x−s dx .

Use integral comparisons to show that

ζ ′(s) =
−1

(s− 1)2
+O

(
1

s− 1

)
, as s ↓ 1 .

Hint: integrate by parts to remove the log from the integral. Make the
following calculation complete and rigorous:

ζ ′(s)

ζ(s)
=

(s− 1)−2 +O
(
(s− 1)−1

)
(s− 1)−1 +O(1)

= (s− 1)−1 +O(1) .

4. You can guess the sizes sums over primes informally by imagining that
the density of primes is ρ(x) ≈ 1/ log(x). That means that∑

p≤x

f(p) ≈
∫ x

f(y)ρ(y) dy =

∫ x f(y)

log(y)
dy .

Use this to “guess” the large x behavior of

β(x) =
∑
p≤x

1

p
.
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(Notes: (1) The wording of this exercise is bad. There should never be an
algorithm for guessing. (2) The notation β(x) for this sum is not standard.
The notation π(x), θ(x) and ψ(x) for other prime sums is standard.)

5. The Gaussian integers is the set of complex numbers of the form a + bi
where a and b are integers. The set of ordinary integers is called Z (for the
German word “Zahlen”, which means “numbers”). The set of Gaussian
integers is written Z[i], which is the integers with i “adjoined”. This
exercise goes through the proof that any Gaussian integer has a unique
factorization as a product of “Gaussian primes”.

(a) Show that if x = a + bi and y = c + di are Gaussian integers, then
−x and xy are Gaussian integers. A set with these properties (and
commutative and associative and distributive) is called a ring. The
Gaussian integers are a ring. You don’t have to check distributiv-
ity, associativity and commutativity because Gaussian integers are
complex numbers and we’re using the complex number operations.
Domain is used to mean “ring” in this context, sometimes.

(b) Let x = a+ bi and y = c+ di be Gaussian integers. Show that there
is a Gaussian integer z = e + fi so that y = zx + w, with w being
in the square with corners 0, x, ix, and x+ ix, but not on the outer
edge between x and x+ ix or the edge between ix and x+ ix. Hint:
you can move y toward the square in the x = a + ib direction by
subtracting x. You can move y toward the box in the perpendicular
ix direction by subtracting ix.

(c) Show that there are n = a2 + b2 possible values of w in part (b), and
that all of them are possible.

(d) Z[i] has a set of four units: U = {1, i,−1,−i}. Show that if x ∈ Z[i]
and there is a y ∈ Z[i] with xy = 1 (i.e., if x−1 ∈ Z[i]), then x ∈ U .
That is, if x is invertible in Z[i] then x is a unit. Conversely, if x is
a unit then x is invertible.

(e) A p ∈ Z[i] is a Gaussian prime,10 if it has the property that if p = xy
(x and y being Gaussian integers), then either x ∈ U or y ∈ U . Show
that if x = p1p2 and x = q1q2 with p1, p2, q1, and q2 being Gaussian
primes, then either p1 = uq1 or p1 = uq2. Hint: Use the Euclidean
algorithm. A domain (ring) with unique prime factorization is a
UFD. A ring where the Euclidean algorithm works is a Euclidean
domain. A Euclidean domain is a UFD (don’t prove this). The
Gaussian integers are a Euclidean domain and therefore a UFD (you
just proved this).

(f) Show that 3 is a Gaussian prime but 2 is not.

10The units in the ordinary integers Z are U = {1,−1}. This definition would make both
7 and −7 primes in Z. We could say p ∈ Z[i] is prime if it has no non-trivial factors and if
p = a+ bi with a > 0 and b ≥ 0. That would be closer to the usual definition for Z, but it is
less traditional.
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(g) Show that any Gaussian integer has a unique factorization, modulo
units, into a product of Gaussian primes.

6. There is a zeta function and Euler product formula for the Gaussian in-
tegers. In this exercise, we write

∑′
to be the sum modulo units. This

means that we choose one of the four Gaussian integers y = ux to include
in the sum. The zeta function is11

ζK(s) =
∑′
|x|−s . (45)

This may also be written

ζK(s) =

∞∑
a=1

∞∑
b=0

∣∣a2 + b2
∣∣−s/2 .

The Euler product is

ζK(s) =
∏
p

′
(

1

1− |p|−s

)
. (46)

The product is over all Gaussian primes p = a+ bi with a > 0 and b ≥ 0.

(a) Show that the sum (45) converges if s > 2.

(b) Show that the product (46) converges if s > 2.

(c) Show that the infinite product is equal to the infinite sum if s > 2.
Show that ζK(s)→∞ as s ↓ 2.

(d) Show that ∑′ 1

|p|2
=∞

where the sum is over all Gaussian primes with a > 0 and b ≥ 0.

7. There is a convergence theorem for series called the monotone convergence
theorem related to the dominated convergence theorem. The theorem is
about a family of sequences cn,x. The monoticity hypothesis that gives
the theorem its name is that cn,y ≥ cn,x ≥ 0 for all n and y > x. We also
suppose that

lim
x→∞

cn,x = dn <∞

for each n. The theorem states that under these conditions

lim
x→∞

∞∑
n=1

cn,x =

∞∑
1

dn .

There are two possibilities, if
∑
dn = ∞ then

∑
cn,x → ∞ as x → ∞.

The other possibility is that
∑
dn < ∞, in which case the sum

∑
cn,x

converges to that.

11The subscript K tells us that this is not the Riemann zeta function, which is the zeta
function. The K means something.
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(a) Prove this theorem in both parts. You may look at the proof of the
dominated convergence theorem in the notes to see how to prove this
kind of thing.

(b) Consider the partial Euler products

ζx(s) =
∏
p≤x

(
1− p−s

)−1
Show that

ζx(s) =

∞∑
1

an(x)n−s ,

where an(x) = 1 if all the prime factors of n have p ≤ x, and an(x) =
0 if n has a prime factor with p > x.

(c) Use the monotone convergence theorem to give a different proof that

lim
x→∞

ζx(s) = ζ(s) =

∞∑
1

n−s .

8. If a function f(x) can be represented as a Taylor series, it is tempting to
think of f as being a fancy version of a polynomial. If f(x) is a polynomial
of degree N , and the roots of f are x1, . . ., xN , then12

f(x) = C

N∏
1

(
1− x

xn

)
. (47)

If f(x) is an odd polynomial (f(−x) = −f(x)) of order 2N+1 and positive
roots x1, . . ., xN , then

f(x) = Cx

N∏
1

(
1− x2

x2n

)
. (48)

Since sin(x) is a fancy polynomial in the sense of having a Taylor series
representation, maybe it also has a product representation:

sin(x) = Cx

∞∏
n

(
1− x2

π2n2

)
. (49)

To talk about the product without proving the formula is correct, define

f(x) = x

∞∏
n

(
1− x2

π2n2

)
. (50)

This exercise does not include a proof that f(x) = sin(x), though it is.

12Mathematicians use C to represent a “generic” constant whose value need not be given
for the purpose at hand. Moreover, the value of C may be different in different places. For
example, if f(x) ≤ Cx, then f(x)2 ≤ Cx2. If the first C is 10, then the second C is 100.
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(a) Prove that a representation of the form (48) follows from the repre-
sentation (47) if f is an odd polynomial. Hint 1: The main difficulty
in doing this is the conflict of notation. N and xN mean different
things in (47) and (48). You can explain the reasoning more clearly
if you remove the conflict, for example, by defining M = 2N + 1
to be the degree of an odd f , and yk = 0, or yk = ±xn (with the
relationship between n and k depending on the sign). Hint 2: This is
not exactly true, as you will discover when you try to prove it. You
need the hypothesis that f ′(0) 6= 0.

(b) Prove that the infinite product (50) converges for any x.

(c) Show that f(x) = x+O(x3) as x→ 0. Use this to identify C in (49),
assuming (49) is true.

(d) Show that f(x) = x + f3x
3 + O(x5) as x → 0, with the explicit

formula

f3 =
1

π2

∞∑
1

1

n2
. (51)

Hint: You multiply out the infinite product (50) to get a formal
derivation of (51). The rigorous proof with the O(x5) error estimate
is less interesting “technique”.

(e) Assuming (49) is true, show that

∞∑
1

1

n2
=
π2

6
. (52)

The young Leonard Euler gained recognition as a mathematical talent
by discovering this formula. We will give more proofs of it later.

9. Show that the following derivative exists for s > 1 and find an infinite
sum representation for it as a Dirichlet series involving the square of the
von Mangoldt Λ(n).

d2

ds2
log(ζ(s))

Prove that your differentiation formula is correct using the dominated
convergence theorem or some other argument. (Complex analysis gives a
simple way to know that all the derivatives of functions like this exist, but
you can prove it without complex analysis.)

10. Suppose the prime factorization is written

n = pr11 p
r2
2 · · · p

rk
k ,

where only powers rj ≥ 1 are written. For example, 75 = 3 · 52, so p1 = 3,
p2 = 5, r1 = 1 and r2 = 2. The Möbius function µ(n) is defined in terms
of the prime factorization by

µ(n) =

{
(−1)

k
if rj = 1 for all j

0 otherwise.
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For example, µ(1) = 1 (because k = 0), µ(2) = µ(3) = 1, µ(4) = 0,
µ(6) = 1, etc. A number that satisfies the first condition (no prime powers
rj > 1 is called square free. An equivalent definition of square free is that
d2 does not divide n for any integer d.

(a) Show that if s > 1, then

1

ζ(s)
=

∞∑
1

µ(n)n−s .

(Hint: Use the Euler product representation of ζ(s) and prove that
its OK to multiply it out. Part of the problem (not the hard part) is
to show that the sum converges absolutely for s > 1.)

(b) Suppose functions f(s) and g(s) are given as Dirichlet series, which
means that

f(s) =

∞∑
1

ann
−s , g(s) =

∞∑
1

bnn
−s .

Show formally (i.e. without worrying about convergence) that h(s) =
f(s)g(s) also is a Dirichlet series with

h(s) =

∞∑
1

cnn
−s , cn =

∑
jk=n

ajbk .

The second formula (which is the point of this part) is often written

cn =
∑
d|n

adbn
d
.

(c) Use formal manipulations like this on the product

ζ ′(s) = ζ(s)
ζ ′(s)

ζ(s)
=

( ∞∑
1

n−s

)(
−
∞∑
1

Λ(n)n−s

)
.

The result should be the formula

log(n) =
∑
d|n

Λ(d) . (53)

(d) Once you have found a formula in some possibly illegitimate way,
you can try to give it a direct legitimate proof. Find a direct proof
of (53). Hint: Calculate log(pr11 · · · p

rk
k ).

(e) Show that ∑
d|n

µ(d) =

{
1 if n = 1
0 if n > 1.

(54)

Hint: Use parts (a) and (b) and the formula

ζ(s)
1

ζ(s)
= 1 .
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(f) (Discussion, nothing to hand in for this part) The formula (54) is a
special case of the Möbius inversion formula. It is a formula about
finite sums that has nothing to do with convergence of Dirichlet se-
ries. A rigorous proof of (54) using Diriclhet series should make you
uncomfortable, since convergence should have nothing to do with fi-
nite algebraic sums. It would seem more fitting to give a direct proof
that doesn’t use Dirichlet series, which would be called a combinato-
rial proof. In this case, it isn’t too hard to do that. There are many
such formulas that are discovered manipulating infinite series but are
then given combinatorial proofs.

11. The Gamma function is defined by

Γ(s) =

∫ ∞
0

xs−1e−x dx . (55)

This exercise and the next give two ways the Gamma function is used in
analytic number theory.

(a) Show that the integral (55) converges absolutely if s > 0. Show that
Γ(s) is a positive differentiable increasing function of s in this range.

(b) Show that if s > 0, then13∫ ∞
0

xs−1e−nx dx = n−sΓ(s) . (56)

(c) Show that if s > 1, then

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1e−x

1− e−x
dx . (57)

Hint: The formula (56) gives an integral formula for n−s. Interchange
the order of summation and integration in the sum formula for ζ(s),
then sum the resulting geometric series. Do the analysis to show that
the integral converges for s > 1 and to justify doing the sum inside
the integral.

(d) The denominator in the integral “looks like” 1
x and the numerator

looks like xs−1 (because e−x looks like 1) for x near zero. Let R(x)
be the error in this small x approximation:

R(x) =
e−x

1− e−x
− 1

x
.

Show that there is a C so that

|R(x)| ≤ C , for 0 < x < 1 . (58)
13The idea in this exercise is due to Riemann. He used the slightly different function:

Π(s) =
∫
xse−xdx = Γ(s + 1). The Gamma function is more natural in that there are s

“factors” of x in the integral (55), the last one being the dx term. Riemann’s version of the
formula had ns+1Π(s).
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(e) Use these facts to show that∣∣∣∣ζ(s)− 1

s− 1

∣∣∣∣ ≤ C for all s > 1 .

Hint: You can start by proving the result for the integral without
the 1Γ factor. For this, you may formulate and prove a lemma that
says something like: if g(s)−C/(s− 1) = O(1) as s ↓ 1 and if h(s) is
continuous at s = 1 with h(1) 6= 0, then h(s)g(s)−C/(s− 1) = O(1)
(different C). It may be convenient to split the integral into two parts,∫ 1

0
and

∫∞
1

. You may need one argument for small s (1 < s ≤ 1 + ε),
and another (much simpler) argument for s > 1 + ε.

This proof may be easier or harder than the one given in the notes.
It has more steps, but the steps may or may not seem more natural.
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