Practice questions for the second quiz
 version 1.0, March 22, 2017

Rules: Same as for the first quiz.
Hints

- These questions may be harder than the actual quiz questions will be.
- The actual quiz questions may be related to these.
- Consider the exercises in the Complex Variables section of notes also as sample questions.

Questions

1. We saw that the real function of a real variable $x, f(x)=e^{-\frac{1}{x^{2}}}$ is differentiable for $x \neq 0$, and if you take $f(0)=0$ then f is differentiable at $x=0$ also. Show that the complex function of the complex variable $z, f(z)=e^{-\frac{1}{z^{2}}}$ is differentiable for all $z \neq 0$. If you define $f(0)=0$, then $f(z)$ is not differentiable or even continuous or even bounded in a neighborhood of $z=0$ in \mathbb{C}.
2. Suppose $a_{n}(z)$ is a family of analytic functions defined for $|z|<1$. Define

$$
M_{n}=\sum_{|z|<1}\left|1-a_{n}(z)\right| .
$$

Suppose that

$$
\sum_{1}^{\infty} M_{n}<\infty .
$$

Consider

$$
f(z)=\prod_{1}^{\infty} a_{n}(z)
$$

Show that this defines an analytic function of z for $|z|<1$.
3. Suppose that $f(z)$ is an analytic function of z for $|z|<2$, except possibly at $z=0$. Suppose that

$$
\begin{equation*}
|f(z)| \leq \frac{C}{|z|} \tag{1}
\end{equation*}
$$

and that

$$
R=\frac{1}{2 \pi 2} \oint_{|z|=1} f(z) d z
$$

is real. Let x be a real variable. Show that there is a D so that

$$
\begin{equation*}
|\operatorname{Re}(f(z))| \leq D, \quad \text { for } \quad|x|<1 \tag{2}
\end{equation*}
$$

Find an example of a function $f(z)$ analytic for $|z| \leq 2$ that does not satisfy either (1) or (2).
4. Consider the integral

$$
T(k)=\int_{-\infty}^{\infty} e^{-i k x} e^{-x^{4}} d x
$$

Show that there is a C with

$$
|T(k)| \leq C e^{-k}
$$

Hint: make it a contour integral in \mathbb{C} and move the contour off the real axis to the contour with $\operatorname{Im}(z)=-1$. Justify this.
5. Suppose $f(s)$ is an analytic function of the complex variable s in a neighborhood of $s=0$. Find a formula for

$$
R=\frac{1}{2 \pi i} \oint_{|z|=a} \frac{f(s)}{s^{2}} d s
$$

The formula will be in terms of $f(0), f^{\prime}(0)$, and things like that.
6. Find a formula for

$$
\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \frac{x^{s}}{s^{2}} d s
$$

as a function of the real variable $x>0$, for $x \neq 1$.
7. Show that if $f(z)$ is analytic for $0<|z|<1$ and if

$$
|f(z)| \leq \frac{C}{|z|^{1.5}}
$$

then

$$
|f(z)| \leq \frac{D}{|z|}
$$

8. Suppose $z=r e^{i \theta}$ with $r \geq 0$ and $-\pi<\theta \leq \pi$. Define $w(z)=r^{\frac{1}{2}} e^{\frac{i \theta}{2}}$.
(a) Show that $w(z)$ is an analytic function of z as long as $\operatorname{Im}(z) \neq 0$ or $\operatorname{Im}(z)=0$ and $\operatorname{Re}(z)>0$.
(b) Show that $w^{2}=z$ for all z.
(c) Show that there is no analytic function of z that satisfies $f(z)^{2}=z$ defined in a full neighborhood of $z=0$. (Hint: What can you say about the size of the derivative of an analytic function?)
9. Show that the sum

$$
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{1}^{\infty} \Lambda(n) n^{-s}
$$

converges absolutely to an analytic function of s if $\sigma=\operatorname{Re}(s)>1$.

