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Practice questions for the first quiz
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Rules

• Write all answers in a bluebook (bluebooks provided by the instructor).

• Please explain an answer with both words and mathematical notation.
Leaving out one or the other makes it hard to understand your thinking.
You should be grammatical, though complete sentences are not required.

• You don’t have to answer the questions in order, but please label which
question you’re answering.

• As far as possible in a test situation, try to write in a way that is easy for
an elderly professor with less than perfect eyesight to read – dark pen or
pencil, large letters, clear lines, etc.

• Everything you write will be graded unless it is crossed out. If you write a
correct and incorrect answer, the negative points for the incorrect answer
will cancel the positive points for the correct answer. Please cross out
anything you think is wrong.

• You will get 25% credit for a blank answer to any question. You can lose
this if you give an incorrect answer.

• You are allowed one cheat sheet, which is an 8.5× 11 inch piece of paper
that you prepare in advance with any information you care to put on it.
You are not allowed to use any other materials. Cell phones and watches
much not be visible during the quiz.

Hints

• The solutions presented are not the only ones possible.

• I suggest that you work the problems without looking at the solutions.

• On the real quiz, the sentences in your answer may not come out in order.
Your answer may be less organized than mine. Just concentrate on getting
everything needed to answer the question down. In homework you would
then copy the sentences over in order, which you can’t do in a quiz.

• The questions are a combination of memory of definitions and theorems
(rare for a math quiz) and simple applications (more common).

• The questions focus more than I would like on technical details rather
than the big ideas.
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• There are more sample questions here than there will be real questions on
the quiz. Some of the quiz questions may be easier than these.

Questions

1. Prove the inequality∣∣∣∣n−s − ∫ n+1

n

x−s ds

∣∣∣∣ ≤ sn−(s+1) .

Possible solution: The intermediate value theorem says that if x > n then
f(x)− f(n) = f ′(ξ)(x−n) for some ξ ∈ [n, x]. The hypothesis is that f is
differentiable and the derivative is continuous in the interval [n, x]. Take
f(x) = x−s with f ′(x) = −sx−(s+1). This is continuously differentiable for
x ≥ 1, which covers all the values in our problem. Our |f ′| is a monotone
decreasing function of x for x ≥ 1, therefore |f ′(ξ)| ≤ |f ′(n)| if ξ ∈ [n, x].
This implies that |f(x)− f(n)| ≤ |f ′(n)| = sn−s. Here, we used the
intermediate value theorem and the fact that |x− n| ≤ 1. Therefore∣∣∣∣n−s − ∫ n+1

n

x−s dx

∣∣∣∣ =

∣∣∣∣∫ n+1

n

(
n−s − x−s

)
dx

∣∣∣∣
≤
∫ n+1

n

∣∣n−s − x−s∣∣ dx
≤
∫ n+1

n

sn−(n+1) dx

= sn−(s+1) .

2. State the dominated convergence theorem for differentiating an infinite
sum and apply the theorem to prove that if s > 0 then

d

ds

∞∑
1

e−n
2s = −

∞∑
1

n2e−n
2s .

Possible solution: The dominated convergence theorem for differentiating
sums may be stated as follows. fn(s) is a sequence of functions, defined
for |s− s0| ≤ δ > 0. There are an with |fn(s)| ≤ an for all n and
|s− s0| ≤ δ, and

∑
an < ∞. There are bn with |f ′(s)| ≤ bn for all

n and |s− s0| ≤ δ. f is differentiable with a continuous derivative for
|s− s0| ≤ δ. The sequences an and bn do not depend on s.

∑
bn < ∞.

The theorem says that

F (s) =

∞∑
1

fn(s)
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is defined for all |s− s0| ≤ δ and that

F ′(s) =

∞∑
1

f ′n(s)

Our problem has fn(s) = e−n
2s. For any s0 > 0, define δ = s0/2. Then

e−n
2s ≤ e−n

2(s0−δ) ≤ e−n(s0−δ). This is because n2 ≥ n if n ≥ 1, as it is
here. If we define r = e−n(s0−δ), then 0 ≤ r < 1. We take an = rn and∑
an =

∑
rn = 1/(1 − r) < ∞. (You would get full credit if you just

say that the geometric series has a finite sum). The bn need to bound the

derivatives: |f ′n(s)| = n2en
2s ≤ bn whenever |s− s0| ≤ δ. We just showed

that for s in this range, e−n
2s ≤ rn. Therefore we can take nn = n2rn

and know that |f ′(s)| ≤ bn as desired. The sum that needs to be finite is∑
bn =

∑
n2r−n. You would get full credit for saying: “since exponentials

beat powers of n, this sum is finite.” You would lose a little credit for
saying: “I’m pretty sure this sum is finite.”

There are several ways to prove the sum
∑
n2r−n is finite. One is to

introduce t =
√
r < 1. We know (because exponentials beat powers) that

max
n

n2tn = M <∞ .

Therefore, since rn = tntn, we can calculate∑
n2rn =

∑(
n2tn

)
tn ≤M

∑
tn =

M

1− t
<∞ .

You don’t have to use the square root, any t with r < t < 1 would allow
this trick, with

M = max
n

n2
(r
t

)−n
<∞ .

This is because r/t < 1 (why?). Another approach is to find a formula for
the sum. This may be done using a well known trick based on

d

dr
rn = nrn−1 , r

1

sr
rn = nrn .

N∑
1

nrn = r
d

dr

∑
rn = r

d

dr

1− rN+1

1− r
.

If you calculate the right side, it is clear that it has a limit as N → ∞.
This proves that the sum

∑
nrn is finite. The sum

∑
n2rn can be done

using this trick twice.

3. Use the heuristic density of primes to write an integral approximation to
the sum

S(x) =
∑
p≤x

p .
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Approximate the integral to find an algebraic formula like π(x) ≈ x
log(x)

for large x.

Possible solution: The heuristic density of primes is

ρ(x) =
1

log(x)
.

If the probability that a given n is prime is ρ(n), then S(x) is approxi-
mately ∫ x

yρ(y) dy =

∫ x y

log(y)
dy .

Since 1
log(y) ≈

1
log(x) unless y is much smaller than x, we replace 1

log(y)

with 1
log(x) in the integral. The result is

S(x) ≈ 1

log(x)

∫ x

y dy ≈ x2

2 log(x)
(NYU prime sum conjecture) .

This would get you most of the points for the problem. You’re not being
asked to prove the NYU prime sum conjecture, but it is possible to justify
the integral approximation using integration by parts (or another way):

Si(x) =

∫ x

2

y

log(y)
dy =

∫ x

2

1

log(y)

(
d

dy

1

2
y2
)
dy

=
x2

2 log(x)
+

1

2

∫ x

2

y

log(y)2
dy +O(1)

The second integral is smaller than the first roughly by a factor of 1
log(x) .

You can prove this by splitting the integral into two parts, the first part
which is small and the second part where 1

log(y) is small.∫ x

2

y

log(y)2
dy =

∫ εx

2

y

log(y)2
dy +

∫ x

εx

y

log(y)2
dy

≤ ε2x2

2
+

1

log(εx)

∫ x

εx

y

log(y)
dy

≤ ε2x2

2
+

1

log(εx)
Si(x)

Now choose ε→ 0 as x→∞ so that ε2x2 << x2

2 log(x) and log(εx)→∞ as

x→∞. This proves that∫ x

2

y

log(y)2
dy = o(Si(x)) .

4. Show that the following product converges

∞∏
2

(
1 +

(−1)n

n

)
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Possible solution: The product does not converge absolutely because
∑
|(−1)n/n| =

∞. However1 The product may be written

∞∏
1

[(
1 +

1

2n

)(
1 +

−1

2n+ 1

)]
.

Calculate:(
1 +

1

2n

)(
1 +

−1

2n+ 1

)
= 1 +

1

2n
− 1

2n+ 1
+

1

2n(2n+ 1)

= 1 +
(2n+ 1)− 2n

2n(2n+ 1)
+

1

2n(2n+ 1)

= 1 +
1

2n(2n+ 1)
+

1

2n(2n+ 1)

= 1 +
2

2n(2n+ 1)

= 1 +O

(
1

n2

)
.

Therefore, the product

∞∏
1

an , an =

(
1 +

1

2n

)(
1 +

−1

2n+ 1

)
converges absolutely.

Be prepared to supply proofs of the following minor points if asked:

• Justify
2

2n(2n+ 1)
= O

(
1

n2

)
• If

PN =
∏
n≤N

(
1 +

(−1)n

n

)

QN =

[(
1 +

1

2n

)(
1 +

−1

2n+ 1

)]

then
lim
N→∞

PN = lim
N→∞

QN .

For this, it is clear that P2n = QN , so if limQN exists (which
it does because it converges absolutely), then limP2N exists. If
limP2N exists and lim |P2N − P2N+1| = 0, then limPN exists. Jus-
tify lim |P2N − P2N+1| = 0.

1The word however often signals that a mathematical trick is coming.
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5. Write an Euler product representation for the sum

f(s) =

∞∑
0

(2n+ 1)
−s

= 1−s + 3−s + 5−s + · · · .

Possible solution: The sum is over all odd integers. An odd integer is one
that has no 2 in its prime factorization. The Euler product will be over
all primes except 2:

f(s) =
∏
p≥3

(
1− p−s

)−1
.

The formula is true for all s > 1.

6. Let ζK(s) be the zeta function for the Gaussian integers

ζ(s) =
∑
a≥1

∑
b≥0

(
a2 + b2

)s/2
.

(a) Show that the sum converges absolutely for s > 2 and that ζK(s)→
∞ as s ↓ 2.

(b) Assume that there is an Euler product representation for ζK(s) with
a product over all Gaussian primes. Show that∑

p

1

|p|2
=∞

The sum is over Gaussian primes with Re(p) > 0 and Im(p) ≥ 0.

(c) Show that there are infinitely many ordinary primes that are not
Gaussian primes.

7. For x ∈ {0, 1, . . . , n− 1} define f(x) = rx. Suppose r > 1 is a real number.
Show that f(x) may be written as a sum of discrete Fourier modes (give
a formula for the representation and the discrete Fourier modes) and find
formulas for the coefficients.

Possible solution: The discrete Fourier modes are the functions wj(x) =
e2πijx/n. The discrete Fourier representation of f (if there is one) is

f(x) =

n−1∑
0

cjwj(x) .

This is supposed to be true for all x ∈ {0, 1, . . . , n− 1}. The discrete
Fourier transform is the formula for cj in terms of f :

cj =
1

n
〈wj , f〉

=
1

n

n−1∑
x=0

wj(x)f(x)

=
1

n

n−1∑
x=0

e−2πijx/nrx .
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The last sum is a geometric series. If we define z = e2πij/nr, then the sum
is

n−1∑
x=0

zx =
1− zn

1− z
.

We know z 6= 1 because |z| = r > 1, by assumption. The discrete Fourier
coefficients for this function are

cj =
1

n

1− zn

1− z
=

1

n

1− e−2πijn/nrn

1− e−2πij/nr
=

1

n

1− rn

1− e−2πij/nr
.

8. Complete the table:

n Λ(n) π(n) ψ(n) φ(n)
1 0 0 0 0
2 log(2) 1 log(2) 1
3 log(3) 2 log(2) + log(3) 2
4
5
6
7
8
9
10
11
12
13

Possible solution:

n Λ(n) π(n) ψ(n) φ(n)
1 0 0 0 0
2 log(2) 1 log(2) 1
3 log(3) 2 log(2) + log(3) 2
4 log(2) 2 2 log(2) + log(3) 2
5 log(5) 3 2 log(2) + log(3) + log(5) 4
6 0 3 2 log(2) + log(3) + log(5) 2
7 log(7) 4 2 log(2) + log(3) + log(5) + log(7) 6
8 log(2) 4 2 log(2) + log(3) + log(5) + log(7) 4
9 log(3) 4 2 log(2) + 2 log(3) + log(5) + log(7) 6
10 0 4 2 log(2) + 2 log(3) + log(5) + log(7) 4
11 log(11) 5 2 log(2) + 2 log(3) + log(5) + log(7) + log(11) 10
12 0 5 2 log(2) + 2 log(3) + log(5) + log(7) + log(11) 4
13 log(13) 6 2 log(2) + 2 log(3) + log(5) + log(7) + log(11) + log(13) 12

9. Show that if (n, a) > 1, then there are not infinitely many primes in the
arithmetic progression a, a+ n, a+ 2n, a+ 3n, . . ..
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Possible solution: If (n, a) > 1 then there is a p that divides both a and n.
This p therefore divides a + kn for every k. Therefore, the only possible
prime in the arithmetic progression is p.
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