Quiz, Friday, Feb. 24, 12:30

1. Let x, y, and z be positive integers with no pair being relatively prime:

$$
(x, y)>1, \quad(y, z)>1, \quad(x, z)>1 .
$$

Prove either prove that there is an $n>1$ that divides x, y, and z, or give a counter-example (positive integers x, y, and z with no $n>1$).
2. Define the series a_{n} by

$$
a_{n}=e^{\frac{1}{n}}-1-\frac{1}{n} .
$$

Show that the sum

$$
\sum_{1}^{\infty} a_{n}
$$

converges absolutely.
3. Suppose a_{n} is defined for $n \geq 1$ and the partial sums are

$$
S(x)=\sum_{n \leq x} a_{n} .
$$

(a) Assume that $\left|a_{n}\right|=O\left(n^{r}\right)$ with $r>-1$. Show that

$$
\begin{equation*}
|S(x)|=O\left(x^{r+1}\right) . \tag{1}
\end{equation*}
$$

(b) Give a counterexample to (1) if $r=-2$. That is, find a sequence a_{n} with $\left|a_{n}\right|=O\left(n^{-2}\right)$ so that S_{x} is not $O\left(x^{-1}\right)$. Hint: Is it necessary that $S_{x} \rightarrow 0$ as $x \rightarrow \infty$?
(c) (harder, do as time permits) Prove the inequality (1) assuming that $r<-1$ and $S(x) \rightarrow 0$ as $x \rightarrow \infty$.
4. Define $t(n)$ to be the number of prime factors of n, counting repeats. This means that if $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots$, then $t(n)=r_{1}+r_{2}+\cdots$. For example, $t(72)=5$ because $72=2^{3} 3^{2}$. Consider the product

$$
f(s, x)=\prod_{p}\left(1-x p^{-s}\right)^{-1}
$$

(a) Suppose that $s>1$ and find the range of x values for which this product converges absolutely.
(b) For s and x in this range, find a formula for $f(s, x)$ of the form

$$
f(s, x)=\sum_{1}^{\infty} a_{n}(x) n^{-s}
$$

Prove this formula as time permits. Hint: the formula for $a_{n}(x)$ involves $t(n)$.
5. List the elements of the multiplicative group G_{24} and determine $\phi(24)$. Do not determine the cycle structure of G_{24}.
6. Let $\chi(x)$ be any of the Dirichlet characters $\bmod n$. The discrete Fourier transform of χ is

$$
w_{j}=\sum_{x=0}^{n-1} e^{-2 \pi i j x / n} \chi(x)
$$

Find a formula for

$$
A=\sum_{0}^{n-1}\left|w_{j}\right|^{2}
$$

A is the same for every χ. The answer involves one of our number theoretic functions.

