Quiz 2, Friday, March 24, 12:30

1. Consider the function $f(z)=z e^{\frac{1}{2} z^{2}}$. Note that $f(z)=\frac{d}{d z} e^{\frac{1}{2} z^{2}}$.
(a) Suppose Γ is a contour parameterized by $\zeta(t)=i t$ for $0 \leq t \leq 1$. Evaluate

$$
\int_{\Gamma} f(z) d z
$$

(b) Is there a different (rectifiable) contour, Γ^{\prime} from 0 to i for which

$$
\int_{\Gamma^{\prime}} f(z) d z \neq \int_{\Gamma} f(z) d z
$$

(c) Suppose

$$
g(z)=\frac{1}{z-1} e^{i z}
$$

and that Γ is the same contour from 0 to i. Draw another (rectifiable) contour from 0 to i, Γ^{\prime}, that does not include 1, but so that

$$
\int_{\Gamma^{\prime}} g(z) d z \neq \int_{\Gamma} g(z) d z
$$

Explain your answer. Do not evaluate the integrals.
2. Show that

$$
\max _{|z| \leq 1}|\cos (z)| \geq \frac{3}{2}
$$

Hint: Guess where the max is taken (it's not unique). Look at the signs of the Taylor coefficients of $\left(e^{y}+e^{-y}\right) / 2$ at $y=0$.
3. The Jacobi theta function is

$$
\theta(s)=\sum_{-\infty}^{\infty} e^{-\pi n^{2} s}
$$

Show that $\theta(s)$ is an analytic function of s for $\sigma=\operatorname{Re}(s)>0$. Include as much detail as you have time for. If you use a theorem, state the theorem and all its hypotheses completely.

See problem 4 on the back

4. Consider the integral

$$
u(r, \sigma)=\int_{\sigma-i \infty}^{\sigma+i \infty} \frac{e^{r\left(s+s^{-1}\right)}}{s^{2}} d s
$$

(a) Show that the integral converges absolutely for any real r if $\sigma>0$.
(b) Show that the value of the integral is the same for every $\sigma>0$. Give this argument in as much detail as time permits. Draw relevant contours, if necessary.
(c) Show that

$$
\min _{\sigma>0}\left[\max _{s=\sigma+i t} \operatorname{Re}\left(s+s^{-1}\right)\right]=2
$$

(d) (Harder, do as time permits) Show that there is a C so that for every $r>1$,

$$
|u(r)| \leq C e^{2 r}
$$

