
Numerical Methods II, Spring 2018,

Courant Institute, New York University, Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2018/index.html

Section 2
Discrete Fourier analysis, basic linear PDE

February 20, 2018

1 Motivation

New issues arise in computing time dependent fields that are governed by par-
tial differential equations. Semi-discretization is a two step approach to doing
this. The first step is to “discretize in space”, which means to approximate the
partial differential equation by a large system of ordinary differential equations.
The second step is “discretize in time”, which means to solve the ordinary differ-
ential equation system by some time stepping method. The partial differential
equation has the form

∂tu = Lu (1)

where L is a linear differential operator in space (terms defined below). The
semi-discrete approximation is a large system of ordinary differential equations

U̇ = AU . (2)

Here, U(t) is a finite dimensional approximation to the field u(·, t) at the same
time. It is called semi-discrete because the continuous space variable x, as in
u(x, t) has been replaced by a discrete index j, as in Uj(t). The time variable
is still continuous.

The semi-discrete system (2) is then solved by discretizing in time, possibly
using a Runge Kutta method. This system is likely to be stiff (defined below).
This means that it matters what an ODE solver will do when the time step is
too large to solve the ODE accurately. There is a sense in which ∆t does not
go to zero (explained below). Partial differential equations lead to stiff systems
of ordinary differential equations.

The discrete Fourier transform, or DFT, allows us to analyze some of the
semi-discrete systems (2) that arise from simple field equations (1). The DFT
can be a theoretical tool that explains the ODE system (2). It also can be a
practical tool that is used to define the semi-discrete approximation itself. Dis-
cretization methods that use the DFT are called spectral methods. They have the
advantage of being spectrally accurate – which means very very accurate (def-
inition below). They have the disadvantage of being more complicated, which
we would put up with, and applying to problems only in certain geometries and
boundary conditions (examples below). The FFT, (fast Fourier transform) is a
deep and clever set of algorithms that calculate the DFT fast enough to make
it practical for large scale computing.

The plan for this Section of notes is to describe the algebra of the DFT
(Section 2), then explain the relation between the DFT and Fourier series (Sec-
tion 3). Since “everybody knows”1 how useful Fourier series are for differential
equations, this should suggest that discrete Fourier series (the DFT) are useful
for discretizations of partial differential equations. It also starts to explain the

1Malvin Kalos (innovator in Monte Carlo methods) started a lecture with: “The following
is well known to those who know it well.”

1

phenomenon of spectral accuracy. Section 4 describes some simple partial dif-
ferential equations for time dependent fields, the linear homogeneous heat and
wave equations. Section 5 derives semi-discrete approximations to these and
shows that the DFT determines the eigenvalues and eigenvectors of the corre-
sponding A in (2). This is how DFT methods got to be called spectral – they
are related to the spectrum (eigenvalues) of A. Section 6 gives examples of the
DFT being used to derive spectrally accurate semi-discrete approximations.

A field is a function of x. For example, if u(x) is a temperature field, then
u(x) is the temperature at the point x. This would be a scalar field because
there is just one number at each point. An electric field is a vector at each point
in space E(x) = (E1(x), E2(x), E3(x)) (three components for three dimensions).
This terminology is often used in physics. Engineers sometimes call a field a
distributed parameter. There is a parameter u(x) “distributed” to every point
x. A finite dimensional vector u(x) ∈ Rn is a lumped parameter because all the
variation has been “lumped” into n numbers.

(Notation: we use capital letters U , V , etc., to represent discrete “functions”
if a discrete index j (sequences). We use lower case letters u, v, etc., for functions
of a continuos variable x. You can get a sequence by sampling a function of x,
as in Uj = u(xj).)

2 The DFT, discrete Fourier transform

A sequence Uj is periodic with period n if, for all j,

Uj+n = Uj .

The vector space of periodic sequences with period n has dimension n. We write
U ∈ Rn (for real sequences) or U ∈ Cn (for complex sequences) if U is periodic
with period n. For any integer α, the discrete Fourier mode with wave number
α will be written Vα ∈ Cn. Its entries are

Vα,j = e2πiαj/n . (3)

Here, Vα,j is component j of the vector Vα ∈ Cn. In Part 1, it was the derivative
of Vα with respect to xj .
Theorem. The modes Vα, for α = 0, . . . , n− 1 are an orthogonal basis of Cn.

Proof. The l2 inner product in Cn is2

〈F,G〉 =

n−1∑
j=0

F jGj . (4)

We calculate that if α and β are in the range given, then

〈Vα, Vα〉 = n (5)

〈Vα, Vβ〉 = 0 if α 6= β . (6)

2Here, z is the complex conjugate of the complex number z. Other treatments may use
FjGj . They may have normalization factors of 1

n
or 1√

n
.

2

The first formula is verified as follows:

〈Vα, Vα〉 =

n−1∑
j=0

Vα,j Vα,j

=

n−1∑
j=0

e2πiαj/n e2πiαj/n

=

n−1∑
j=0

e−2πiαj/n e2πiαj/n

=

n−1∑
j=0

1 .

The second formula is verified by recognizing the sum as a geometric series. If
z is any complex number (except z = 1), then3

n−1∑
j=0

zj =
zn − 1

z − 1
. (7)

The left side of (6) is

n−1∑
j=0

e2πiαj/ne2πiβj/n =

n−1∑
j=0

e−2πiαj/ne2πiβj/n

=

n−1∑
j=0

e[2πi(β−α)/n]j .

This is a geometric series with

z = e2πi(β−α)/n .

The geometric series formula (7) applies if z 6= 1. The numerator is (recall that
α and β are integers)

zn − 1 = e2πi(β−α) − 1 = 0 .

The main point is to check that z 6= 1. This is the same as saying that β − α
is not an integer multiple of n. If α 6= β then β − α 6= 0. If 0 ≤ α < d and
0 ≤ β < n, then |β − α| < n. This proves that β − α is not a multiple of n,
which finishes the proof of the theorem.

The Kronecker delta symbol is

δβα =

{
1 if α = β
0 if α 6= β .

3You can verify this by multiplying both sides by z − 1 and checking that (z − 1)(1 + z +
· · ·+ zn−1) = zn − 1.

3

A single formula using the Kronecker delta expresses the two relations (5) and
(6):

〈Vβ , Vα〉 = nδβα . (8)

The numbers δβα are the entries in the identify matrix. Sums involving the
delta symbol simplify:

n−1∑
α=0

δβαXα = Xβ .

This is the component-wise expression of the matrix/vector formula IX = X.
The delta symbol is a convenient way to do some calculations. The formula (8)
is always true if α or β are outside the range 0, . . . , n− 1.

The definition (3) defines a discrete Fourier mode for any integer α, and
yet a basis of Cn can have only n vectors. This apparent paradox illustrates
aliasing, that the same discrete Fourier mode can have more than one label α.
For a person, an “alias” is a different name he/she might use. For a Fourier
mode, it is a different label β 6= α so that Vβ = Vα. It is “easy to check” (hints
below) that α 6= β determine the same Fourier mode if and only if α and β
differ by a multiple of n:

Vβ = Vα ⇐⇒ β = α+ kn for some integer k . (9)

Here’s the proof. The ⇐= part (which is β = α+ kn =⇒ Vα = Vβ) is easier. If
j and α and k are integers, then

Vβ,j = e2πi(α+kn)j/n

= e2πiαj/ne2πiknj/n

= e2πiαj/n (because e2πiknj/n = e2πikj = 1)

= Vα,j .

The other part is that if β and α are integers and β 6= α+ kn for some integer
k, then Vβ 6= Vα. The calculation above shows that if e2πi(β−α)/n 6= 1 then
〈Vα, vβ〉 = 0. Since Vα 6= 0, this means that Vα 6= Vβ .

The modes (3) are the discrete Fourier modes. The n modes with α =
0, . . . , n−1 form the Fourier basis of Cn. If Vα is any collection of n orthogonal
(non-zero) vectors, and if U is any sequence in Cn, then u may be represented
(expanded) as

U =

n−1∑
α=0

aαVα .

The expansion coefficients are given by

aα =
〈Vα, V 〉
〈Vα, Vα〉

.

When the vectors Vα are the Fourier basis, the expansion coefficients are called
Fourier coefficients. We summarize these facts and formulas in the Fourier rep-
resentation theorem:

4

Theorem. For any U ∈ Cn, we have

U =

n−1∑
α=0

ÛαVα , (10)

where

Ûα =
1

n

n−1∑
j=0

e−2πiαj/nUj . (11)

The Fourier representation formula (10) may be written more concretely as

Uj =

n−1∑
α=0

Ûα e
2πiαj/n . (12)

We assumed that uj is a periodic function of j. The Fourier modes on the
right are also periodic functions of α with period n. You can see this from
the sum formula defining Ûα, or you can see it from the fact that Vα+n = Vα,

so 〈Vα+n, U〉 = 〈Vα, U〉. This means that the numbers Ûα, being a periodic

function of α, are the components of a vector Û ∈ Cn.
The Parseval relation gives the norm of U ∈ Cn in terms of the Fourier

coefficient vector Û . It is the basis of the crucial von Neumann stability analysis
for PDE that is covered in later parts of this course. The norm is

‖U‖2l2 =

n−1∑
j=0

|Uj |2

=

n−1∑
j=0

U juj

= 〈U,U〉 .

The formula is:

Theorem. For any U ∈ Cn,

‖U‖l2 =
√
n
∥∥∥Û∥∥∥

l2
. (13)

Proof. This is consequence of the orthogonality relations (8). Here is a ver-
ification that is direct, simple-minded, and possibly inelegant. Start with the
Fourier representation (10) and calculate. A trick is to write (10) also as

U =

n−1∑
β=0

ÛβVβ .

5

This allows calculations that use the Kronecker delta version of the orthogonality
relation (8). First the norm is written in terms of the inner product. Then u is

written as its Fourier sum. Then the coefficients Ûβ and Ûα are pulled out of
the the inner product. Recall here that you take the complex conjugate of the
coefficient of Vβ in the complex inner product.

‖U‖2l2 = 〈U,U〉

= 〈
n−1∑
β=0

ÛβVβ ,

n−1∑
α=0

ÛαVα〉

=

n−1∑
β=0

n−1∑
α=0

Ûβ Ûα 〈Vβ , Vα〉

=

n−1∑
β=0

n−1∑
α=0

Ûβ Ûα n δβα

= n

n−1∑
β=0

∣∣∣Ûβ∣∣∣2
This finishes the proof of the Parseval relation (13).

The formula (11) is the discrete Fourier transform, or DFT. The sequence ûα
is the discrete Fourier transform of the sequence uj . The Fourier representation
formula (12) is also called the Fourier inversion formula because it reverses the
Fourier transform and gives u in terms of û. The discrete Fourier transform is a
linear transformation from Cn to Cn. The matrix of this transformation is the
n× n DFT matrix F with entries

Fαj = e−2πiαj/n .

You can check that (11) is equivalent to

Û = FU .

The calculations leading to the orthogonality relations (8) may be stated in
matrix terms as

F ∗F = n I .

Thus, F is “almost” a unitary matrix. The normalization

F̃ =
1√
n
F

defines a matrix that is exactly unitary: F̃ ∗F̃ = I. If the DFT had been defined
with the

√
n normalization:

Ũ = F̃U ,

6

then the Parseval relation would have been∥∥∥Ũ∥∥∥
l2

= ‖U‖l2 .

The direct and inverse DFT must have a factor of n somewhere, or two factors
of
√
n. Different conventions (F or F̃) put these factors in different places.

A matrix like F̃ that preserves the l2 norm is called unitary. It has the
property that

F̃ ∗F̃ = F̃ F̃ ∗ = I .

If A is a complex valued matrix, then A∗ is the adjoint, or conjugate transpose
– you take the transpose (switch the indices) and the complex conjugate of the
entries. The entries are

(A∗)αβ = Aβα .

Here is the F̃ F̃ ∗ = I equation calculated out in indices. We use the summation
convention over γ and the Kronecker delta symbol to represent the entries of
the identity matrix. For any square matrices A, B, and C with C = AB, the
entries are

Cαβ = AαγBγβ .

The last step here is discrete Fourier mode orthogonality calculation we did
before. (

F̃ ∗F̃
)∗
αβ

=
(
F̃
)∗
αγ
F̃γβ

= F̃ γαF̃γβ

=
1

n

n−1∑
γ=0

e2πiγα/ne−2πiγβ/n

= δαβ

A fundamental set of mode numbers is a set of α values so that the cor-
responding modes vα form a basis of Cn. In view of aliasing, a set S is a
fundamental set in this sense if for every integer β there is an α ∈ S so that Vβ
is an alias of Vα. That means, there is an α ∈ S so that α = β + kn for some
integer k. Up to now, we have been using the fundamental set

Sp = {0, 1, . . . , n− 1} . (14)

(The “p” is for “programming”.) This leads to simple formulas and simple
programs. The Python FFT routines use this fundamental set.

But for analysis and for solving differential equations it can be better to use
a fundamental set that is symmetric or nearly symmetric about α = 0. If n is
odd, we may write n = 2m+ 1 and take

Sa = {−m,−m+ 1, . . . ,−1, 0, 1, . . . ,m} . (15)

7

(The “a” is for “analysis”.) The n indices in this set are all distinct in the sense
that none of them aliases to another. If n is even, we may write n = 2m and
take

Sa = {−m+ 1,−m+ 2, . . . , 0, . . . ,m} . (16)

The discrete Fourier representation formula is one of the two

Uj =
∑
α∈Sa

VαÛα =

m∑
−m

vαÛα m = 2n+ 1 odd

Uj =
∑
α∈Sa

VαÛα =

m∑
−m+1

VαÛα m = 2n even .


(17)

3 Discrete and continuous Fourier modes

For computing, it is necessary to approximate a field u using a finite set of
numbers Uj . This is similar to the time discretization process used in Part 1 of
the course. The continuous trajectory x(t) was approximated using Xj ≈ x(tj).
It is natural here (approximating a field) to take Uj ≈ u(xj) (beware of the
conflict of notation; either Xj is the approximate trajectory at the sample time
tj , or xj is a sample point for the field). The accuracy of computing u some-
times depends on the accuracy with which the sample values Uj approximate
u. Fourier series are one way to understand this issue.

The discrete Fourier transform is an operation on sequences with period n.
Fourier series operate on periodic functions of x with period R. Period R means
u(x + R) = u(x) for all x. The continuous Fourier modes with period R and
integer index α are

vα(x) = e2πiαx/R . (18)

These are periodic, vα(x+R) = vα(x). The inner product for periodic functions
is

〈u, v〉 =

∫ R

0

u(x) v(x) dx .

These modes are orthogonal in the sense that

〈vα, vβ〉 = Rδαβ .

Unlike the discrete formula (8), this formula holds for any integers α and β.
There is no aliasing of continuous Fourier modes: vα 6= vβ if α 6= β.

The functions vα are all orthogonal (see below) and linearly independent.
This makes “the” vector space of periodic functions infinite dimensional. It is
technical and outside the scope of this course to give a mathematically correct
definition of infinite dimensional vector spaces of functions. There are many
possibilities. We will use the one that, roughly speaking, is the space of functions
u so that the integral (19) is defined (the discontinuities of u are not too bad)
and finite (u is not too big). This vector space is called L2([0, R]). The “L” is

8

for the French mathematician Lebesgue (pronounced “luh-beg”, sort of). The
2 is for the numbers 2 in the norm formula

‖u‖2L2 = 〈u, u〉 =

∫ R

0

|u(x)|2 dx . (19)

A periodic function u ∈ L2([0, R]) has a Fourier representation (in abstract or
concrete form)

u =

∞∑
α=−∞

ûα vα

u(x) =

∞∑
α=−∞

ûα e
2πiαx/R


(20)

The orthogonality relation leads to a formula for the Fourier coefficients

ûα =
1

R
〈vα, u〉 =

1

R

∫ R

0

e−2πiαx/R u(x) dx . (21)

The series of coefficients ûα form the Fourier series corresponding to the periodic
function u. The sum (20) is the Fourier series representation of u.

There is a mathematical issue with continuous Fourier series representations
that does not arise with the discrete Fourier transform. The issue is complete-
ness. The discrete version takes place in a vector space of dimension n. Any n
non-zero orthogonal vectors form a basis. If there are n orthogonal vα ∈ Cn,
then the vα are a basis, and any u ∈ Cn can be represented in terms of them.
This isn’t true in infinite dimensional spaces like L2([0, R]). For example, if you
leave out vα for α < 0 then you still have infinitely many vα with α ≥ 0. But
the infinitely many vα with α ≥ 0 do not form a basis for L2([0, R]). If n =∞,
having n orthogonal vectors does not imply that they are a basis. You also
have to show that they are complete (form a basis). A mathematical book on
Fourier series will have a proof of this. It is also possible to prove completeness
of the Fourier basis vα (for all integers α) using the completeness of the discrete
Fourier basis Vα for α = 0, . . . , n− 1.

3.1 Sampling and aliasing, interpolation and differentia-
tion

Suppose u(x) is a periodic function of period R. Suppose that xj for 0 ≤ j < n
are evenly spaced grid points in the interval [0, R]. If ∆x is the spacing between
them, then

n∆x = R ,

so

∆x =
R

n
.

The grid point locations are
xj = j∆x .

9

Let U ∈ Cn be the vector created by sampling u at the grid points. That means

Uj = u(xj) .

There is a relationship between the DFT coefficients of U and the Fourier series
representation of u.

We start by asking what is the sample vector corresponding to a continuous
Fourier mode (18). Sampling produces the values

Vα,j = e2πiαxj/R .

If you plug in the definitions and “do the math”, you find

Vα,j = e2πiαj/n .

So, sampling the continuous Fourier mode number α gives the discrete mode
(3) with the same α. In view of aliasing, this means that Vα and Vβ , the sample
values of vα and vβ , are the same if β and α are aliases for the same discrete
mode, (9).

Suppose u is any periodic function of x with Fourier series representation
(20). Let U ∈ Cn be the sample values of u. Then a discrete Fourier coefficient
of U is the sum of all the Fourier series coefficients of u that alias to it. We see
this by writing the sampling operation applied to the Fourier series

Uj = u(xj)

=

∞∑
β=−∞

ûβvβ,j .

Suppose S is a fundamental set such as (14) or (15) or (16). Then for every
β there is an α ∈ S so that β = α + kn (k being an integer). By aliasing,
Vβ,j = Vα,j . Therefore,

Uj =
∑
α∈S

(∞∑
k=−∞

ûα+kn

)
Vα,j .

This shows that the DFT coefficients of U are given by the aliasing formula.

Ûα =

∞∑
k=−∞

ûα+kn . (22)

This formula gives a way to understand the relationship between a function of
the continuous variable x and its discrete approximation.

Choose a symmetric fundamental set (15) or (16). Suppose (we will show this
often happens) that the Fourier coefficients ûβ are rapidly decreasing functions
of β as |β| → ∞. Then the aliased terms with n 6= 0 in the aliasing formula (22)
are probably much smaller than the “un-aliased” term with n = 0. That is

Ûα ≈ ûα if α ∈ Sa .

10

Also, the Fourier coefficients outside Sa are so small that

u(x) ≈
∑
α∈Sa

ûαe
2πiαx/R

is a good approximation (the neglected terms α /∈ Sa are small).
Interpolation is a way of constructing a function from a collection of sam-

ples. The interpolation means that interpolating function is equal to the sample
value at each sample point. There is linear interpolation (interpolation us-
ing a piecewise linear function), polynomial interpolation (interpolation using
a polynomial), etc. Fourier interpolation is interpolation using a trigonometric
polynomial. This trigonometric polynomial may be written

wn(x) =
∑
α∈Sa

Ûαe
2πiαx/R . (23)

This function interpolates u at the sample points xj because of the calculation
we just did:

wn(xj) =
∑
α∈Sa

Ûαe
2πiαj/n .

The function wn in (23) is called a trigonometric polynomial because it is a
finite sum of powers of the basic complex exponential:

e2πiαx/R =
(
e2πix/R

)α
.

These are trigonometric because

e2πix/R = cos(2πx/R) + i sin(2πx/R) .

Unlike normal polynomials, the sum (23) involves both positive and negative
powers, α > 0 and α < 0.

There are different definitions of the degree of a trigonometric polynomial.
Some people say that a sum

m∑
α=−m

aαe
2πiαx/R (24)

is a trigonometric polynomial of degree m. But there are 2m+ 1 coefficients, so
others say it has degree 2m. This is to be consistent with ordinary polynomials,
where a polynomial of degree r has r + 1 coefficients. If n (the number of
interpolation points) if even, then the sum defining wn is not symmetric. Instead
it runs from −m + 1 to m. You can remove as much ambiguity as possible by
saying that wn is an interpolating trigonometric polynomial with n terms that
is as symmetric as possible.

Fourier interpolation can be extremely accurate when u is smooth (precise
definitions below). This makes computational methods based on trigonometric
polynomials desirable – you can capture the desired solution accurately with a

11

relatively small number of degrees of freedom, n. Depending on the problem,
Fourier methods might not be the best. They are not efficient for non-smooth
functions (examples below). They are hard to apply in any geometry that isn’t
very simple.

Figure 1 shows interpolation of a very smooth function. The Gaussian is
reproduced accurately using just n = 8 modes. Feel free to download the code
FourierInterpolation.py and try some other examples. In the figure, the
interpolating polynomial wn(x) is evaluated at many more than ng = 400 �
n = 8 points. The code does this using an FFT of size ng. You just set the
discrete Fourier coefficients beyond the original n equal to zero and use the
inverse FFT.

Figure 2 shows trigonometric interpolation of a function that is continuous
but not differentiable. This function is not “smooth”. With n = 20 modes
the interpolation is inaccurate. Figure 3 shows a more extreme case where u
has a jump discontinuity. With n = 40 points, the interpolation is poor. It is
poor even rather far from the discontinuity, which is called pollution. As with
environmental pollution, the effect is felt far from the source.

The spectral derivative, or the Fourier derivative is the derivative of the
interpolating polynomial. Suppose U ∈ Cn is a discrete vector, which may be

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0
smooth, n = 8

Figure 1: Fourier interpolation of a smooth function. The exact function is the solid
line, the interpolant is small dots, interpolating points are large dots. The Python
source is in codes/FourierInterpolation.py.

12

thought of as the samples of a function u(x). Let w(x) be the trigonometric
interpolating polynomial. Define

Vj = ∂xw(xj) , for j = 0, . . . , n− 1. (25)

This is the spectral derivative of U . The vector V ∈ Cn is the spectral derivative
of U . The spectral differentiation operator is a linear map from Cn to Cn. There
it can be represented by an n× n complex matrix, D:

V = DU . (26)

The matrix D is dense in the sense that Djk 6= 0 for most (j, k); most of the
entries are not zero. It is not hard to write a formula for Djk that would
allow you to compute the matrix vector product (26) directly. However (details
below), it is more efficient to do the operation in Fourier space. That is,

U
FFT−→ Û

diag mult−→ D̂Û
inverse FFT−→ DU

The diagonal multiplication step is Ûα −→ kαÛα. This means that in the Fourier
domain, D is a diagonal matrix. The diagonal entry is ikα, and is given by (28)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0
continuous, n = 20

Figure 2: Fourier interpolation of a continuous but not smooth function. The exact
function is the solid line, the interpolant is small dots, interpolating points are large
dots. The Python source is in codes/FourierInterpolation.py.

13

below. The Fourier differentiation formula is (30). The cost of computing DU
is the cost of two FFT operations, which is about 2 × 2 log2(n). The diagonal
multiplication step is n multiplications, which is less. The matrix D is skew
hermitian, which is

D∗ = −D .

This is because its eigenvalues are ikα which are pure imaginary and its eigen-
vectors Vα are orthogonal.

3.2 Wave number, feature size, resolution, artifacts

The function
w(x) = eikx (27)

is a plane wave with wave number k. In higher dimensions, the corresponding
formula has wave fronts that are planar. The modes vα(x) are plane waves with
wave number

kα =
2πα

R
. (28)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
discontinuous, n = 40

Figure 3: Fourier interpolation of a smooth function. The exact function is the solid
line, the interpolant is small dots, interpolating points are large dots. The Python
source is in codes/FourierInterpolation.py.

14

A plane wave is periodic with fundamental period

Rk =
2π

k
. (29)

The family (18) consists of all plane waves that are periodic with period R. The
wave number k has units

[k] =
1

Length
.

This allows the exponent in (27) to be dimensionless, and it is consistent with
the period (29) being a length. Large wave number k corresponds to short wave
length Rk.

The number α in (18) is a dimensionless integer that indexes the Fourier
modes. For example, index α = 1 gives the first non-constant mode in the
positive wave number direction. The wave number corresponding to this mode
depends on the size of the “box” (interval, period), R.

A crucial question for practical computation is how many wave numbers,
what size n, is needed for a given computation. This can be determined by the
minimum feature size in the solution. The notions of feature and feature size
are vague but crucial. For example, a Gaussian “feature” might be a function
of the form e−(x/l)2 . The size of this feature is l (or l/2 or something). The
function x/

√
l2 + x2 has a feature size l because it “transitions” from nearly −1

to nearly 1 over an interval of length l (or 2l?).
You “resolve” a feature by including enough Fourier modes so that the fea-

ture can be clearly seen in a trigonometric polynomial of that degree. In order
to resolve a feature, you need wave numbers appropriate for that feature size,
which means k ∼ 1/l. This is a physical requirement that does not depend on
the size of the box R. We find the mode number needed to resolve a feature of
size l by setting Rk = l in (29) and solving for α. The result is

α =
R

l
.

(This is a dimensionless ratio of two lengths.) The α needed is proportional to
the size of the box and inversely proportional to the size of the feature. It is
expensive (large n) to resolve a small feature in a big box. How do you estimate
the n (number of modes in all) needed for a given calculation? It is at least 2α,
because of positive and negative wave numbers. If you have a 20cm box and a
feature of size .5cm, then you probably need at least n = 2 · 20/.5 = 80 modes.
This is likely to be an under-estimate because it just barely resolves the feature.
To calculate at all accurately, you probably need a multiple of this, maybe a
factor of 2 or 4 or more.

The DFT makes this resolution discussion is easy to understand. The DFT is
a one to one correspondence between n terms in a Fourier series and the values
of a function at n evenly spaced points. If the box has size R, the distance
between points is R/n. This seems to be the smallest feature size that can be
represented in this way. A feature is resolved or under-resolved depending on
whether there are enough modes to resolve it.

15

Figures 4 and 5 illustrate resolution and under-resolution. With n = 20
modes, the feature is too small to be represented on the grid xj and the trigono-
metric interpolant looks bad. With n = 40 modes, the interpolant is an accurate
approximation to the function. Figure 4 illustrates the typical behavior of under-
resolved features – overshoots, oscillations, and pollution. The actual function
is always positive, but the interpolant overshoots zero to a value a little just
below −.1. Overshoots are sometimes called Gibbs’ phenomenon. The inter-
polant overshoots in an oscillatory way, going negative repeatedly. The exact u
has no oscillations. The oscillations persist far from the feature, which is called
pollution. Error from the under-resolved feature pollutes the whole domain. An
artifact is something in the numerical calculation (the interpolant in this case)
that is not in the desired solution. Under-resolved Fourier approximations lead
to serious artifacts.

A sharp feature like a discontinuity in u (Figure 3) or a discontinuity in
∂xu (Figure 2) may be thought of an infinitely small feature. This makes it
impossible to resolve in the way just described. Such a sharp feature will give
artifacts no matter how many modes are used. The Gibbs phenomenon over-
shoot in Figure 3 will not go away as n → ∞. The artifacts seem less severe
for a discontinuity in the derivative, Figure 2. But they are still visible. Fourier
interpolation of the continuous but not differentiable function converges but is
not very accurate.

3.3 Decay of Fourier coefficients

A function is smooth to the extent that its derivatives exist and are not crazy.
The degree of smoothness is determined by how many derivatives make sense.
A very smooth function has a lot of derivatives. Analyticity is the most extreme
form of smoothness. A function u(x) is analytic if all its derivatives exist and if
there is a C and a ρ > 0 so that

|∂nxu(x)| ≤ Cn!

ρn
.

The right side is the formula related to radius of convergence of Taylor series in
basic calculus. A function is analytic of its Taylor series has a positive radius
of convergence at every point. The solutions to differential equations often are
smooth or analytic.

It is a basic fact in scientific computing that the Fourier representation (20)
is efficient for smooth functions. Efficient means that you get an accurate ap-
proximation using a small number of terms in the sum. Fourier approximation is
efficient for smooth functions because the Fourier coefficients go to zero rapidly.
If u has n derivatives, then (we will see this)

|ûα| ≤ Cn−α .

The more derivatives, the more rapidly ûα converges to zero. If u is analytic,
then there is an a < 1 with

|ûα| ≤ Ca−|α| .

16

That is, the Fourier coefficients converge to zero exponentially.
There are many ways to look at derivatives using Fourier series. You can

write the Fourier series using the wave numbers kα of (28) as

u(x) =
∑
α

ûαe
ikαx .

The derivative is
∂xu(x) =

∑
α

ikαûαe
ikαx . (30)

This formula says that you get the derivative by multiplying the Fourier coef-
ficient by ikα. The Fourier coefficients of ∂xu are ikαûα. The Fourier differen-
tiation formula can be applied repeatedly, do ∂2

xu brings down (ikα)2, and so

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0
smooth_small, n = 20

Figure 4: Fourier under-resolved interpolation of a smooth function. The exact func-
tion is the solid line, the interpolant is small dots, interpolating points are large dots.
The grid is too coarse to resolve the feature. Instead we see overshoots. The Python
source is in codes/FourierInterpolation.py.

17

on:

u ⇐⇒ ûα

∂xu ⇐⇒ ikαûα =
2πiα

R
ûα

∂nxu ⇐⇒ inknα ûα = in
(

2π

R

)n
αn ûα (31)

Look at (31). The factor in is something like a sign in that |in| = 1. The factor
kn indicates that differentiation increases the high k Fourier coefficients more.
It also makes the k = 0 (or α = 0) Fourier coefficient equal to zero. The factor
(2π/R)n increases or decreases with n (depending on R) but is independent of
α.

The spectral derivative of a grid function is defined as follows. You have the
numbers Uj that are represent the values of some approximation on grid points
xj . The grid points are uniformly spaced on an interval of length R, xj = j∆x,

∆x = R/n. The discrete Fourier coefficients are Ûα and the trigonometric
interpolant is w(x). It is important to use the symmetric fundamental set Sa =

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
0.2

0.0

0.2

0.4

0.6

0.8

1.0
smooth_small, n = 40

Figure 5: Fourier interpolation of a smooth function, well resolved. The ex-
act function is the solid line, the interpolant is small dots, interpolating points
are large dots. The interpolating function is accurate. The Python source is in
codes/FourierInterpolation.py.

18

{−m+ 1, . . . ,m}, with for n = 2m nodes. The spectral derivative operator is a
map D : Rn → Rn defined by

(DU)j = ∂xw(xj) . (32)

To compute the spectral derivative:

1. calculate the discrete Fourier coefficients Û = DFT(U).
You must check what version of the DFT the FFT software calculates.
The Python numpy.fft package computes

Yα =

n−1∑
j=0

e−2πiαj/nUj .

for α ∈ Sp, which is α ∈ {0, . . . , n− 1}. To get the coefficients in our
symmetric fundamental set, you must normalize by dividing by n and
shift. The posted code FourierInterpolation.py does this.

2. differentiate in Fourier space V̂α = ikαÛα.
The wave numbers are related to α by (28). In the code FourierInterpolation.py,

the array holding Û is centered but, but Python arrays start from index
zero. You have to get this right to calculate kα correctly.

3. calculate the inverse discrete Fourier transform DU = IDFT(V̂). Be care-
ful of conventions. The Python inverse discrete Fourier transform code
numpy.fft.ifft has the right factor of n convention, but it returns a
complex sequence. In exact arithmetic the real parts all would be zero
(why?). In Python, you need to cast the complex array returned by ifft

to desired real array by taking the real part.

Smooth means that many derivatives of u exist and are not infinite. For
example, suppose that the pth derivative of u is bounded:

max
x

∣∣∣u(p)(x)
∣∣∣ = Ap <∞ . (33)

This (we will see) implies that the Fourier coefficients go to zero quickly as
ξ → ∞. The rapid decay of Fourier coefficients implies that “most” of the
Fourier sum (20) is given by a the few terms with small ξ.

The Fourier integrals (20) are small for large ξ because of cancellation. The
integrand is not small, but the integral is small because the positive and negative
parts almost exactly cancel. You can see this by integrating e−ikxu(x) over one
period of the plane wave. That means, you integrate from x0 to x0 + 2π/k. For
large k, this is a small interval. If u′(x) is not large, then u does not change
much over this interval. Suppose that

|u(x)− u(x0)| ≤ ε if x0 ≤ x ≤ x0 +
2π

k
.

19

Integrating the constant over one period gives zero. That’s the cancellation:∫ x0+ 2π
k

x0

e−ikxu0 dx = 0 .

Therefore integrating with u over one period gives something small (remember
that

∣∣e−ikx∣∣ = 1 always)∣∣∣∣∣
∫ x0+ 2π

k

x0

e−ikxu(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ x0+ 2π

k

x0

e−ikxu0 dx+

∫ x0+ 2π
k

x0

e−ikx (u(x)− u0) dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ x0+ 2π

k

x0

e−ikx (u(x)− u0) dx

∣∣∣∣∣
≤
∫ x0+ 2π

k

x0

|u(x)− u0| dx

≤
∫ x0+ 2π

k

x0

ε dx

=
2π

k
ε .

The integral over a period of the plane wave is less than the length of the period
(2π/k) multiplied by the “oscillation” of u over that interval (the amount u
varies over the interval).

Now consider a Fourier mode (18) with large α and wave vector k = 2πα/R
also large. The Fourier integral (20) is the sum of ξ integrals over individual
periods of e−2πiαx/R. Even if the oscillation of u is large, the oscillation over
each small period is small. The sum of the lengths of these periods is R. If you
put this information together, you see that the integral should be small.

This argument is intuitive, but clumsy to carry out in detail. There is a
more “efficient” version of this argument that gets better answers with less
calculation, but also possibly with less intuition. The trick is to integrate by
parts in the Fourier integral (21) assuming that α 6= 0. We use the plane wave
differentiation formula in the form

−R
2πiα

e−2πiαx/R = ∂xe
−2πiαx/R .

There are no “boundary terms” in the integration by parts because the values

20

at x = 0 and x = R are equal because u and vξ are periodic.

ûα =

∫ R

0

e−2πiαx/R u(x) dx

=
−R
2πiα

∫ R

0

(
−2πiα

R
e−2πiαx/R

)
u(x) dx

=
−R
2πiα

∫ R

0

(
∂xe
−2πiαx/R

)
u(x) dx

=
R

2πiα

∫ R

0

e−2πiαx/R∂xu(x) dx .

This integration by parts can be repeated p times. Each integration by parts
gives another factor of R/2πiξ. The result is

ûα =

(
R

2πi

)p
1

αp

∫ R

0

e−2πiαx/R (∂pxu(x)) dx .

This leads to the inequality

|ûα| ≤ Cp |α|−p ,

where

Cp =
ApR

p−1

(2π)
p .

4 Time dependent fields

In this context, a field is a function of a “spatial variable” x ∈ Rd. For example, if
u(x) is the temperature at point x, then the function u would be the temperature
field. If E(x) = (E1(x), E2(x), E3(x)), then E could be the electric field. A field
with just one component is a scalar field. The electric field is a vector field. Some
engineers call a field a distributed parameter. The parameter (temperature or
electric field), has different values at different points. A lumped parameter can
be a finite dimensional approximation to a distributed parameter. For example,
a lumped parameter approximation to a temperature field could be a list of n
temperature readings at n measurement points.

A time dependent field is one that changes with with time. For example,
u(x, t) could be the temperature at location x at time t. We write u(·, t) to
represent the whole field at time t. For example, v(·) = u(·, t0) means that
v(x) = u(x, t0) for all x. The evolution of a time dependent field is the change
of the field with time. This could be modeled by an evolution equation of the
form

∂tu(·, t) = F (u(·, t)) .
The “function” F takes a field as an argument and returns another field. Func-
tions like that (functions of functions) are often called operators. An operator
can be linear or nonlinear.

21

Suppose F is an operator and v(·) = F (u(·)). Then F is local if v(x) depends
only on u(x) and some derivatives of u at x. For example, v(x) = u(x)2 is a
local and nonlinear operator. It also might be written F (u)(x) = u(x)2, as F (u)
is a function (also written v) and we can evaluate the function at x. The Laplace
operator, or Laplacian, is the local linear differential operator

4u(x) =

d∑
k=1

∂2
xk
u(x) .

The inverse Laplace operator in 3D is

u = 4−1v ⇐⇒ u(x) =
1

4π

∫
R3

1

|x− y|
v(y) dy .

This is a non-local integral operator. It is non-local because u(x) depends on
v at every other point, not just near x. It is integral because it involves an
integral. It is the inverse Laplace operator because, if u is a suitable function
of x = (x1, x2, x3) ∈ R3, and if

v(x) =
∂2u(x)

∂x2
1

+
∂2u(x)

∂x2
2

+
∂2u(x)

∂x2
3

,

then

u(x1, x2, x3) =
1

4π

∫ ∫ ∫
v(y1, y2, y3)√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)3
dy1dy2dy3 .

We are concerned with time dependent fields that satisfy local evolution
equations, which are partial differential equations. Such equations are some-
times called “time dependent equations”, but it isn’t the equation that is chang-
ing, it’s the field. The initial value problem for such a partial differential equa-
tion consists of the evolution equation with a local operator and the initial
values. There are two “time dependent” partial differential equations that illus-
trate features of many others. One is the heat equation (also called the diffusion
equation)

∂tu = D4 u . (34)

The other is the wave equation (or scalar wave equation)

∂2
t u = c2 4 u . (35)

The physical meanings of these equations are explained in the Feynman Lectures
on Physics, (bold blue text should be clickable links) Volume 2, Lecture 3

(the heat equation), and Volume 1, Lecture 47 (the wave equation). Please
read these lectures. You can buy them cheaply, or read them online at the
Feynman lectures web site, which is http://www.feynmanlectures.caltech.edu/
.

22

http://www.feynmanlectures.caltech.edu/II_03.html
http://www.feynmanlectures.caltech.edu/I_47.html
http://www.feynmanlectures.caltech.edu/
http://www.feynmanlectures.caltech.edu/

4.1 Simple diffusion in one dimension

The diffusion equation (34) in one dimension models diffusion of something
(heat or the concentration of a chemical) along a line. Let x ∈ R be position
along a line and let u(x, t) represent the concentration at location x at time t.
As the stuff diffuses, u(x, t) changes according to the diffusion equation

∂tu = D∂2
xu . (36)

The coefficient D is the diffusion coefficient (not the spectral differentiation
operator). If x has units of length (L) and t has units of time (T), then D has
units of L2/T. The initial value problem is to determine u(x, t) for t > 0 when
the initial conditions u(x, 0) are known.

A semi-discrete approximation of the one dimensional diffusion equation (36)
involves a discretized, or “lumped”, approximation vector U(t) ∈ Rn. The field
u(·, t) may be approximated through sampling. Let ∆x be a grid spacing, or
space step, and define grid points, or sample points

xj = j∆x .

The set of grid points forms the grid, or lattice. The field values at the sample
points are the sample values uj(t) = u(xj , t). We suppose U(t) is an approxi-
mation to uj :

Uj(t) ≈ u(xj , t) .

The operator in the evolution equation (36) is the linear differential operator

L = D∂2
x .

To create A in the semi-discrete approximation (2), we seek a discrete approxi-
mation of L that acts on U to produce a discrete approximation to D∂2

xu(xj , t).
A finite difference method replaces the differential operator ∂2

x with a finite
difference approximation:

∂2
xf(x) =

1

∆x2
[f(x−∆x)− 2f(x) + f(x+ ∆x)] +O(∆x2) .

The O(∆x2) size of the error is true if f has four continuous derivatives. We
can apply this at each t to the time dependent field u(·, t) to get

u̇j =
D

∆x2
[uj+1 − 2uj + uj−1] +O(∆x2) . (37)

This suggests the semi-discrete approximation

U̇j =
D

∆x2
(Uj+1 − 2Uj + Uj−1) . (38)

The semi-discrete evolutions equations (38) do not specify the semi-discrete
problem exactly. There can be only finitely many U values in the computer, so

23

we must restrict the range of j using boundary conditions. Boundary conditions
are a part of the physical problem description too. We must say what happens
at the ends of the x interval. Boundary conditions, particularly discretizing
them, can be more challenging than the semi-discrete equations that apply in
the interior. Therefore, we need a way to make U finite without putting in
boundary conditions.

This can be done by supposing that the field u(·, t) is periodic in x with
period R. That is

u(x+R, t) = u(x, t) .

Boundary conditions (along with the diffusion equation and initial condi-
tions) complete the formulation of the initial value problem. For now, we will
assume that the initial conditions are periodic with period R. For all x,

u(x, 0) = u(x+R, 0) .

This implies (since the solution is unique) that the solution also is periodic with
period R. The finite difference approximation sequence uj(t) will be periodic if
exactly d grid points fit in one period. This means that

n∆x = R , ∆x =
R

n
. (39)

The matrix A corresponding to the right side of (37) has diagonals

Ajj =
−2D

∆x2
.

The off diagonals are

Aj,j+1 = Aj,j−1 =
D

∆x2
.

But in addition to its tri-diagonal entries, A has non-zeros in the top right and
bottom right:

A0,d−1 = Ad−1,0 =
D

∆x2
.

These “wraparound” entries arise from periodicity. For example, the j = 0
differential equation (37) is

u̇0 =
D

∆x2
[u1 − 2u0 + u−1] =

D

∆x2
[u1 − 2u0 + ud−1] .

The matrix A is

A =



−2D
∆x2

D
∆x2 0 · · · 0 D

∆x2

D
∆x2

−2D
∆x2

D
∆x2 0 · · · 0

0 D
∆x2

−2D
∆x2

. . .
. . .

...
... 0

. . .
. . . 0

0
. . . −2D

∆x2
D

∆x2

D
∆x2 0 · · · 0 D

∆x2
−2D
∆x2


. (40)

24

The formula (37) is another convenient way to express the action of A. If f ∈ Cd
with components f0, . . . , fd−1 and g = Af , then for j = 0, 1, . . . , d− 1,

gj =
D

∆x2
[fj+1 − 2fj + fj−1] , where f−1 = fd−1 , and fd = f0 .

The eigenvalues and eigenvectors of A tell us a lot about the behavior of
solutions (see notes, part 1). Discrete Fourier modes are the eigenvectors of
A. The corresponding eigenvalues are found by calculation. These calculations,
called symbol calculations, are used constantly to derive and understand finite
difference schemes for partial differential equations. Suppose vα ∈ Cd is a
Fourier mode given by (3). We write component j of Avα as (Avα)j . The
crucial step in the symbol calculation is finding the common exponential factor
on the right.

(Avα)j =
D

∆x2
[vα,j+1 − 2vα,j + vα,j−1]

=
D

∆x2

[
e2πiα(j+1)/d − 2e2πiαj/d + e2πiα(j−1)/d

]
=

D

∆x2

[
e2πiαj/de2πiα/d − 2e2πiαj/d + e2πiαj/de−2πiα/d

]
=

D

∆x2

[
e2πiα/d − 2 + e−2πiα/d

]
e2πiαj/d

The result is
(Avα)j = m(α)e2πiαj/d , (41)

where the symbol of the difference operator A is

m(α) =
D

∆x2

[
e2πiα/d − 2 + e−2πiα/d

]
.

This is simplified by writing

θ =
2πα

d

and using a trig identity. Then (with some abuse of notation)

m(θ) =
−2D

∆x2
[1− cos(θ)] . (42)

The eigenvalues of A are

λα = m(θα) , α = 0, . . . , d− 1 . (43)

We will return several times to these formulas. Some important properties if
these eigenvalues that we will return to constantly:

1. They are all real. This is a consequence of the fact that the matrix A in
(40) is symmetric.

25

2. They are all non-positive, which is equivalent to the fact that A is negative
semi-definite. This is a consequence of the formula (which we will use in
more detail later)

〈U,AU〉 = −D∆x

n−1∑
0

(Uj+1 − Uj)2

∆x2
.

The right side is clearly non-positive, and equal to zero only if U is con-
stant. It is a discrete approximation to

−D
∫ R

0

(∂xu(x))
2
dx .

3. They have a wide range of values. The first non-zero eigenvalue comes
from α = ±1 and is (check this)

λ±1 =
−D (2π)

2

R2
+O(∆x2) .

The point is that this has a finite limit as n → ∞ and ∆x → 0. The
“largest” (most negative) eigenvalue is from the other end of the “spec-
trum” with θ ≈ π/2, which gives

λmax ≈
−4D

∆x2
.

Thus A has a wide range of eigenvalues, which corresponds to a wide range
of time scales in the solution of the semi-discrete problem (2). If we want
to compute the solution correctly, this would take

∆t� 1

|λmax|
=

∆x2

4D
. (44)

This makes ∆t very small when ∆x is small.

The formula (44) is our first instance of a time step constraint in solving a
partial differential equation. If we discretize in space and time, there is likely
to be a relation between ∆x and ∆t, or at least a constraint on the relation.
For the diffusion equation this seems to require very small time steps. In three
dimensions, the number of grid points is proportional to ∆x−3. If the time step
is proportional to ∆x2, then the number of time steps to reach a specific time is
proportional to ∆x−2. The overall computation requires you to visit each grid
point once per time step, for a total of

∆x−3 ×∆x−2 = ∆x−5

operations for the complete simulation. If you decide you need more resolution
and replace do it again with grid spacing ∆x/2, this computation is longer by
a factor of 25 = 32.

26

The requirement ∆t << ∆x2 is usually not necessary for accuracy even
though it seems to be. This is because the problem is usually stiff. The modes
corresponding to eigenvalues λmax have so little energy that they do not need
to be computed accurately. A problem is stiff if you would be happy to solve
it with time steps much larger than the fastest time scale in the problem. This
makes sense only if the fast modes have little “energy”. We have seen that if
u is analytic, then the Fourier coefficients decay exponentially (actually, this is
the definition of “analytic”). Problems with time dependent fields are likely to
be stiff if the field being computed is analytic.

4.2 The wave equation in one dimension

The wave equation (35) has similarities and important differences from the heat
equation. It is natural to semi-discretize the wave equation in one dimension in
a manner similar to (38)

Üj =
c2

∆x2
(Uj+1 − 2Uj + Uj−1) . (45)

This has modes of the form

U(t) = Vαe
iωαt .

You can calculate the ωα explicitly to verify the following:

1. The ωα are all real.

2. They have a wide range of scales, from ω±1 = O(1) to

ωmax = O
(
∆x−1

)
.

This means that an accurate solution of all modes would require

∆t� ∆x .

This is less severe than for the diffusion equation, but still severe. If we write
(45) as a first order system, the eigenvalues are of the form ±iωα. For the wave
equation, the eigenvalues have a wide range along the imaginary axis.

5 Exercises

1. (You may have to review some linear algebra, vector norms and condition
number of matrices, for this problem.) Vector and matrix norms matter,
particularly in high and infinite dimensions. Three important norms for

27

sequences U ∈ Rn or U ∈ Cn are

‖U‖l1 =

n−1∑
j=0

|Uj |

‖U‖l2 =

n−1∑
j=0

|Uj |2
1/2

‖U‖l∞ = max
j
|Uj |

If ‖U‖a and ‖U‖b are any two norms, then the condition number of norm
a with respect to norm b is

κ(a, b) =

max
U 6=0

‖U‖a
‖U‖b

min
U 6=0

‖U‖a
‖U‖b

. (46)

If κ(a, b) is large, then knowing something in ‖U‖a may not tell you much
about ‖U‖b. There are many examples of this in numerical differential
equations.

(a) Suppose M is an n × n positive definite symmetric matrix. Define
the “M norm” as

‖U‖M = (〈U,MU〉)1/2
.

Let κ(M) be the “traditional” condition number

κ(M) =
λmax(M)

λmin(M)
. (47)

Show that
κ(M, 2) = κ(M) .

On the left is the condition number of the M norm with respect to
the 2 norm (46). On right is the condition number of M (47).

(b) Show that κ(a, b) ≥ 1 for any pair of vector norms.

(c) Show that if ‖·‖a is a scaling of ‖·‖b then κ(a, b) = 1. We say that
‖·‖a is a scaling of ‖·‖b by s if ‖U‖a = s ‖U‖b for all U .

(d) Show that κ(a, b) = κ(b, a). Hint: Suppose U1 maximizes ‖U‖a / ‖U‖b,
then U1 minimizes ‖U‖b / ‖U‖a, why? Also,

κ(a, b) = max
‖U‖b=1

‖U‖a (why?) .

(e) Find the condition numbers of the three norms above (l1, l2, and l∞)
relative to each of the others. The important thing here is now these
condition numbers scale with n.

28

2. This series of steps gives a convergence proof for a semi-discrete approx-
imation. It is a consistency/stability argument, but such arguments are
more technical when applied to time dependent field problems. Consider
a semi-discrete approximation of the diffusion equation

U̇j =
D

∆x2
(Uj+1 − 2Uj + Uj−1) . (48)

Suppose that U is real, which means that U(t) ∈ Rn.

(a) Show that (48) satisfies the discrete maximum principle

‖U(t)‖l∞ ≤ ‖U(0‖l∞ . (49)

Hint: Start by showing that the semi-discrete equations imply

Uj(t) = max
k

Uk(t) ≥ 0 =⇒ U̇j(t) ≤ 0 .

You need a similar fact for the min in case ‖U(t)‖l∞ = |minUk(t)|.
This proves that the semi-discrete approximation (48) is stable in the
l∞ norm.

(b) We write S(t) for the solution “operator” (an n × n matrix in this
case) of the semi-discrete approximation (2). This satisfies S(0) = I
and Ṡ = AS. Suppose E satisfies the inhomogeneous equation

Ė = AE +R(t) .

Show that

E(t) = S(t)U(0) +

∫ t

0

S(t− t1)R(t1) dt1 . (50)

We will call this Duhamel’s principle, but it has other names.

(c) Show that the discrete maximum principle implies that for all t ≥ 0,

‖S(t)‖l∞ ≤ 1 .

Use this to conclude that if U satisfies the inhomogeneous equation,
then

‖E(t)‖l∞ ≤ ‖E(0)‖l∞ + t max
0≤t1≤t

‖R(t1)‖l∞ . (51)

You may assume that if V (t) is “any” vector function of t (any mea-
surable function, or continuous function) and if ‖·‖ is any vector
norm, then there is an “obvious” integral version of the triangle in-
equality: ∥∥∥∥∫ t

0

V (t1) dt1

∥∥∥∥ ≤ ∫ t

0

‖V (t1)‖ dt1 .

29

(d) Suppose that u(x, t) satisfies the diffusion equation ∂tu = D∂2
xu, and

that
∣∣∂4
xu(x, t1)

∣∣ ≤ C for all x and 0 ≤ t1 ≤ t. Define the error vector
E(t) ∈ Rn as

Ej(t) = Uj(t)− u(xj , t) .

Suppose that Uj(0) = u(xj , 0) (the initial data for U are correct).
Show that the semi-discrete approximation is second order accurate
in the sense that

max
j

max
t≤T
|Uj(t)− u(xj , t)| ≤ CT∆x2 . (52)

3. The Kuramoto Sivashinsky equation (called KS), in one dimension, is for
a function u(x, t) with x ∈ R (i.e., one dimensional) and t ≥ 0. We will
study solutions that are periodic in space (in x) with a period R that
is large but finite. The equation models the evolution of certain nearly
planar flames that are unstable by linear analysis. A remarkable feature
is that this linear instability saturates, so that perturbations grow to a
certain size then stop growing. Although the solution stops growing, it
continues to evolve in a chaotic manner. The solution is chaotic both in
time (as the Lorenz system is) and in space, which is new. Systems with
spatial and temporal chaos are often called turbulent, by analogy with
turbulent water flows that have a lot of “structure” (the image at a given
time is a complicated function of x). This system has been used as a
model of other turbulent systems.

∂tu+ 1
2∂xu

2 = −∂2
xu− ∂4

xu . (53)

A simplified system that looks similar but has simpler behavior is the
Burgers Sivashinksy equation (or BS).

∂tu+ 1
2∂xu

2 = u+ ∂2
xu . (54)

For both equations, we assume that∫ R

0

u(x, t) dx = 0 . (55)

You can check that this is consistent with both evolution equations, which
means that if it is satisfied at time t = 0, then it is satisfied at later times
t > 0. This exercise asks you to solve the initial value problem for the KS
and BS equations and explore the behavior numerically. The numerical
solution will use a spectral method based on the DFT/FFT.

The steps below are sometimes vague. This forces you to decide what
makes sense. You must find good test problems and decide how to present
results. Please include plots and movies when they are helpful. You will
need to pay constant attention to the issue of real and complex arithmetic.
The code will be build in a sequence of steps, so you don’t need separate
codes for the individual parts.

30

Write in Python using vector instructions as much as possible to make the
code run faster. The posted code FourierInterpolation.py gives hints
how to use the Python FFT routines.

(a) The term 1
2∂xu

2 is the advection term. Linearizing the equation
means leaving this out, leaving a linear equation. Show that for KS
and for BS the linearized equations have many modes that are linearly
unstable if R is large. For a linear evolution equation ∂t = Au, an
unstable mode is an eigenfunction v with Av = λv and Re(λ) > 0 (the
right half plane). “Many” unstable modes means many linearly inde-
pendent modes. It happens that each eigenspace is one dimensional
(for real v), so “many unstable modes” also means many eigenvalues
in the right half plane. For this problem, if w = e2πiαx/R is an eigen-
function with real eigenvalue (it is, check), then v(x) = Re(w(x))
is a real eigenfunction with the same eigenvalue (check). Show that
(for large enough R), most solutions of the linearized equations grow
exponentially in time.

(b) Suppose U ∈ Rn is a discrete periodic sequence. Then V ∈ Rn is the
spectral derivative if

Vj = ∂xw(xj) ,

where ∆x = R/n, xj = j∆x, and w(x) is the trigonometric polyno-
mial that interpolates U at the sample points xj . We are interested
in the real spectral derivative of a real sequence U (you might have
to take the real part at some points). Write Python code to evaluate
the spectral derivative of a periodic sequence. Check that this is ex-
act for Uj = cos(2παxj/R) (to within rounding error). Check that
it has spectral accuracy for some other periodic and analytic func-
tions where it is not exact. Modify your code to compute second and
fourth spectral derivatives. Check that these are correct.

(c) Write a method of lines code for BS (that is easy to change to KS).
This code should consist of a Runge Kutta time stepper applied to
a semi-discrete approximation U̇ = F (U). Choose data with mean
zero, so

∑
j Uj(t) = 0. If you do the spectral differentiation right, if

this is true at time 0, then it remains exactly true (in exact arith-
metic) for t > 0. The function F should consist of spectral derivatives
for all partial derivatives, and U2

j for u2. It is best to a higher or-
der accurate Runge Kutta code, either the third order one from the
last homework or “the” four stage fourth order method (find it on
wikipedia). If you choose initial data that has period R but not any
smaller period, then the solution should converge as t → ∞ to a
steady state. Make a movie of this convergence. Check that the so-
lution is accurate to plotting accuracy by running with various values
of ∆t and ∆x. You will find that you need to reduce ∆t when you
reduce ∆x. Make plots of the discrete Fourier coefficients to see that
the solution is analytic. One way to do this (possibly not the best

31

way?) is to make a plot of

log
(∣∣∣Ûα∣∣∣)

and see whether this decreases linearly as α increases, for large α. The
steady states you get for large R should look like the one pictured
on page 300 of “Stability of the Kuramoto-Sivashinsky and Related
Systems” (Communications of Pure and Applied Math, vol. 47, pp
293-306). Experiment with n (the number of modes) as a function
of R that you need to resolve (compute accurately) the solution.
Explain the result in terms of the smallest feature size in the solution
for large R.

(d) Apply your code to the KS equation. For large R, if the initial data
has no symmetry beyond having period R (is not even or odd, does
not have a period smaller than R), then the solution should just be
chaotic in space and time (turbulent). Experiment to see what n
you need as a function of R. You should find that the BS equation
requires more modes than the KS equation for large R. See if you
can explain this by looking at the computed solutions.

(e) (the science of this problem). Solutions of KS for large R have fea-
tures in common with turbulence in high Reynolds number fluids. In
particular, there is an inertial range and a dissipation range in the
Fourier transform of the solution. The inertial range is wave numbers
below the Kolmogorov scale, which means |α| < αK in our notation

(since short lengths correspond to large wave numbers). Here, Ûα has
a simple behavior and does not decay exponentially. The dissipation
range is |α| > αK , where the Fourier coefficients decay exponen-
tially as they should for an analytic function. The Wikipedia page
https://en.wikipedia.org/wiki/Energy cascade has more. This
is an active area of research around the world and at the Courant
Institute. Make plots of the Fourier coefficients (

∣∣∣Ûα∣∣∣)for large R.

Look for a transition from one kind of decay (or lack of decay) to
exponential decay. It is not a precise transition, but can be seen in
plots. How does the transition point depend on R? You may have
to do some big runs to see this clearly.

32

	Motivation
	The DFT, discrete Fourier transform
	Discrete and continuous Fourier modes
	Sampling and aliasing, interpolation and differentiation
	Wave number, feature size, resolution, artifacts
	Decay of Fourier coefficients

	Time dependent fields
	Simple diffusion in one dimension
	The wave equation in one dimension

	Exercises

