
Numerical Methods II, Spring 2018,

Courant Institute, New York University, Jonathan Goodman

http://www.math.nyu.edu/faculty/goodman/teaching/NumericalMethodsII2018/index.html

Section 3
ODE, Linear Multistep methods

1 Motivation
sec:Intro

We come back to the topic of Section 1 of the notes, time stepping methods to
compute (approximate) solutions of

ẋ = f(x) . (1) ode

Runge Kutta methods estimate x(t + ∆t) using only the (approximate) value
of x(t). Linear multistep methods estimate x(t + ∆t) using x(t), and earlier
values x(t − ∆t), . . ., and f(x(t)), f(x(t − ∆t)), The methods are called
linear because the estimate of x(t + ∆t) is a linear function of this data. By
contrast, the Runge Kutta estimate of x(t + ∆t) is a nonlinear function of its
data x(t). The nonlinearity in Runge Kutta comes from applying the nonlinear
function f repeatedly. Runge Kutta methods achieve high order of accuracy
using many stages, which generate the intermediate values kj . Linear multistep
methods achieve high order of accuracy using previously computed solution
values xk ≈ x(tk), and the corresponding function values fk = f(xk).

An advantage of linear multistep methods is that the step from xn to xn+1

requires just one evaluation of f , regardless of the order of accuracy. They
achieve a high order of accuracy using already computed older values of x and
f . With Runge Kutta methods, the number of f evaluations per time step
increases with the order of accuracy. But the use of old values creates problems
in some applications, as we will see.

Linear multistep methods have new features that were not present in Runge
Kutta methods. One is the possibility of non-convergence through instability.
A Runge Kutta method that should have order p converges with error of order
∆tp. A linear multistep method can have order p and yet “explode” – go to
infinity at a fixed time as ∆t → 0. Stability is one of the most subtle and
technical parts of numerical solution of differential equations. Unstable modes
are usually spurious. Spurious modes are modes that exist in the numerical
approximation but not in the physical system itself. A linear multistep method
with r lags has r modes for every physical one (we will see this). Of these,
at least r − 1 are spurious. Spurious modes ruin a computation if they are
unstable. Stability analysis of spurious modes is mathematical, not physical,
because spurious modes are not physical.

Another new thing in linear multistep methods is the Lax stability and con-
sistency convergence argument. This appeared in a simple way in the conver-
gence proof for Runge Kutta methods. But the version used to prove conver-
gence of linear multistep methods is more general and more like the argument
used for convergence proofs with partial differential equations.

1

2 The methods

A linear multistep method with s lags is defined by the recurrence relation

s∑
j=0

αjxn+j = ∆t

s∑
j=0

βjfn+j = ∆t

s∑
j=0

βjf(xn+j) . (2) lmm

This is used to determine xn+s given xn+j for j < s. Therefore we require that
αs 6= 0. We divide through by αs to get an equivalent relation with α0 = 1.
By convention, we always assume αs = 1. The method is explicit if βs = 0 and
implicit if βs 6= 0. If the method is explicit, we may take a time step by first
computing the new x then computing the new f :

xn+s = −
s−1∑
j=0

αjxn+j + ∆t

s−1∑
j=0

βjfn+j ,

fn+s = f(xn+s) .

If the method is implicit, we may take a time step as follows

y = −
s−1∑
j=0

αjxn+j +

s−1∑
j=0

βjfn+j ,

solve for xn+s xn+s −∆tβsf(xn+s) = y .

This formula assumes that the method has a fixed time step ∆t which is
used for all steps. For convenience, we assume that time starts at t = 0, so

tn = n∆t .

We assume that
fn = f(xn) .

To take a time step, you first evaluate xn+1 using the linear expression on the
right of (

lmm
2). Then you evaluate fn+1 = f(xn+1). For implicit methods, the

sums on the right runs from k = −1 rather than from k = 0. This means that
the unknown xn+1 appears on the right and left sides. In this case, you have to
solve a system of equations to find xn+1.

The forward Euler method corresponds to r = 1 (one step), and a0 = 1 and
b0 = 1. These values in (

lmm
2) give

xn+1 = xn + ∆tf(xn) .

The leapfrog scheme has r = 2, a0 = 0, a1 = 1, b0 = 2, and b1 = 0. These values
give

xn+1 = xn−1 + 2∆tf(xn) . (3) lf

This method is derived from the second order centered difference approximation
to ẋ(tn):

ẋ(tn) =
x(tn + ∆t)− x(tn −∆t)

2∆t
+O(∆t2) .

2

You find the leapfrog scheme (
lf
3) by substitutions

ẋ(tn) = f(x(tn)) ≈ f(xn) ,

x(tn + ∆t) = x(tn+1) ≈ xn+1 ,

x(tn −∆t) = x(tn−1) ≈ xn−1 .

We will see that leapfrog is second order accurate, while forward Euler is just
first order.

There are several commonly used families of methods, with the order of
accuracy depending on the number of lags. The methods in these families set
either most of the ak to zero (Adams and Nyström methods) or most of the bk
to zero (BDF methods). You might think that using the most general formula
with all ak and bk would lead to higher order of accuracy, and it does. But the
Dahlquist barrier theorem implies that these methods are unstable. A stable
method with r lags cannot have order of accuracy more than r. The Adams
and BDF methods already achieve these orders of accuracy.

2.1 Adams methods

Adams methods are derived as approximations to the formula

x(tn+1) = x(tn) +

∫ tn+1

tn

f(x(t)) dt . (4) if

They approximate the integral on the right as the integral of some interpolating
polynomial. Different Adams methods result from different interpolation for-
mulas. They all have a0 = 1 and ak = 0 for k 6= 0. They use only one lag in x.
Higher order Adams methods use higher order interpolation using more old f
values. They have more lags, a larger r, by having more bk 6= 0.

The Adams Bashforth family approximates f(x(t)) by an interpolating poly-
nomial gk(t) that has degree r − 1 and satisfies the interpolation conditions

gn(tn−k) = f(xn−k) = fk , for 0 ≤ k ≤ r − 1. (5) bif

The method is

xn+1 = xn +

∫ tn+1

tn

gn(t) dt . (6) ab

You figure out the formulas for bk by using polynomial interpolation formulas
(Lagrange or Newton or other) and calculating the interpolation. It is straight-
forward but can involve a lot of not very interesting calculation.

For r = 1, the interpolating polynomial has degree r − 1 = 0, so it is a
constant. The single interpolation condition is gn = fn, which determines the
constant. The integral in (

ab
6) is∫ tn+1

tn

fn dt = ∆tfn .

3

Therefore, the method (
ab
6) is simply

xn+1 = xn + ∆tf(xn) ,

which is the forward Euler method.
The next order Adams Bashforth method has r = 2. Here, gn is a degree

r − 1 = 1 polynomial (linear) that may be written in the form

gn(t) = αn + βn(t− tn) .

It satisfies the interpolation conditions

gn(tn) = fn , gn(tn−1) = fn−1 .

The first interpolation condition gives

αn = fn .

The second interpolation condition then becomes

fn + βn(tn−1 − tn) = fn−1 .

Therefore

βn =
fn − fn−1

tn − tn−1
=
fn − fn−1

∆t
.

You get

gn(t) = fn +
fn − fn−1

∆t
(t− tn) .

You should1 recognize this as the Newton form of the interpolating polynomial.
Finally,∫ tn+∆t

tn

(
fn +

fn − fn−1

∆t
(t− tn)

)
dt = ∆tfn +

∆t2

2

(
fn +

fn − fn−1

∆t

)
= ∆t

(
3

2
fn −

1

2
fn−1

)
.

The second order Adams Bashforth method is

xn+1 = xn + ∆t

(
3

2
f(xn)− 1

2
f(xn−1)

)
.

This fits the general linear multistep framework (
lmm
2) with

r = 2

a0 = 1 , a1 = 0

b0 =
3

2
, b1 = −1

2
.

1If you are not familiar with the Newton form of the interpolating polynomial, the elegant
discussion in Numerical Methods by G. Dahlquist and Å. Björk is recommended enthusuasti-
cally.

4

We will see that this method is stable and second order accurate. The Adams
Bashforth method of order r is stable (this will be obvious) and has order of
accuracy r (this is an exercise, but is also “obvious” once you’ve seen it).

Adams Moulton methods are implicit methods where gn(t) is the polynomial
that interpolates also fn+1 = f(xn+1) at time tn+1. The lowest order Adams
Moulton method takes gn to be the constant “polynomial” that interpolates at
time tn+1, so gn(t) = f(xn+1) for all t. The Adams integral is∫ tn+1

tn

gn(t) dt = ∆tf(xn+1) .

The method is
xn+1 = xn + ∆tf(xn+1) . (7) be

This is the backward Euler method, which is first order accurate. The backward
Euler time step algorithm to calculate xn+1 is:

find xn+1 so that xn+1 −∆tf(xn+1) = xn .

For the second order Adams Moulton method, gn(t) is the linear polynomial
that interpolates at times tn and tn+1. As before, the interpolating linear poly-
nomial may be written in the form gn(t) = αn + βn(t− tn). The interpolation
condition gn(tn) = fn gives αn = fn, as before. The interpolation condition
gn(tn+1) = f(xn+1) gives

βn =
f(xn+1)− fn

∆t
.

The Adams integral is∫ tn+1

tn

gn(t) dt = ∆tfn +
∆t2

2

f(xn+1)− fn
∆t

= ∆t

(
1

2
f(xn+1) +

1

2
fn

)
.

The second order Adams Moulton method is

xn+1 = xn +
∆t

2
f(xn+1) +

∆t

2
fn . (8) am2

To take a time step, the computer must

find xn+1 so that xn+1 −
∆t

2
f(xn+1) = xn +

∆t

2
fn .

This method is sometimes called the trapezoid rule, because it comes from the
trapezoid rule integral formula∫ tn+1

tn

f(x(t)) dt ≈ ∆t

2
(f(x(tn+1)) + f(x(tn))) .

5

The method may be written in a symmetrical way as

xn+1 − xn
∆t

=
1

2
(f(xn+1) + f(xn)) . (9) tr

We will soon see that the symmetry makes the second order accuracy obvious.
The left side is a second order accurate approximation to ẋ(tn + ∆t/2), the
derivative at the midpoint in time. The right side is a second order approxima-
tion to f(x(tn+∆t/2)). Therefore the differential equation ẋ = f(x) is satisfied
to second order at time tn + ∆t/2.

2.2 Differentiation formulas

These methods achieve high order of accuracy using high order accurate finite
difference approximations to ẋ. For example, consider the first order one sided
approximation

ẋ(t) =
x(t+ ∆t)− x(t)

∆t
+O(∆t) .

If we take t = tn, then t+ ∆t = tn+1 and this becomes

ẋ(tn) ≈ xn+1 − xn
∆t

.

The differential equation turns into the approximation

xn+1 − xn
∆t

= f(xn) .

This is yet another derivation of the forward Euler method.
The second order centered approximation to ẋ(t) is

ẋ(t) =
x(t+ ∆t)− x(t−∆t)

2∆t
+O(∆t2) .

This leads to the approximation

xn+1 − xn−1

2∆t
= f(xn) .

This is the leap frog method (
lf
3). It is second order accurate.

The third order accurate method of this type uses a third order finite differ-
ence approximation to ẋ(tn). We get an explicit method if the approximation
to ẋ(t) uses the values x(t+ ∆t), x(t), x(t−∆t) and x(t− 2∆t). Some algebra
will turn this into a formula for xn+1 in terms of xn, xn−1, xn−2, and fn. Cal-
culating the coefficients is straightforward but possibly time consuming. The
method has r = 3, non-zero a0, a1, and a2, but b1 = 0 and b1 = b2 = 0.

The backward differentiation formula, or BDF, methods are more commonly
used methods of this type. They use f(xn+1) instead of f(xn). In other words,
they apply the differential equation at time tn+1 rather than at time tn. This

6

makes the methods implicit, which is the reason for using them. The first order
two point backward differentiation formula is

ẋ(t) =
x(t)− x(t−∆t)

∆t
+O(∆t) .

This implies that if ẋ(t) = f(x(t)), then

x(tn+1)− x(tn)

∆t
= f(x(tn+1)) +O(∆t) . (10) ber

The time stepping method is derived from this by replacing x(tn) with the
approximation xn and ignoring the O(∆t) error term:

xn+1 − xn
∆t

= f(xn+1) .

This is yet another way to derive the backward Euler method (
be
7).

The higher order BDF methods are based on higher order one sided difference
approximations. The second order method uses the three point second order
approximation

ẋ(t) =
αx(t) + βx(t−∆t) + γx(t− 2∆t)

∆t
+O(∆t2) . (11) 3pt

We find the coefficients using elementary numerical analysis – Taylor series
calculations. The notation is simplified by leaving out the argument t, so x
means x(t), ẋ means ẋ(t), etc:

αx(t) + βx(t−∆t) + γx(t− 2∆t)

∆t

=
αx+ β

(
x−∆tẋ+ 1

2∆t2ẍ+O(∆t3)
)

+ γ
(
x− 2∆tẋ+ 4

2∆t2ẍ+O(∆t3)
)

∆t

=
1

∆t
(α+ β + γ) + ẋ (−β − 2γ) + ∆tẍ

(
1

2
β + 2γ

)
+O(∆t2) .

This achieves the O(∆t2) approximation rate in (
3pt
11) if the following equations

are satisfied:

0 = α+ β + γ (a)

1 = −β − 2γ (b)

0 =
1

2
β + 2γ (c)

Equation (c) is satisfied if β = −4γ. Equation (b) then becomes 1 = 2γ, or
γ = 1

2 and then β = −2. Equation (a) then reduces to 0 = α− 2 + 1
2 , or α = 3

2 .
The finite difference approximation (

3pt
11) is now

ẋ(t) =
3
2x(t)− 2x(t−∆t) + 1

2x(t− 2∆t)

∆t
+O(∆t2) . (12) 3ptn

7

With the differential equation applied at time tn+1, this gives

3
2x(tn+1)− 2x(tn) + 1

2x(tn−1)

∆t
= f(x(tn+1)) +O(∆t2) .

This is equivalent to

x(tn+1)− 2

3
∆tf(x(tn+1)) =

4

3
x(tn)− 1

3
x(tn−1) +O(∆t3) .

The second order three step BDF method based on this formula is

xn+1 −
2

3
∆tf(xn+1) =

4

3
xn −

1

3
xn−1 . (13) bdf2

The preceding paragraph illustrates the derivation of new computational
methods. It starts with a general principle, then descends to a mess of arith-
metical calculation. The final method (

bdf2
13) has numerical coefficients (− 2

3 , etc.)
that have no physical explanation. But the method with this extra complexity
and these specific coefficients is much more accurate and useful than the simple
“physical” method of the same type (

be
7).

3 Order of accuracy

The order of accuracy conditions for linear multistep methods are simpler than
the conditions for Runge Kutta methods. We will see that it is easier to create
families of high order linear multistep methods of specific kinds, such as Adams
methods (αk mostly zero), and BDF formulas (βk = 0 for k < r).

If a method is stable, its order of accuracy is determined by its local trunca-
tion error, or residual. The order of accuracy is the largest exponent p so that
(with technical conditions added below)

|xn − x(tn)| ≤ Ct∆tp if tn ≤ t . (14) oa

The left side is the difference between the computed approximation and the
actual solution. The right side is order ∆tp. The constant Ct can grow with t,
but it provides an error bound that holds for all times tn ≤ t. For a fixed t, it
is possible that n→∞ as ∆t→ 0 with tn ≤ t. That is, the bound should hold
at a specified physical time, not a specified number of time steps. The number
of time steps needed to reach a given physical time goes to infinity as ∆t→ 0.

The definition and reasoning around the residual will be familiar from Runge
Kutta methods. The residual is the amount by which the actual solution to the
differential equation fails to satisfy the difference equations. The actual solution
at time tn is x(tn). We define the residual, rn, with a factor of ∆t taken out.
For linear multistep methods (

lmm
2), rn is defined by plugging the exact values

x(tj) and f(x(tn+j)) into the time step formula (
lmm
2):

s∑
j=0

αjx(tn+j) = ∆t

s∑
j=0

βjf(x(tn+j)) + ∆t rn . (15) lmmr

8

We expand x and f about tn with Taylor series:

x(tn+j) = x(tn + j∆t)

= x(tn) + j∆tẋ(tn) + 1
2j

2∆t2ẍ(tn) + · · ·

At this point, when we were doing Runge Kutta methods, we used ẋ = f(x)
to express ẍ in terms of x and f . Here, it is better to express f and its time
derivatives as time derivatives of x(t), so we use f(x(t)) = ẋ(t), d

dtf(x(t)) =
d
dt ẋ(t) = ẍ(t), etc: Instead, we write the derivatives of f in terms of derivatives
of x. That is the last line in this calculation:

f(x(tn+j)) = f(x(tn + j∆t))

= f(x(tn)) + ∆t
d

dt
f(x(tn)) + 1

2j
2∆t2

d2

dt2
f(x(tn)) + · · ·

= ẋ(tn) + j∆tẍ(tn) + 1
2j

2∆t2
d3

dt3
x(tn) + · · · .

We substitute these expansions into the time step formula (]reflmmr) and
collect terms order by order to find the accuracy conditions. The largest terms
are the ones without ∆t (they have ∆t0). Collecting these gives

s∑
j=0

αjx(tn) = 0 .

The condition on the linear multistep coefficients is

s∑
j=0

αj = 0 . (16) lmm0

Next we calculate and equate the terms of order ∆t. The residual term ∆trn
is left out because rn itself is supposed to be at least order ∆t:

s∑
j=0

j∆tαj ẋ(tn) = ∆t

s∑
j=0

βj ẋ(tn) .

It is remarkable here that we have the same ẋ(tn) throughout, which cancels.
The condition on the coefficients is

s∑
j=0

jαj =

s∑
j=0

βj . (17) lmm1

If these two conditions (
lmm0
16) and (

lmm1
17) are satisfied, then the linear multistep

method is at least first order accurate in the sense that the residual is order ∆t
or smaller.

9

If we assume that rn is order ∆t2 or smaller and equate terms of order ∆t,
we get the condition for second order accuracy. Keeping all ∆t2 terms gives

s∑
j=0

1
2j

2αj∆t
2ẍ(tn) = ∆t

s∑
j=0

βjj∆tẍ(tn) .

The condition for second order accuracy is

1
2

s∑
j=0

j2αj =

s∑
j=0

jβj . (18) lmm2

The terms of order ∆tk are (check this please)

1

k!
∆tk

s∑
j=0

jkαj
dk

dtk
x(tn) = ∆t

1

(k − 1)!

s∑
j=0

jk−1∆tk−1βj
dk

dtk
x(tn) .

The resulting accuracy condition is

1

k

s∑
j=0

jkαj =

s∑
j=0

jk−1βj . (19) lmmk

The conclusion is that the linear multistep method has order of accuracy p if
(
lmm0
16) and the conditions (

lmmk
19) are satisfied up to k = p. You will see (exercises)

that these conditions are easy to apply.
From here on we assume that αs = 0. If αs 6= 0, we can get an equivalent

formula by dividing through by αs. It’s reasonable to assume that αs 6= 0
because the point of a linear multistep method is to compute xn+s as a function
of previously computed stuff.

There is an elegant formulation of the accuracy conditions in terms of two
associated polynomials (note that αs = 1 as we said it would be)

ρ(z) = zs + αs−1z
s−1 + · · ·+ α1z + α0 (20) rho

σ(z) = βszs + · · ·+ β0 . (21) sig

The accuracy conditions are equivalent to

ρ(e∆t) = ∆tσ(e∆t) +O(∆tp+1) . (22) rsp

For example, if you set ∆t = 0, you get the condition ρ(1) = 0, which is the
same as the first accuracy condition (

lmm0
16). You get the rest of the conditions

(
lmmk
19) by expanding the exponential. If z = e∆t, then

zj = 1 + j∆t+ 1
2j

2∆t2 + · · · .

The equation (
rsp
22) becomes

s∑
j=0

αj
(
1 + j∆t+ 1

2j
2∆t2 + · · ·

)
= ∆t

s∑
j=0

βj
(
1 + j∆t+ 1

2j
2∆t2 + · · ·

)
s∑
j=0

αj + ∆t

s∑
j=0

jαj + 1
2∆t2

s∑
j=0

j2αj + · · · = ∆t

s∑
j=0

βj + ∆t2
s∑
j=0

jβj + · · ·

10

Equating coefficients of ∆tk on both sides gives the accuracy conditions (
lmmk
19).

4 Stability

If a fancy high order method does not work, it is likely because the method is
unstable. Exercise

HighOrderFail
2 has an example, which is an explicit third order lag s = 2

linear multistep method. The s = 2 Adams Bashforth method is only second
order. The “too good to be true” third order method does not work because it
is unstable.

The two stability concepts in this section are zero stability and stability
region. A method is zero stable if it is stable (precise definition below) for the
differential equation ẋ = 0. This is ẋ = f(x) in one dimension with f(x) = 0.
The convergence theorem of Dahlquist is that if a method is zero stable then
it converges with accuracy p as ∆t → 0 up to a fixed time T . We proved this
for Runge Kutta methods, as any one step method is zero stable. For f = 0,
no matter how many stages there are you get xn+1 = xn. Linear multi-step
methods are more complicated if many of the αj are not zero. Zero stability
depends on the αj but not the βj .

The stability region of a linear multi-step method is the set of µ ∈ C for
which the method is stable with ∆t = 1 for

ẋ = µx . (23) De

As a joke, people sometimes call the test equation (
De
23) the Dahlquist equation.

If you apply the linear multistep method with ∆t = 0 to the Dahlquist equation,
you get the linear recurrence relation

s∑
j=0

(αj − µβj)xn+j . (24) lrr

The stability region is a set E ⊆ C. A complex number µ is in the stability
region if the recurrence relation (

lrr
24) is stable. It is necessary to consider complex

numbers µ even when the differential equation you actually want to solve (not
the Dahlquist equation) is entirely real. A method is zero stable if 0 ∈ E.

Stability regions are important for designing time stepping methods for par-
tial differential equations. A linear partial differential equation for a time de-
pendent field u(x, t) may be written abstractly as ∂tu = Lu, where L is a
differential operator that involves x derivatives but not t derivatives. A semi-
discrete approximation is a large ODE system U̇ = AU . You get a fully discrete
approximation by applying a time stepping method to the semi-discrete ODE
system. The dimension of U and the matrix A depend on the space discretiza-
tion size ∆x. If the time stepping method is zero stable, it will converge to the
solution of U̇ = AU , any fixed ∆x, as ∆t → 0. The trouble is (more detail
below) that if ∆x is small than ∆t may have to be very very small in order
to have a stable computation. The zero stability analysis is a sort of “double
limit” where ∆x → 0 on the outside and ∆t → 0 on the inside. The stability

11

region analysis can tell us a relation between ∆t and ∆x as they go to zero at
the same time so that the numerical solution converges to the time dependent
field u(x, t).

A general linear recurrence relation takes the form

s∑
j=0

γjxn+j = 0 . (25) glrr

We assume that γs 6= 0, so that the recurrence relation is “genuinely” of length
s. Given γs 6= 0 we may assume γs = 1 when convenient. The coefficients γj
and the sequence xn may be complex. The xj may be complex even when the
γj are real. We suppose that the sequence xn is defined for n ≥ 0. The first
numbers x0, x1, . . . , xs−1 are the initial conditions. Once these are given, then
xs, xs+1, and the rest are determined by the recurrence relation. For example,
if we put n = 0 in (

glrr
25), we can solve for xs in terms of the earlier values. The

space of infinite sequences that satisfy (
glrr
25) is a linear vector space of dimension

s.
A linear recurrence is stable if every solution (the infinite sequence x0, x1, . . .)

is bounded. More precisely, for any sequence xn defined for n ≥ 0 that satisfies
(
glrr
25) there is a constant C so that |xn| ≤ C for all n. In this definition we do

not say how C depends on the sequence, only that each sequence has a C. The
characteristic polynomial for the recurrence relation is

f(z) =

s∑
j=0

γjz
j . (26) cp

The basic stability theorem is: The recurrence relation is stable if and only if
its characteristic polynomial satisfies the root condition. A root is a complex
number z so that f(z) = 0. The root condition has two parts. First, all roots
must be in the unit disk of the complex plane: if f(z) = 0 then |z| ≤ 1. Second,
a root on the unit circle must be simple: if |z| = 1 and f(z) = 0, then f ′(z) 6= 0.
If f(z∗) = 0 and f ′(z∗) = 0 than z∗ is (at least) a double root. That is because
we can write f(z) = (z− z∗)2g(z) where g(z) is a polynomial of degree s− 2. If
z∗ is a simple root, then f(z) = (z − z∗)g(z) where g(z∗) 6= 0.

For example, consider the recurrence

xn+2 −
3

2
xn+1 +

1

2
xn = 0 .

The characteristic polynomial is f(z) = z2 − 3
2z+ 1

2 = (z− 1)(z− 1
2 . The roots

are z = 1 and z = 1
2 . Both roots are in the unit disk and the root on the unit

circle is simple. The recurrence

xn+2 +
1

4
xn = 0

has characteristic polynomial f(z) = z2 + 1
4 . The roots are z = i

2 and z = −i
2 .

These have |z| = 1
2 ≤ 1, so this recurrence satisfies the root condition. The

12

recurrence
xn+2 + xn+1 − 2xn = 0

has characteristic polynomial f(z) = z2 + z = 2. The roots are z = 1, which is
fine, and z = −2, which is outside the unit disk. This does not satisfy the root
condition. The recurrence

xn+3 − xn+2 − xn+1 + xn = 0

has characteristic polynomial f(z) = z3 − z2 − z + 1 = (z − 1)2(z + 1). This
is a simple root at z = −1 and a double root at z = 1. Because of the double
root, this recurrence does not satisfy the root condition. The sequence xn = n
satisfies the recurrence relation, and is not bounded.

Here is a proof of the stability theorem (stability ⇐⇒ root condition). But
this stability theorem is not enough to prove the Dahlquist convergence theorem
that is our actual goal. For that, we will use the longer proof of the stronger
theorem in the next subsection. We already said that the space of solution
sequences is a complex vector space S of dimension s. We will show two things.
First, if the root condition is violated then there is a sequence x ∈ S with
|xn| → ∞ as n→∞ (an unbounded sequence). Second, if the root condition is
satisfied then there is a basis vα ∈ S consisting of bounded sequences.

Both parts are proven by showing that the solution of the recurrence relation
is expressed in terms of roots of the characteristic polynomial. If f(z) = 0 then
xn = zn satisfies the recurrence (

glrr
25). If you substitute in xn = zn, you can

calculate
s∑
j=0

γjz
n+j = zn

 s∑
j=0

γjz
j

 = znf(z) = 0 .

If |z| = r > 1, then this solution sequence has |xn| = |zn| = rn. Thus, if z
is a root outside the unit disk, the corresponding sequence grows exponentially
with n. Now suppose z is a root of multiplicity two or higher, so f(z) = 0 and
f ′(z) = 0. Then the derivative sequence xn = nzn−1 satisfies the recurrence
relation. You can see this with a calculation:

s∑
j=0

γjxn+j =

s∑
j=0

γj(n+ j)zn+j−1

= n

s∑
j=0

γjz
n+j−1 +

s∑
j=0

γjjz
n+j−1

= nzn−1
s∑
j=0

γjz
j + zn

s∑
j=0

γjjz
j−1

= nzn−1f(z) + znf ′(z)

= 0 .

If z is a root on the unit circle with f ′(z) = 0, then this sequence has |xn| =
n
∣∣zn−1

∣∣ = n, which is unbounded.

13

For the second part (root condition =⇒ stability), start by noting that if
|z| < 1 then xn = nkzn is bounded, and if |z| = 1 then xn = zn is bounded.
Let zα be the roots, and suppose zk has multiplicity kα. There are kα solution
sequences for zα, which correspond to derivatives

xn =

(
d

dz

)k
zn , k = 0, . . . ,m− 1; . (27) pp

For m = 1, this is the sequence we already used xn = nzn−1. The sequence for
m = 2 is xn = n(n − 1)zn−2. If f(z) = 0 and f ′(z) = 0 and f ′′(z) = 0, then
this satisfies the recurrence. You can see this through the calculation

s∑
j=0

γj

(
d

dz

)2

zn+j =

(
d

dz

)2 s∑
j=0

γjz
n+j

=

(
d

dz

)2
zn s∑

j=0

γjz
j


=

(
d

dz

)2

(znf(z))

= n(n− 1)zn−2f(z) + 2nzn−1f ′(z) + znf ′′(z) .

With our hypotheses, the terms on the right are all zero. This argument works
for higher derivatives. We conclude that if z is a root of multiplicity m, then
there are m solutions of the form (

pp
27). In this way, we construct s solutions for

a linear recurrence of order s. These particular solutions are all bounded if the
root condition is satisfied. In order to prove that all solutions are bounded, we
need to show that the particular solutions are linearly independent and that a
linear combination of bounded solutions is a bounded solution.

The linear combination part is easy. Suppose vα ∈ S for α = 1, . . . , s are
bounded solutions and

xn =

s∑
α=1

aαvα,n .

Suppose also that |vα,n| ≤ Cα for all n ≥ 0. Then (everything is complex,
including the coefficients aα)

|xn| ≤
s∑

α=1

|aα|Cα = C , for all n ≥ 0 .

The sequence xn is also bounded.
The linear independence part is easy too, but involves more machinery. One

way to see it starts from the Vandermonde determinant formula for any s com-

14

plex numbers

det


1 z1 · · · zs−1

1

1 z2 zs−1
2

...
...

...
1 zs zs−1

s

 = V (z1, . . . , zs) =
∏
j<k

(zk − zj) .

The matrix on the left is the Vandermonde matrix. There are many proofs
of this formula (see e.g., wikipedia or any good textbook on abstract algebra).
One way starts by noting that the determinant is a polynomial in the variables
zk (by general formula for determinant of a matrix). If we fix z2, . . . , zs, then
we can look at V as a polynomial in the single variable z1. This polynomial
has degree s − 1 and is equal to zero when z1 = zk for any k > 1, because the
Vandermonde matrix is singular of two rows are equal. Therefore, we may write

V (z1, . . . , zs) =

(∏
1<k

(zk − z1)

)
W (z2, . . . , zs) .

We can apply this reasoning also to see that

W (z2, . . . zs) =

(∏
2<k

(zk − z2)

)
X(z3, . . . , zs)

V (z1, . . . , zs) =

(∏
1<k

(zk − z1)

)(∏
2<k

(zk − z2)

)
X(z3, . . . , zs) .

You can continue in this way to prove the Vandermonde formula up to a con-
stant, which is not zero. There are various ways of showing the constant is 1,
but that doesn’t matter for our purpose here. Our purpose is to show that if
the zk are distinct, then the sequences vk,n = znk are linearly independent.

What about the case of a double root? For example, suppose z1 = z2 is a
double root and the other zk are distinct. We want to show that the sequences
v1,n = zn1 , and v2,n = nzn−1

1 , and vk,n = znk for k > 2 are s linearly independent
sequences. The corresponding determinant is

det


1 z1 · · · zs−1

1

0 1 2z1 (s− 1)zs−2
1

1 z3 · · · zs−1
3

...
...

...
1 zs zs−1

s

 = D(z1, z3, . . . , zs) .

Why is this determinant not equal to zero? The Vandermonde determinant
V (z1, z2, . . .) is a polynomial of degree s− 1 in the variable z2. This polynomial
has roots at z2 = z1 and z2 = zk for k > 2. By hypothesis, these s − 1 roots
are distinct. Therefore they are simple roots. Because the roots are simple, the

15

derivative does not vanish at the root:

∂z2V (z1, z2, . . . , zs)

∣∣∣∣∣
z2=z1

6= 0 .

But the determinant D is exactly the left side here, so D 6= 0 if z1 6= zk for
k > 2 and the zk are distinct. I think this is as much about Vandermonde
determinants and algebra as most numerical analysis people have the patience
for.

4.1 Root/eigenvalue stability and Lyapunov stability

This section is pretty technical. Unlike the Vandermonde technicalities above,
these are central to big parts of theoretical numerical analysis. So the material
in this subsection is worth a lot of time and effort.

There are two things here. The first is to reformulate and generalize the
discussion of one variable recurrence relations and characteristic polynomials to
matrix/vector recurrences with just one lag. From the scalar sequence xn we
define a sequence of vectors ~xn ∈ Cs and an s× s complex matrix A so that

~xn+1 = A~xn . (28) mr

The sequence is bounded if there is a C so that

‖~xn‖ ≤ C , for all n > 0 . (29) vsb

The root condition for the characteristic polynomial is generalized to a non-
degeneracy condition for eigenvalues. Suppose z is an eigenvalue of A and ~v 6= 0
is an eigenvector:

z~v = A~v .

The root condition is that either |z| < 1 or |z| = 1 and there is no Jordan
structure (defined below) for z.

One way to understand the “no Jordan structure” condition is to look at a
Jordan block with eigenvalue z

A =

(
z t
0 z

)
Consider the vectors

v1 =

(
1
0

)
, v1 =

(
0
1

)
.

Then Av1 = zv1 so v1 is a genuine eigenvector with eigenvalue z. But Av2 =
zv2+tv1. If t 6= 0, then v2 is a “generalized” eigenvector (not an eigenvector, but
related to one) with eigenvalue z. Only if t = 0 is v2 a true eigenvector. If t 6= 0
we say that A has Jordan structure. There is a two dimensional space. The
eigenvalue z has multiplicity two. But there is only one linearly independent
eigenvector.

16

Here is a precise statement of the “root condition” for a matrix/vector re-
currence (

mr
28). The characteristic polynomial is

f(z) = det(A− zI) .

Let z ∈ C be an eigenvector of A with multiplicity m. Then either |z| < 1 or
there are m linearly independent eigenvectors of A with eigenvalue z. If A and
~xn comes from a scalar recurrence relation (

glrr
25), then any root of multiplicity

m > 1 has Jordan structure, so the two root conditions are the same. But
other matrix recurrences can satisfy the root condition even with multiplicity
m > 1. When we talk about vector recurrences we often drop the arrow and
write xn ∈ Cs instead of ~xn ∈ Cs.

The second thing in this subsection, the hard thing, is the symmetrizer
matrix M . This is an s× s positive definite hermitian matrix so that if xn+1 =
Axn, then

x∗n+1Mxn+1 ≤ x∗nMxn . (30) Md

A complex matrix is hermitian if it is equal to its complex conjugate:

M∗ = M , Mjk = Mkj .

If M is hermitian, then x∗Mx is real for any complex vector x ∈ Cs. A matrix
(hermitian or not) is positive definite if

x∗Mx > 0 , if x 6= 0 .

This subsection pretty technical. An efficient discussion is one that uses
a small number of words. The discussion here is not efficient in that sense.
Instead it wanders toward the conclusion so that you can see how you can think
about this material. When you’re done, you will see that you can construct
the symmetrizer M directly. But how would anyone think of that construction
without playing with examples?

Roughly speaking, stability means that the sequence xn remains bounded2

as n → ∞. A recurrence relation can be stable in this sense but still allow
sequences to grow. That growth must saturate, which means there is a limit
to how much growth there can be. Lyapunov stability is the seemingly stronger
fact that there is a Lyapunov function that does not grow at all and controls
the size of xn. The root condition is what you need to know that solutions of
recurrences remain bounded. If a recurrence satisfies the root condition, then
(we will see) the sequence has a Lyapunov function. The convergence proof for
linear multistep methods uses the Lyapunov function to show that even with
the scheme is stable (in some sense) even with ∆tβjf(xn+j) terms that are not
part of the definition of zero stability. If you start with a zero stable recurrence
and add terms that are order ∆t, the new recurrence grows by at most order ∆t
per time step. The convergence proof for Runge Kutta methods allowed order
∆t growth per time step.

2A sequence x0, x1, . . . is bounded if there is some upper bound B < ∞ so that |xn| ≤ B
for all n. A sequence of vectors is bounded if ‖~xn‖ ≤ B (for some B <∞).

17

The stability condition is that the characteristic polynomial ρ has no roots
outside the unit circle and that all roots on the unit circle are simple. However,
roots with |z| < 1 may have higher multiplicity. This means that there are so-
lutions of the recurrence relation (

lmm0
16) that have the form xn = npzn, depending

on the multiplicity of z. The magnitude is nprn, where r < 1. Solutions like
this are bounded in the sense that there is an M with |xn| ≤ M for all n ≥ 0.
If r is close to 1, then nprn can grow a lot before it starts to decay (an easy
calculus problem).

A more general view of recurrence relations makes it easier to find Lyapunov
functions. Instead of a scalar s term recurrence relation, we consider a one-lag
vector recurrence. Define a vector ~xn ∈ Cs as

~xn =


xn
xn+1

...
xn+s−1


The vector recurrence is ~xn+1 = A~xn. The matrix A is the companion matrix for
the recurrence relation. We find the entries of A by writing the vector recurrence
out in components:


xn+1

xn+2

...
xn+s

 =



0 1 0 · · · 0
0 0 1 0 · · · 0

...
. . .

...

1
−α0 −α1 · · · −αs−1




xn
xn+1

...
xn+s−1

 .

The first row of A equates xn+1 on the left with xn+1 on the right. The second
to last row equates xn+s−1 on the left with xn+s−1 on the right. The bottom
row codes the recurrence relation (

lmm0
16) in the form (with the convention that

αs = 1)
xn+s = −α0xn − · · · − αs−1xn+s−1 .

You may see the companion matrix written in different but equivalent ways,
such as the −αj on the top row, or the transpose of this A with the −αj as the
last column.

Properties of s lag scalar recurrence relation have analogues for one lag vector
recurrences. The scalar sequence xn is bounded if and only if norms of the vector
sequence ‖~xn‖ are bounded. It doesn’t matter which vector norm you use, but
the bound may depend on the norm. There is a one to one correspondence
between roots of ρ and eigenvalues of the companion matrix A. A complex z
satisfies ρ(z) = 0 if and only if z is an eigenvalue of A. A complex z is a double
root (or multiple root with multiplicity at least 2) if and only if there is a non-
trivial (size bigger than one) Jordan block of A corresponding to eigenvalue z.
Therefore, the recurrence relation is stable (all solutions bounded) if and only

18

if A satisfies its own stability condition: the eigenvalues are all inside or on the
unit circle, there are no non-trivial Jordan blocks for eigenvalues on the unit
circle. A general matrix recurrence can have eigenvalues with multiplicity > 1
on the unit circle without being unstable. But there must be no non-trivial
Jordan structure. For example, the matrix A = I is associated to the stable
recurrence ~xn+1 = ~xn and yet z = 1 is an eigenvalue with multiplicity s. If
A is the companion matrix of a scalar recurrence relation, then A cannot have
multiplicity without Jordan structure.

For the rest of this subsection, ~xn ∈ Cs will be any sequence of vectors that
satisfy a one lag linear recurrence

~xn+1 = A~xn . (31) vrr

We say that the vector recurrence (
vrr
31) is stable if any sequence that satisfies

(
vrr
31) has a bound

‖~xn‖ ≤ B , for all n ≥ 1.

The bound B depends on the sequence. We saw, and will see again in more
quantitative detail, that a recurrence is stable if every eigenvalue λj of A satisfy

• |λj | ≤ 1

• |λj | = 1 =⇒ no Jordan structure at λj .

A quadratic Lyapunov function is defined by a positive definite matrix M .
The Lyapunov function is

VM (~x) = ~x tM~x . (32) qLf

If M is positive definite (as we saw in a homework exercise) then the Lyapunov
function V (~x)1/2 is a vector norm equivalent to any other vector norm in the
sense that there is a number κ > 0 so that

κ−1
√
~x tM~x ≤ ‖~x‖ ≤ κ

√
~x tMx . (33) neq

This is supposed to hold for every ~x ∈ Cs. The condition number κ depends on
the norm ‖·‖. The function Vm is a Lyapunov function for the matrix recurrence
if

~xn+1 = A~xn =⇒ ~x tn+1M~xn+1 ≤ ~x tnM~xn (34) Lfd

The two properties (
Lfd
34) and (

neq
33) imply that sequences ~xn are bounded:

‖~xn‖ ≤ κ2~x tnM~xn ≤ κ2~x t0M~x0 ≤ κ4 ‖~x0‖ .

This is the easy half of the stability theorem:

Theorem: A vector recurrence relation is stable if and only if it has a quadratic
Lyapunov function.

19

The Lyapunov function is non-increasing even when ~xn seems to be increas-
ing measured in a more direct way. For example, consider the vector recurrence

~xn+1 =

(
1 1
0 1− δ

)
~xn .

The eigenvalues are λ1 = 1 and λ2 = 1 − δ. Assume that δ is a small positive
number. Then the matrix satisfies our stability condition: all eigenvalues (both
of them) are inside the unit disk and the eigenvalue on the unit circle is simple.

We explore the recurrence in more detail, writing

~xn =

(
ξn
ηn

)
.

The recurrence is

ξn+1 = ξn + ηn

ηn+1 = (1− δ)ηn .

First, ηn has simple monotone decay, as ηn = (1− δ)nη0. But if δ is small, then
ηn goes to zero slowly, and

ξn = ξ0 +

n−1∑
k=0

ηk = ξ0 +
1− (1− δ)n

δ
η0

can become much larger than ξ0. As n→∞, ξn → ξ0 + (1/δ)η0. This is finite,
as the recurrence is stable, but it can be much larger than ξ0.

If V (ξ, η) is a continuous Lyapunov function for this recurrence, then

lim
n→∞

V (ξn, ηn) = V (ξ0 + (1/δ)η0, 0) ≤ V (ξ0, η0) .

This means that V must weight η more than it weights ξ, so that η0 → 0 reduces
V enough to compensate for ξ0 → ξ0 + (1δ)η0. We seek a quadratic Lyapunov
function, so it is natural to try something like

V (ξ, η) = ξ2 + wη2 .

Here, w is a weight, probably a large number, that makes small decreases in η
compensate for larger increases in ξ. The condition V (ξn+1, ηn+1) ≤ V (ξn, ηn)
is

(ξn + ηn)
2

+ w ((1− δ)ηn)
2 ≤ ξ2

n + wη2
n

ξ2
n + 2ξnηn + η2

n + w(1− δ)2η2
n ≤ ξ2

n + wη2
n

2ξnηn ≤ [δ(2− δ)w − 1] η2
n .

So we see this doesn’t quite work.
The last inequality isn’t true (for all ξn and ηn) not matter how large w is.

Looking back, we were trying to make ξ2
n+1 +wηn+1 not larger than ξ2

n +wη2
n.

20

But if ξn is large and ηn is small (a situation we come to for large n because

ηn → 0 but not ξn), then Vn+1 ≈ (ξn + ηn)
2 ≈ ξ2

n + 2ξnηn (because η2
n � ηn

when ηn is small). This is not smaller than ξ2
n. We need a fancier argument.

The key is to realize that bad term ξnηn is also turning itself off since ηn → 0
and ξn is bounded. This suggests that we can add a term proportional to ξnηn
in the Lyapunov function. Let us change notation (which often happens when
we discover that an argument is more complicated than we hoped) and write

V (ξ, η) = ξ2 + 2m12ξη +m22η
2 .

This is the same as (in terms of the components ξ and η, or the vector ~x)

V (ξ, η) =
(
ξ η

)(1 m12

m12 m22

)(
ξ
η

)
,

V (~x) = ~x tM~x , M =

(
1 m12

m12 m22

)
.

Repeating the calculation above, here is what we want to happen:

V (ξn+1, ηn+1) ≤ V (ξn, ηn)

(ξn + ηn)
2

+ 2m12(1− δ)ξnηn +m22(1− δ)2η2
n ≤ ξ2

n + 2m12ξnηn +m22η
2
n

2(1−m12δ)ξnηn ≤

5 Exercises

1. Check explicitly that the second order Adams Bashforth method AB2 and
the second order BDF method BDF2 satisfy the accuracy conditions (

lmm0
16)

and (
lmmk
19) up to k = 2 but not k = 3.

HighOrderFail 2. Use the accuracy conditions to find an explicit method with s = 2 that
is third order accurate. Show that this method is not zero stable. If our
algebra agrees, the roots of the stability polynomial ρ(z) are z = 1 and
z = −5. Why is z = 1 a root for any consistent method?

3. (Fourier sine series Dirichlet boundary conditions) Most partial differen-
tial equations come with boundaries and boundary conditions. A field (a
function of x) satisfies Dirichlet (pronounced in English French as “dearie-
shlay”) boundary conditions at 0 and R if

u(0) = 0 , u(R) = 0 .

Later, we will call this homogeneous Dirichlet boundary conditions, “ho-
mogeneous” meaning zero. The Neumann (first syllable rhymes with
“toy”) boundary condition is

∂x(0) = 0 , ∂xu(R) = 0 .

21

A field u satisfies a Laplace equation with homogeneous boundary condi-
tions in the interval [0, R] if

LDu = h ⇐⇒ ∂2
xu(x) = h(x) for 0 < x < R , u(0) = 0 , u(R) = 0 .

The symbol LD tells us that the boundary conditions are part of the
definition of the operator.

(a) Show that the modes vα(x) = sin(παx/R) are Dirichlet Laplace
eigenfunctions: LDvα = λα. There are two conditions to check,
the differential equation in the “interior” x > 0 and x < R, and the
boundary conditions.

(b) Show that vα are not Neumann Laplace eigenfunctions for [0, R].

(c) Find the Neumann Laplace eigenfunctions for [0, R]. They have the
form wα(x) = cos(kαx). The wave numbers kα include k0 = 0. Note
that −α and α give the “same” eigenfunction.

(d) Let u(x) be a periodic function with period 2R. Show that u may be
written as a sum of even and odd parts

u(x) = uo(x) + ue(x) = 1
2 [u(x)− u(−1)] + 1

2 [u(x) + u(−x)] .

Show that uo satisfies Dirichlet boundary conditions for [0, R] and ue
satisfies Neumann boundary conditions.

(e) Suppose that u is real and consider the Fourier series representation
of u for period 2R. Show that uo is a Fourier sine series

uo(x) =

∞∑
α=1

ûo,α sin(παx/R)

and ue is a Fourier cosine series. Use the Fourier series formula to
find a formula of the form

ûo,α = C

∫ R

0

vα(x)uo(x) dx .

(f) Consider the diffusion equation with Dirichlet boundary conditions:

∂tu(x, t) = D∂2
xu(x, t) , u(0, t) = 0 , u(R, t) = 0 .

The initial condition is u(x, 0) = f(x). Show that the solution is

u(x, t) =

∞∑
1

f̂αe
λαt sin(kαx) .

Find λα and kα.

(g) Use this to show that for large t, u(x, t) ≈ f̂1e
λ1t sin(πx/R) in the

sense that the error in the approximation is much smaller than u
(unless f̂1 = 0).

22

4. (Discrete sine transform) Suppose that U ∈ Rn−1 is an approximation to
u(·, t) in the sense that

Uj(t) ≈ u(xj , t) .

The grid points are xj = j∆x, where ∆x is chosen so that x0 = 0 and
xn = R. If u satisfies Dirichlet boundary conditions, then U0 = 0 and
Un = 0, so the unknowns are U1, . . . , Un−1.

(a) Find n−1 discrete Fourier sine modes of the form Vα,j = sin(πα∆xj).

(b) Use the DFT formulas for a periodic function with period 2n to find
the representation formula

U =

n−1∑
1

ÛαVα , Uj =

n−1∑
1

Ûα sin(παj∆x) .

It is possible to do this directly by calculating the orthogonality prop-
erties of discrete Fourier sine modes, but then you would not be able
to ...

(c) Show that the Ûα may be calculated using the usual complex FFT
for periodic functions with period 2n.

(d) Show how to use this to create a discrete Dirichlet Laplace opera-
tor on U that is spectrally accurate. Use this to define a spectral
semi-discrete approximation to the diffusion equation with Dirichlet
boundary conditions. Give an algorithm using an FFT and inverse
FFT to calculate the exact solution U(T) in terms of U(0).

(e) Suppose instead that we want a second order finite difference approxi-
mation to the Dirichlet Laplace operator. Show that the discrete sine
modes are the n−1 eigenvectors of this and find the eigenvalues. Use
these to show that the condition number of this matrix is O(n2).

5. (Splitting) It is common that a differential equation has several terms that
model different physical processes. For example, the Allen Cahn equation
has one term for “reaction” and another term for diffusion. A generic
mathematical model is

ẋ = f(x) + g(x) . (35) fg

It can happen that there is a good method for solving ẋ = f(x) and a
different good method for solving ẋ = g(x). Splitting is putting these two
solvers together to make a solver for the combined problem (

fg
35). Suppose

Φf (x, t) is the flow map for ẋ = f(x), and Φg(x, t) is the flow map for
ẋ = g(x). Let Φc be the flow map for the combined problem (

fg
35). Let

Ψf (x, t) and Ψg(x, t) be time step maps with order of accuracy p:

|Ψf (x, t)− Φf (x, t)| = O(tp+1) .

23

(a) The basic splitting is the approximation that you “run” the combined
problem (

fg
35) for time ∆t by running first one then the other. In the

first equivalent formula, the ring ◦ denotes composition of functions.

Ψcb(·,∆t) = Φf (·,∆t) ◦ Φg(·,∆t)
z = Ψcb(x,∆t) if y = Φg(x,∆t) and z = Φf (y,∆t)

Ψcb(x,∆t) = Φf (Φg(x,∆t),∆t) . (36) bsp

Show that this basic splitting is first order accurate in the sense that

Ψcb(x,∆t)− Φc(x,∆t) = O(∆t2) .

(b) Suppose the differential equations are linear:

f(x) = Ax , g(x) = Bx .

Then the flow maps are given by the fundamental solutions, also
called matrix exponentials:

Φf (x, t) = etAx , Φg(x, t) = etBx , Φc(x, t) = et(A+B)x .

The matrix exponentials may be defined by power series; for example

etA = I + tA+ 1
2 t

2A2 + 1
6 t

3A3 + · · · .

Show that the basic splitting scheme (
bsp
36) for matrix exponentials is

e∆t(A+B) ≈ e∆tAe∆tB .

Show that the basic splitting scheme is more than first order accurate
if and only if the matrices A and B commute. Matrices A and B
commute if AB = BA. This exercise is related to the Baker Campbell
Hausdorff formula (e.g., wikipedia).

(c) Suppose that use approximations for Φf and Φg that are at least
first order accurate. Show that the combined approximation is first
order accurate for any p ≥ 1. In other words, if you’re using basic
splitting, there’s little benefit to solving the subproblems to more
than first order accuracy. Technically, you’re being asked to show

Ψf (Ψg(x,∆t),∆t)− Φc(·,∆t) = O(∆t2) .

(d) The Strang splitting3 is the more symmetric approximation of putting
a whole step of f between two half steps of g:

Φcs = Φg(·, 1
2∆t) ◦ Φf (·,∆t) ◦ Φg(·, 1

2∆t) .

Show that the Strang splitting is second order accurate.

3Gilbert Strang is a smart numerical computing person and the writer of clear books on
the finite element method, linear algebra, and applied mathematics.

24

(e) Show that you can take n time steps of Strang splitting by doing half
steps only at the beginning and the end:

x→ (1
2∆t of g)→ (∆t of f)→ (∆t of g)→ · · · → (∆t of f)→ (1

2∆t of g)

This uses the “semigroup property” of the flow map, as in

Φf (·, 1
2∆t) ◦ Φf (·, 1

2∆t) = Φf (·,∆t) .

6. (2D DFT, etc.) Consider a discrete grid function of two variables Ujk.
Suppose this is periodic in both variables with period n:

Ujk = Uj+n,k = Uj,k+n

Consider 1D DFT modes Vα,j = e2πiαj/n and 2D modes Vαβ,jk = Vα,jVβ,k.
Find 2D versions of the basic facts of the 1D DFT, starting with the
representation

Ujk =
∑
α,β

ÛαβVα,jVβ,k .

Find the DFT formula for Ûαβ and the Parseval formula. You can do this
directly, or by using the 1D formulas, first in “x” (the j variable), then in
y. You first treat k as a constant and use the 1D formula

Ujk =
∑
α

Ũα,kVα,j .

The 1D Parseval formula is, for each k,∑
j

|Ujk|2 = C
∑
α

∣∣∣Ũα,k∣∣∣2 .

Then you treat α as constant and use the 1D DFT to get

Ũα,k =
∑
β

Ûα,βVβ,k .

7. The Allen Cahn equation is

∂tu = 4u+ u− u3 . (37) AC

It models the motion of smooth approximate phase boundaries in a solid
material. The minus phase corresponds to u = −1 and the plus phase
corresponds to u = 1. If u is independent of x, y, then the PDE (

AC
37)

becomes the ODE u̇ = u− u3. If u(0) 6= 0 then u(t)→ ±1 as t→∞. In
the PDE, there will be regions u ≈ +1 and u ≈ −1 separated by transition
layers called phase boundaries. If you start from random initial data (or
any data that isn’t too simple), the solution quickly goes to a state like
this, then the phase boundaries move slowly.

25

(a) Create semi-discrete approximation to (
AC
37) in 2D with Dirichlet bound-

ary conditions at x = 0, x = R, y = 0, and y = R. You can use a
spectral or a finite difference discretization of the Laplace operator
with Dirichlet boundary conditions.

(b) Solve this by splitting. Do the linear piece

∂tu = f(u) = 4u+ u

exactly using the FFT. Do the remaining nonlinear piece

∂tu = −u3

exactly in physical space. Give computational evidence that the re-
sulting method using Strang splitting is second order accurate.

(c) Use the Python compiler cython as in the posted code heat.

(d) If you can, make a movie of the Allen Cahn solution. I was unable to
do this. Otherwise, print some snapshots (contour plots at specific
times) that show the phase boundary structure. You will have to
take a reasonably large box and wait a while for this structure to
appear.

26

