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Section 4
Wave propagation, modes, artifacts

1 Motivation

A wave is a feature in a time dependent field that moves (propagates) with time.
The function u(x,t) = v(x — st) is a wave, in that it moves to the right (toward
larger x values) with speed s without changing size (amplitude) or shape. The
function w is constant on lines 2 — st = ¢, which are lines in (z,t) space that
move to the right with speed s. This is in one dimension (one space dimension,
two dimensions with time). In more than one dimension, we say k is a unit
vector if
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A plane wave (or planar wave) in the direction k is a function

k

u(z,t) = v(klz — st).

This looks like the one dimensional wave if you move in the k direction and it is
constant on the planes k'x — st = const. If the wave form v(r) is a bump (such

as v(r) = e""z), then w is a bump along the plane normal to k.

There are more complicated waves. The wave form can change over time,
replacing v(r) by v(r,t). The wave fronts may be curved. For example, a
spherical wave (in three dimensions, circular in two dimensions) might take the
form

u(z,t) = v(|z| — st,t) .

Waves can spread if the wave form v(r,t) becomes wider as a function of r
as t increases. Dispersive waves (described below) typically do this. Waves
can dissipate if the height of v(r,t) decreases with ¢. A more subtle form of
dissipation is that the wave form v(r,t) becomes smoother as a function of r as
t increases.

A partial differential equation is a wave equation if its solutions (or many
of its solutions) look like waves. Among the many partial differential equations
that do this, there is “the” wave equation

Ru=c*Nu. (1)

The parameter c is the wave speed. In one dimension, the wave equation has
solutions
u(x,t) = v1(z + ct) + va(x — ct) .

That is, the solution is a superposition (sum) of a simple wave with parameter
s = —c and another simple wave with parameter s = c¢. These are the left
propagating mode (s = —c¢) and right propagating mode (s = ¢). We will see
that every solution to the wave equation (1) in one dimension has this form.
More complicated linear wave equations have solutions that may be written as
a superposition of modes. Nonlinear partial differential equations do not have
a superposition principle. Nevertheless, modes help design solution algorithms.



Wave equations may be understood in two ways. For hyperbolic partial
differential equations (definition below), there is a finite propagation speed. This
is the fastest “information” can travel. For a linear equation, a finite propagation
speed ¢ means that if u(x,0) = 0 for || > r, then u(x,t) = 0 for |z| > r+ct. The
region where u # 0 spreads at speed ¢ and no faster. For “the” wave equation
(1), the parameter c in the equation is the propagation speed. The heat equation
is different from the wave equation in that it has infinite propagation speed. If
u(z,0) > 0 for all  and u(z,0) > 0 for some z and u(x,0) is continuous,
then w(z,t) > 0 for all x as long as ¢ > 0. Propagation speed is important in
designing time stepping methods for hyperbolic wave propagation problems. It
is the basis of the famous CFL condition, named for Richard Courant, Kurt
Friedrichs, and Hans Lewy. Courant and Friedrichs were important professors
at the Courant Institute.

Linear wave equations (not just hyperbolic ones) also may be understood
as a large or infinite collection of oscillators. For “the” wave equation, try a

solution of the form 4
u(z,t) = A(t)e™™ . (2)

Solutions like this are sometimes called separation of variables solutions, a term
that applies to solutions that are products of functions of fewer variables. This
one is a function of ¢ multiplying a function of z. The separation of variables
ansatz satisfies the wave equation (1) if

A=A, (3)
This is the equation for a harmonic oscillator A= —w?A, where the oscillation
rate is

w(k) = £clk| . (4)

The solution may be written in real form as A(t) = a cos(wt) + Bsin(wt), or in
complex form as A(t) = ae™?+Be~ ! Asthe wave vector k takes all real values,
the dispersion relation (4) gives the corresponding oscillation frequencies. This
one is homogeneous of degree one in k, which means that if » > 0 is a positive real
“scale factor”, then w(rk) = rw(k). It is a defining feature of hyperbolic partial
differential equations (linear, homogeneous ones) that the dispersion relation is
homogeneous of degree one. We will see other examples. Using Fourier analysis,
the initial data may be represented as a sum or integral of “simple plane waves”
e’*@ (slightly different meaning of “plane wave”). Therefore, the solution may
be represented as a sum or integral of oscillating plane waves (2). Viewed this
way, the wave equation is an infinite collection of oscillators, one for each wave
number k.

A finite difference approximation to the wave equation (1) has plane wave
separation of variables solutions of the form
U;(t) = ew®teike; 3. = jAx (semidiscrete) .
Up = ewBtngibz; ¢ — nAt (fully discrete) (5)



The accuracy of the scheme is determined by the order of agreement between
the continuous and discrete dispersion relation as k — 0. This is the long wave
limit and is the limit in which the Fourier mode e?** is well represented by the
discrete counterpart e?*%s. Let w, be the dispersion relation for the PDE (c for
continuous) and wy the dispersion relation for the finite difference approximation
(d for discrete) The finite difference approximation has accuracy of order p if

wa(k) = we(k) + O(k"H) . (6)

This formula determines the order of accuracy without Taylor series expansion
of the solution. Instead you ask what the discrete scheme does to a Fourier
mode and compare that to what the PDE does to the same Fourier mode.

In real applications, you usually are at the edge of resolution. The grid is
barely able to resolve the smallest scale features in the solution.! In this sit-
uation, the finite difference approximation probably has artifacts, or features
that are not in the true solution. We saw this with Fourier interpolation —
an under-resolved interpolating function can have overshoots and oscillations.
Two common artifacts are artificial dissipation and artificial dispersion. Artifi-
cial dissipation occurs when the discrete dispersion relation is not real, and it
becomes possible that

eiwd(k)t‘ <1.

This “removes” high wave number modes from the discrete approximation (gives
them less weight, likely much less). The result is that sharp edges are rounded
and small sharp features have reduced amplitude.

If wg is real and ’e“"d(k)t’ = 1, the difference between e and e
is called phase error or dispersive error. In €', @ is the phase. Every Fourier
mode has the right amplitude but the wrong phase. Dispersion comes from the
fact that phase errors make waves move at the wrong speed. Local features are
made from a superposition of Fourier modes. If the feature moves with constant
speed as v(x — st) all the phases have to change in the right way to keep the
feature intact. Phase errors can make local structures come apart. The result
can be oscillations similar to the ones from under-resolved Fourier interpolation.

We can understand dissipation and dispersion using explicit calculation in
simple one dimensional examples. These may be linear scalar (u has one com-
ponent) homogeneous (PDE independent of z). We call these model problems.
They are not realistic but they allow calculations that elucidate phenomena.
More realistic problems are nonlinear, have multi-components, and have x de-
pendent coefficients. We may not be able to understand dissipation and disper-
sion as precisely in real problems, but we can see their effects and understand
their origins.

iwq(k)t iwe(k)t

1To understand why this happens imagine that you get a new more powerful computer that
can compute with more grid points. You have a choice between doing an existing calculation
more accurately — with higher resolution — or doing a new calculation that your old computer
didn’t have the resolution for. A mathematician might choose the existing calculation with
higher resolution, but most engineers would rather do a bigger problem at the same resolution.



The simplest model problem for wave propagation is the one dimensional
linear homogeneous advection (advection defined below) equation. The equa-
tion, sometimes called the Kreiss equation after master theoretical numerical
analyst Heinz Kreiss, is

Figure 1 shows the result of three approximation schemes. The first order
upwind scheme (all schemes described below) has the most artificial dissipation
(informally called smearing). The sharp edges of the square wave on the right
are smeared. The bump on the left has less amplitude than it should. Actually
(see below) the total mass of the bump is correct, it has less height because it
is smeared out. The approximation converges to the correct answer as Az — 0
and At — 0, but not very quickly. Lots grid points and computer time are
needed to get an accurate approximation.

The Lax Wendroff method is higher order (second order) than the simple up-
wind scheme so it gets the bump much better. But its artificial dispersion leads
to overshoots and oscillations near what should be simple discontinuities. The
oscillations are so severe that Lax and Wendroff advocated using extra artificial
dissipation. The “pure” Lax Wendroff method is not what Lax or Wendroff
advocated. The oscillations become more pronounced for small A because the
dissipation is less. It is possible to derive a modified equation that explains
these phenomena. The modified equation is a PDE whose solutions are closer
numerical approximation than the original advection equation (7). It consists
of (7) with dissipation and dispersion terms added, both with coefficients that
depend on Az. The oscillations are large because the leading order error term
is dispersive (producing oscillations). Dissipation (which reduces oscillations) is
present only at higher order in Azx.

The third order asymmetric scheme is most accurate for the smooth bump,
having the highest order of accuracy. It has less artificial dispersion than the
Lax Wendroff because the leading term in its modified equation is dissipative,
not dispersive. But even the dissipative scheme produces some overshoots. The
second order diffusion equation preserves monotonicity and does not produce
any extra oscillation. But higher order dissipative equations such as dyu = —0%u
(part of the Kuramoto Sivashinsky equation) do produce small overshoots.

2 Wave propagation equations

This section is a partial crash course partial differential equations. Courant
Institute graduate courses have students with quite different backgrounds. Many
will not need this section, and others will. Good methods for solving wave
propagation problems depend on understanding the wave phenomena you are
trying to compute, at least qualitatively. Methods for analyzing the PDE can
be adopted to understanding and designing computational methods.
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Figure 1: Three approximate solutions for (7) with periodic boundary conditions
u(x + 1,t) = u(x,t). The solution moves to the right with unit speed and without
changing shape. The approximate solutions at 7' = 1 (one full revolution) are plotted,
along with the initial conditions. The exact solution is equal to the initial condition.
The higher order schemes (Lax Wendroff and the third order scheme) capture the
smooth structure well but have overshoots at discontinuities. The first order scheme
smears the discontinuities and gets the peaﬁ( of the smooth structure quite wrong. For
the first order method, smearing is worse at small X\. For Lax Wendroff, oscillations
are worse at small A\. Note that the lower plot has much higher resolution, yet the
first and second order schemes are still poor. codes/DissipationDispersion.tar.



2.1 Gas dynamics, local conservation, first order systems

Gas dynamics here refers to a PDE system that describes a compressible gas.
The system given here simplifies the physics, particularly the thermodynamics.
The space variable z will be in d dimensions with d = 1,2, or 3. The density at
point z at time ¢ is p(z,t). The pressure is p(z,t). Here, we model the pressure
as being a function of the density?: p(z,t) = p(p(z,t)). We assume that the
pressure is a strictly increasing function of density (equivalently, density is a
strictly increasing function of pressure), which is

2(p) = dffp” > 0. ®)

A dimensional analysis® shows that ¢(p) has units [speed] = L/T'. This turns out
to be the speed of sound in the gas. The gas velocity is v(z,t). In d dimensions,
this is v = (v1 (2, t),...,v4(z,t). For d =1, we write v(x,t) instead of vy (x,t).

Here is a “conservative” derivation of the gas dynamics PDE system. A
quantity g(x,t) is locally conserved if the amount of ¢ inside a “volume” V
changes only by fluz (also called current) of g crossing the boundary of V.
Let T' be the boundary of V' (also written I' = 9V'). Let dA(z) be an area
element on I'" and n(z) the unit outward normal to I" at . The flux for ¢ is
F(z,t) = (Fy...,F;). Saying F' is the flux for ¢ is the same as saying that for
“every” volume,

d

a ), q(z,t)de = — /F F(z,t) -n(x) dA(z) . 9)

You can understand the sign on the right by thinking of V' as a sphere and F
pointing out. Then the integral over the sphere (on the right) is positive and
the amount of ¢ inside the sphere is decreasing. If F' is tangential to I' (i.e.,
F-n=0o0nT), then the amount of ¢q inside V' does not change. If there is lots
of flux at the boundary, none of it crosses I'. The divergence theorem allows us
to state this in an equivalent differential form

d
Orq(x,t) + div(F(2,t) =0, div(F)=V-F =Y 0, Fj(x,t). (10)
j=1
In one dimension, these formulas simplify to (assuming b > a)

b
7 q(z,t)dx = —F(b,t) + F(a,t), Owq(x,t)+ 0 F(z,t) =0. (11)

2A fluid (gas or liquid) is incompressible if pressure changes do not influence the density.
No fluid is exactly incompressible, but many fluid problems are accurately modeled as incom-
pressible. The incompressible fluid model does not have sound waves, which are the point of
this section.

3Pressure is force per unit area. Force has units of mass times acceleration. Density is
mass per unit volume. dp/dp has units of p/p, which are (([force]/[areal])/(M/[volume])). In
d dimensions, [area] = L?~! and [volume] = L%. Also [force] = [M - acceleration] = M L/T?.
Together, this gives [dp/dp] = (M L/T?)/L3~1)/(M/L%) = (L/T)3.



Suppose there are n locally conserved quantities ¢ = (q1, ..., g,) with corre-
sponding fluxes Fy, ..., F,). A constitutive relation is a formula for Fy(z,t) as a
function of g(x,t). If there is a constitutive relation for every flux, then the local
conservation equation (10) becomes a system of partial differential equations

Oqr(z,t) + V- Fr(q(z,t)) =0, k=1,...,n. (12)
More explicitly,
d
Orag(z,t) + Y 0, Fin(q(a,t) =0, k=1,....n. (13)
j=1

There are two ways to make vectors out of flux functions Fj . In the local
conservation formula for g (12), F} is the d—component vector of fluxes for
quantity gi. In some formulas below, F} is the n—component vector of fluxes
for direction j.

In some models, the constitutive relation involves space derivatives of the g;.
In the scalar diffusion equation, for example, F' = —DVgq, which (check this)
turns (12) into ;g = D A q. The models in this section are “first order” conser-
vation law systems, which means that F'(q) depends only on ¢, not derivatives
of gq. For a first order conservation law system, we can define the coefficient
matriz, A;j(g), which is the n x n derivative matrix of the fluxes for direction j,

4@ =Fa) A = 221D (1)
a
(This would have been written Fji; in the notation used to derive Runge Kutta
methods.) We use the chain rule to write the conservation law system (13) so
that it displays it explicitly the first spatial derivatives of the locally conserved
quantities:

d n
OF;
Orqr. + E E (;);fq)) Oz, @1
j=11=1

d
0q+ Y Aj(0);q - (15)
j=1

This form of the dynamical equations is called quasilinear, which means not
linear but something like linear. More precisely, it means that derivatives appear
linearly (0;q and 9,,q) while the coefficient matrix A depends on g. An example
of a fully nonlinear equation is

dyu+ (O,u)’> =0.

The equivalent formulations (12) and (15) are the conservative and qualilinear
versions respectively.

Conservation law reasoning is helpful in deriving gas dynamics and other
PDE systems because



e It involves simple direct physical principles and reasoning.
e Some solution methods use approximations to F.

e Solutions of conservation law systems can develop discontinuities, where
derivatives are not defined. The conservation law formulation allows us to
find physically correct solutions in such cases.

Here is the gas dynamics model in one dimension. There are n = 2 locally
conserved quantities, which are related to mass and momentum (z—momentum
if the velocity is in the z direction). The mass in a small interval dz is p(z)dx.
The “mass density” is what we just call density. The momentum in the interval
is mass - velocity = p(z)v(z)dz. The momentum density, the momentum per
unit length, is m(z) = p(x)v(x). The original fields p and v are called primitive
variables. The mass and momentum densities are conserved variables. Either
can be expressed in terms of the other, for example v(z) = m(x)/p(z).

The rate at which mass crosses a point a is the density multiplied by the
velocity, so the mass flux is Fj,(a) = p(a)v(a). Momentum crosses a point a
in two ways. One is streaming or advection; the material crossing a carries
momentum with it. The flux from this source is the momentum density times
the velocity, which is [p(a)v(a)]v(a) = p(a)v?(a). Momentum also crosses a
because of pressure force — the left of a pushes on the right of a with a force equal
to the pressure. The total momentum flux is F,,(a) = p(a)v?(a) + p(p(a)) =
m?2(x)/p(x) + p(a). The conservation of mass and momentum equations are

Op(x,t) + 0pFp(x,t) =0
om(z,t) + 0 Fp(z,t) =0

Substituting the expressions for the fluxes, we get the conservative formulation
of first order gas dynamics:

atm(xvt) + Oz [m2($,t)/p(x,t) er(p(as,t))} =0

You might be more familiar with the equivalent quasilinear formulation in terms
of primitive variables. The mass conservation may be rewritten as

Op+ 0y (pv) =0
Op +v0pp + pOyv =0.
Next, we manipulate the momentum conservation equation. We use the first

form of mass conservation in the next to last line to cancel some terms. We use
the sound speed formula (8) in the end.

3 (pv) + 0x (pv* +p(p)) =0
vIyp + pOrv + w0y (pv) + (pv) Oyv + p'(p)0up = 0
PO + (pv) Opv + 2 (p)0pp = 0 .



This leads to a common quasilinear form in primitive variables (using subscripts
for derivatives):

pt+ puz +vpy =0 (17)
2
vt—i—vvr—&—c (p)px:O. (18)
p

In matrix form, this is

(5:) + A(p,v) (2’9 =0 (19)

Alp,v) = (1(;) p) . (20)

with coefficient matrix

v

In three dimensions, the n = 4 conserved quantities form a vector

p
m
q(x,y,2,t) = m;
mz

Here m, = puv, is the xr—momentum density, etc. The flux has x, y, and

z components: F = (F, F,, F,). The four components of F, correspond to
the rates of the local conserved quantities crossing a surface normal to the x
direction. These are

PUz

o [Pz +plo)
L=
PULVy
PUzV,

The p and m, components of F, are familiar from the one dimensional problem.
The m, flux in the z direction is only advection pv,v, = v,m,, because pressure
across an x interface pushes only in the z direction. The reasoning that led to
(19) in one dimension gives the three dimensional quasilinear gas dynamics
system (check this). We write partial derivatives explicitly and use subscripts
only for components.

9ep + Oz (pva) + 0y (pvy) + 0: (pv2) =0
*(p)

Oivy + Tﬁwp + V3050 + VyOyvg + 0,0,0, =0

(p)

Opvy + T@ P + V050 + vy Oyvy + v,0,v, =0

2
B0, + C (p)

0.0 + V50,0, + vy0yv, +v,0,v, =0



The vector of primitive variables is

Vg
Uy
Uz

u(z,y, z,t) =

The quasilinear form above may be written in matrix form
O+ Az (u)0pu + Ay(u)Oyu + A, (u)0,u=0.

The coefficient matrices are (entries not shown are zero)

Vg P Uy P
<o), Uy
Az (u) = P x s Ay(u) = | 2 , ete.
Vg P Uy
Vg Uy

(21)

2.2 Wave modes, hyperbolic equations, acoustics

We examine solutions of the general system (15) under the hypothesis that there
is a constant state go and u(z,t) = q(x,t) — qo is small. If we suppose u = O(e),
then the leading order approximation to (15) is the linear system

d
Oru+ Yy Aoy u. (22)

j=1
We write A; for A;(qgo). In one dimension, the linearized system becomes
Oru+ Adzu=0. (23)

The unknown is u(z, t), which has n = 2 components u = (p, v) if the linearized
system came from gas dynamics. The coefficient matrix A is n x n.
We seek simple wavelike solutions of the one dimensional linear problem
(23),
u(z,t) = f(z —st) .

This ansatz has d;u = —sf’ and O,u = f’. The equation becomes
sf(x —st) = Af'(x — st) . (24)

This is an eigenvalue problem for the coefficient matrix, A. Only real eigen-
values are relevant here, because x — st must be real. The PDE (23) is called
strongly hyperbolic* if A has n linearly independent real eigenvectors with n cor-
responding real eigenvalues. The eigenvalues, s,,, are the propagation speeds
and the eigenvectors r,, are the wave modes. Suppose

Arp = Amrm, m=1,...,n.

4There also are strictly hyperbolic, weakly hyperbolic, and symmetrizable hyperbolic equa-
tions.

10



The right eigenvector matrix (as usual) is

R=1|r ro0 -+ 1

The left eigenvector matrix (as usual) is
- -
R B
- 1, -
The eigenvalue/eigenvector representation of A may be written (as usual) as

LAR =A.

Here, A is the diagonal matrix of speeds, which are called s, instead of \,,
because they turn out to be wave speeds. We write the solution in terms of
right eigenvectors and expansion coefficients wy, (x,t):

u(z,t) = Z Wi (2, 8) T,

This may be written as

U(aj‘,t) =T T2 - Ty . = R’LU(J?,t) .
wp (2, t)

Since L = R™!, we find w from w using w(x,t) = Lu(x,t). This formalism
makes it easy to find a diagonal form for the PDE (23). Multiply by L from the
left, use the relations RL = I and 0y(Lu) = Loyu:

Loyu+ LARLO,u =10
Ow +Ao,w =0

The second line is a collection of n un-coupled scalar PDEs of the form
OrWyy + S OzWym =0 . (25)

The solution is
T (2, 1) = f (T — smt)

The signal in mode m is determined from the initial condition using

u(z,0) = Z fm(2)rm
m=1

11



Therefore,
fm(x) = lpu(x,0) .

The conclusion is that a linear constant coefficient strongly hyperbolic sys-
tem in one dimension has n real characteristic speeds s and n corresponding
wave modes r,,. The solution is a superposition (sum) of waves propagating at
the characteristic speeds without changing shape.

For linear gas dynamics, the coefficient matrix is (20). The eigenvalue prob-

lem is
v—38 p
det <62/()P) v — S) =0

(v—15)%=¢?

S1=v+c, Sy=v—cC.
The sound speed is

c= 0
The gas is not moving if v = 0, in which case the propagation speeds are s = +c.
If the gas is moving, then c is the propagation speed relative to the gas. The
flow is subsonic if |v| < c. In this case, wave with speed s; = v — ¢ moves left
and the wave with speed so = v + ¢ moves right. If |v| > ¢, then the gas is
supersonic. In this case, either s; < 0 and sy < 0 (both waves move left) or
s1 > 0 and s2 > 0 (both waves move right).

Two related concepts are important for numerical solution: domain of influ-
ence and domain of dependence. The domain of influence at time t of a point
xo at time to = 0 is the set of points x where the value u(x,t) changes if we
change u(zg,0). This is the set of places that where the solution is influenced
by the initial data at xg. In one dimension for linear constant coefficient hyper-
bolic systems, the domain of influence is just the n points xg + s;t. The line
T (t) = g + St is the m™ characteristic curve. In this case, characteristic
“curves” are actually straight lines because s,, is constant. If the matrix A is
not constant (called variable coefficient), then the characteristic curves are not
straight. Characteristic curves for nonlinear problems (however they might be
defined, see a PDE course) are not straight. The domain of dependence of a
point z at time ¢ is the set of points z¢ so that changing u(xg,0) changes u(x,t).
The solution u(z,t) depends on the initial data in its domain of influence, but
nowhere else. In one dimension for linear constant coefficient hyperbolic sys-
tems, the domain of influence is the set of points x — s,,t. If B is a set of points
(a ball or square or whatever), then the domain of dependence of B is the set
of domains of dependence of all the points in B.

Wave propagation is more complicated multi-dimensions (d > 1). You get
some idea what is possible by looking for plane wave solutions in direction k.
These are solutions that depend only on the “distance” of a point x € R? in

12



direction k. In formulas, we seek solutions of the form

u(k'z,t), u(y,t), y="Fkaz.

Here, y is the scalar variable that tells you how far z € R? is along the direction
k. If you substitute this plane wave ansatz into the linear constant coefficient
system (22), you find

d
8tu—|— A];ayu = 0 ) Al;: = Z];‘jAj .
j=1

The matrix A, is the coefficient matrix for plane wave propagation in direction k.
A first order system (22) is called strongly hyperbolic if the one dimensional plane
wave problems are strongly hyperbolic in every direction. That is, it is strongly
hyperbolic if for every real direction vector k, the matrix Ay = Ej l%jAj has n
real eigenvalues and no Jordan blocks. The characteristic speeds and modes in
direction k are the n eigenvalues and eigenvectors

S (k)1 (k) = Aprom (k) .

Domain of dependence and domain of influence are more complicated in
multi-dimensions, but neither of them grow faster than the maximum charac-
teristic speed

Smax = INax max ’sm(l;:)
k m
That is, the domain of dependence of a point x is contained in a ball of radius
Smaxt around the point . If u(z, 0) is different from zero only on a set B C R¢,
then the solution at time t is equal to zero outside the domain of influence.
In time ¢t a plane wave cannot go farther than s;..t. Therefore, if x is in the
domain of influence of B, then which is contained in the set

dist(z, B) < Smaxt -

3 Difference schemes for one dimension

Suppose there’s a time step At and a space step Ax. The numerical solution at
x; = jAx and t, = kAt is
Ujk =~ u(zj, tr) -

The numerical solution at time tj is Uy = (Uj). A finite difference discretiza-
tion of the PDE (13) or (15) or (23) uses a finite difference approximation of
O.u (or an approximation of 9, F(q)) and a finite difference approximation of
Oru to determine Ug4q from Uy (and Ug_q,... if it is a multi-step method).
A semi-discrete approximation involves finite difference approximations to d,u
or 9, F but not d;u. You can make a finite difference approximation from a
semi-discrete approximation using an ODE time stepping method. And there
are other direct ways.

13



There is a good chance that a proposed method will be unstable. This would
make it useless in practice. Even a stable method can give approximate solu-
tions with artifacts, which are features of the numerical solution that are not
in the actual solution. Common artifacts are smearing, overshoots, and oscil-
lations. Much of the work in developing a solution strategy goes into analysis
that determines stability and artifacts. We approach stability by von Neumann
(Fourier) analysis. We approach artifacts also using Fourier analysis, or by us-
ing the method of modified equations. The task, for serious professionals, is not
to find a scheme that converges, but to find a good scheme among the many
possibilities.

The “simplest possible scheme” is a good example of the scheme development
and analysis procedure. You replace 0, with the second order accurate centered
difference:

1
Opu = Az (Ujs1,e —Uj—1p) -

You replace 0;u with the first order one sided difference:
1
Btu - E (Uj7k+1 — Uj,k) .

This replaces the PDE (23) with

1

A (Ujpr1 —Ujr) + A

1
AL Ujpre —Uj—1 k) =

Some algebra turns this into

At

Ujkt1 = Ujr = 51

AUjr1k = Uj-1k) - (26)
This scheme is called forward Euler in time, centered difference in space. This
is a bad scheme. Never use it, except as an example of a scheme you're not
using.

The formal order of accuracy for this scheme, and for most schemes, is found
by plugging the exact PDE solution into the finite difference equations to find
the order of magnitude of the residual. The residual (for this scheme) is defined
by (warning: this definition of R is different from the one we used for ODE
solving in that no At factor is taken out.)

At

mA(u(:ch,tk) —u(zj_1,tx)) + Rjk - (27)

w(zj, tepr) = u(zj, t) —
The calculation of R involves Taylor series in ¢ and x. First, using the PDE,
w(xj, thyr) = u(zy, ty + At)
= u(z;, tx) + At Owu(zj, ty) + %AtQ OFu(x;, ty) + O(AL?)

1
= u(w;,ty) — At Adyu + 5At2 Ofu(x;, ty) + O(AL?) .
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Next,
(i1, te) — w(@j_1,t;) = 28z Opu(xj, ty) + O(Az?) .

We substitute these expansions back into the finite difference time step formula
(26) and simplify notation by leaving out the x;,t; arguments. For example,
we write u for u(z;,tx), and Opu for Oy u(x;,tx), etc. Substituting on the left
and right sides gives

u— AtAd,u + %A#afu + O(At?) = u — AtAd,u + O(AtAZ?) + Rjy,
O(A?) + O(AtAz?) = Ry, .

If we take out one factor of At, there remains a term of the order of At and
a terms of the order of Az2. This scheme is first order accurate in time and
second order accurate in space. That is a natural conclusion, given that we used
a first order approximation to d;u and a second order approximation to d,u. If
the scheme were stable (it isn’t), it would be first order accurate.

For the von Neumann stability analysis we assume the PDE is strongly
hyperbolic and use the wave propagation mode analysis above. In place of
w = Lu, we have (written in various ways)

Wi = LUy, (approximation at time )
Wi = LUjj, (approximation at point z; and time t)

Wi ik = lmUji,  (approximation of mode m at point z; and time ¢).

We multiply the difference scheme (26) by L and calculate as we did for the
PDE using LAR = A. The result is

At
Wj,k+1 = ij + EA(W]‘_;,_Lk - Wj—l,k) .

We can look at mode m of this equation (the modes are uncoupled), or we can

multiply the difference scheme (26) by l,,, and calculate. Either approach gives

the evolution of the approximation of mode m:

Am
2

with CFL (for Courant Friedrichs, Levy) ratio

Winjk+1 = Wik + —= W 1.6 = Winj—1.%) » (28)

St

Am = Ax

(29)

The scalar difference equation (28) is what you get when you apply the general
finite difference approximation (26) to the single mode linear constant speed ad-
vection equation (25). In this context, the single mode PDE is sometimes called
the Kreiss equation in honor of Heinz Kreiss who made important philosophical
and technical contributions to stability theory.
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We drop the mode index m and let W} be the numerical approximation at
time t;. The finite difference update formula (28) is a linear update formula for
the vector Wy:

Wit = MW, .

The matrix M has entries 1 on the diagonal and :I:% on the first off-diagonals.
The eigenvectors of M are discrete Fourier modes (because M is translation
invariant). The corresponding eigenvalues are found by a symbol calculation
like calculations we’ve done before. It is traditional to call the discrete wave
number 6, so the eigenvector is Vp, with

Vg,j = eiej .
We will calculate
MVy =m(0)Vy .

The eigenvalue for Vjy is m(6). This is the symbol of the matrix M. Since Vj is
periodic in 0, we can consider —m < # < 7 or an equivalent range. We see from
(28) that

A
MVy;=Vy; + B (Vo1 — Vo j—1) -

The eigenvalue relation is
A
m(O)Ve,; = Ve + 5 (Vo1 = Vo-1)
m(0)ei® = ¢ % (em(j+1) _ ei&(j—l))

m(0) =1+ % (ew — e_ie)

m(0) =1+ iXsin(6) . (30)
We immediately see that the symbol is outside the unit circle, as
[m(0)]> = 1+ A\sin?(0) > 1, if sin() # 0.

This implies that the method is unstable. If you program it, the numerical
solution will “blow up”.

3.1 The Lax Wendroff method

The scheme just described — forward Euler in time and centered differencing
in space — has two drawbacks. It is only first order accurate in time and it is
unstable. Lax and Wendroff showed that fixing the order of accuracy drawback
makes the method stable. This would be called “killing two birds with one
stone”.

Here is one of the many derivations of this scheme. It starts with a Taylor
series in time up to second order (to get second order accuracy in time):

A 2
(b + A = ula, t) + At Syl ) + Ttafu(x, 1) + O(A) .
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The PDE (23) gives
Oru = —Adyu .

It also can be used to find 92u. The derivation uses the fact that 9;0,u = 9,0;u.

02w = 0y (Opu)

= 0y (—Adyu)

= —A0;0u

= —A0,; (Oru)

= —Ad, (—Adyu)
0Pu = A?0%u .

Therefore, if u satisfies the PDE (23), then

2
u(z,t + At) = u(z,t) — At Adyu(z,t) + %Ai’agu(x, t) + O(At?) .

The Lax Wendroff scheme is to use this formula, with second order centered
difference formulas for the derivatives on the right:

2
Ujkt1 = Uji, — %A (Ujs1,6 = Uj—1,6) + %AQ (Ujrrp —2Uj +Uj1 k) -
(31)
This scheme is second order accurate, it applies (when suitably generalized) to
a wide range of important problems, and it is stable (see below). Even today,
decades after it was introduced, this method is the basis for many large scale
computations.
The von Neumann analysis for the Lax Wendroff scheme (31) starts with
the scheme applied to the Kreiss equation written in terms of the CFL ratio
A A2

B Wit = Wizik) + — Wik = 2Wie + W1 k)

Wik = Wik — 5

The symbol is (applying the scheme to W), = ¢“¢ and calculating)
m(#) =1 —ixsin(f) + A% (cos(f) — 1) .

We look for instability by calculating |m(#)|°>. The calculation seems like a
quagmire at first, but you can find a way through. We use the notation ¢ =
cos(f) and the relation sin?(#) = 1 — ¢2. This allows us to express |m(8)|* as a
quadratic polynomial in c.

m(0)]2 = (1 — A2(1 — cos(6)))” + A% sin(6)
—(1=N1=-0)+ N (1-¢)
=1-N+A 4222 (1= A= N (1-N) .

We look for a min or max by setting the derivative with respect to ¢ to zero.
This gives ¢, = 1 (the minimizer or maximizer). We learn whether ¢ = 1 is a
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min or max from the sign of the ¢? term. This is negative if |\| < 1 and positive
otherwise. But [A| > 1 is not interesting, because the geometric CFL condition
requires |A| < 1. The Lax Wendroff scheme is exact for A = 1 (check this).
Therefore, we are only interested in the case where ¢, is a local max.

Since ¢ = cos(f), we know that |¢| < 1. The max of the quadratic is at
¢ = 1 so the min, in this range, must be at ¢ = —1. When ¢ = —1, we know
sin(f) = 0, and cos(d) — 1 = —2, so so m(#) = 1 — 2A%2. This has |m| < 1 if
|A] < 1. This reasoning shows that |m(f)| < 1 for all 6 if |]\| < 1. That is, von
Neumann analysis shows that the Lax Wendroff method is stable.

3.2 First order upwind

4 Stability and convergence

We have seen stability and consistency arguments before. If a scheme is stable,
then the error for the scheme is bounded by the residual. The residual is de-
termined by what happens when you apply the finite difference formulas to the
exact solution of the PDE. These ideas are not new. We describe them here in
a notation that is more general and abstract than before.

An explicit time stepping finite difference method for the hyperbolic system
(22) may be written

Ujrsr1 =Y _ MU;_1 . (32)
l

The matrices M; are formed from the PDE matrices A and the finite difference
scheme. They also depend on the time step At and the space step Az. For
example in one dimension the Lax Wendroff method has

[ At N At?
| 2Az 2Az2
I At?
J— =
* | Ax?
At At?
QAJ:A + 2Az2

Ujk+1 = Az} Uj_1k

Aﬂ Uji

+ |— A2] Uji1k -

Comparing to the general formula (32), we have

At At?

_ 2
M, = 2AxA + 2Aw2A
At?
My=1-"-A?
0 Az?
—At A2,
Mor=sxe 4 9am

The residual (also called truncation error, or local truncation error) is defined
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as before (the explicit At factor makes the convergence theorem simpler)

w(zj, tht1) = Z Myu(zj_y,ty) + At Ry, . (33)
l

As before, you find Rj; using Taylor expansions of u about (z;,t;) and using
the fact that u satisfies the PDE to cancel terms up to a certain point. For
hyperbolic equations, we assume that the ratio of At to Ax is fixed as At — 0.
The method has order of accuracy p if Rj;, = O(At?). If the method is stable
(definition below), then the error also is of order At?.

A scheme is stable in the discrete norm ||| if there is a C' so that for any k

Ukl < CNU-oll - (34)

If we are using von Neumann analysis on the scalar model (the Kreiss equation)
(25), then it is the [?> norm that goes with Fourier analysis. If the symbol

satisfies |m(6)| <1 for all 0, then (because ka = m(@a)kWa,o)
ZWrzn,jk < ZWS%J-O . (35)
J J

You can apply the scalar I? bound component by component (i.e., separately for
components m = 1,...,n). But the eigenvector matrix R is not an orthogonal
matrix (usually). Therefore

n n
2 2
Ukl = D U2 5 2 Wikl = > W2,
m=1 m=1

However it is an “easy exercise” to see that the norms are equivalent in the
sense that there is a k (relative condition number of norms) so that

1
WUkl < IWjlle < & 1Uskll= -
If the scheme is von Neumann stable for each m, then “it is an exercise” to see
that

Uk

e < 82U

2 -

If a scheme for a hyperbolic system is stable, and if it’s in more than one
dimension and not a scalar, or if it’s more than first order accurate, then it’s
stable only in norms related to I2. No scheme like this can be stable in any other
I? norm, in particular, not the max norm or the ' norm. It’t von Neumann
analysis or nothing.

If a scheme is stable and has order of accuracy p, then the error is also
order p. The proof is as usual (in different notation, also as usual) Let E; ) =
Ujr — u(xj,ty) be the error. Denote the time step abstractly as S, so

U.’k+1 = SU.’]C .
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Then
E 1= SE.)/C + R} .

We fix a time T and look at a time ¢, < T'. Assume that ||R. ;|| <r. Then (we
saw this before)

1B nll <> IS * R k|

k=1

< CAtY Rl
k=1
< CrnAt

=rCt, .

If r = O(AtP) then || E. || = O(At?). This is the Lax version of the proof that
stability and accuracy implies convergence.

5 Phase error, disperson and dissipation

Phase error refers to the fact that a complex number that should be z is in fact
e'?z. The real number ¢ is the phase error. Figure 2 shows what can happen
if you make extreme phase errors in the Fourier coefficients of a nice function.
To make the pictures, I started with a “bump function” (the blue curve) that
has the form f(z) = e=*"/(2") 50 r sets the scale of the bump. I calculated the

Fourier coefficients fa and multiplied them by a random phase:
27\04 = ei¢a fa .

The phases ¢, were chosen random (uniformly distributed) in the interval
[0, 27], except that I took ¢_, = 1¢, so that

g(w) — Z/g\aeikax
«

is real. T actually did this using the FFT and a uniformly spaced set of grid
points x;.

Roughly speaking, the Fourier coefficients of f are “important” (far enough
from zero to effect the behavior of f) if k, is not much bigger than 1/r. This is
the same as saying the length scale of e’*>® is not much smaller than r. Since
we change the phase but not the magnitude, the same Fourier coefficients are
important in g. This means that g moves on a length scale of r but not faster.
You can see this in the plots. The “fat” bump function leads to a g that has
big wiggles but not small ones. The “thin” bump function has a g with faster
wiggles. What people call the frequency content of f and g are the same, even
though the functions look different.

The difference between f and g is that in f the plane wave phases are
“coherent” so that they add up to a coherent structure, which is the bump.
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original and mangled functions
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original and mangled functions

1.0 T

Figure 2: A local “bump function” (in blue) what what happens when you multiply
the Fourier coefficients by random phases (green). The coherent structure of the
original function is lost.
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When you mangle (change) the phases at random, this coherence is lost. The
local structure in f is replaced by a delocalized incoherent g. You also can see
that the amplitude of g (the maximum height) is smaller for the thin function
than for the fat one. If you believe that g is relatively homogeneous, then the
smaller height is a consequence of the fact that f is thinner. The energy of f
and ¢ is the same (the Parseval relation), so a thinner f means a g with less
energy.

For PDE solving, finite difference schemes introduce phase errors. A coherent

structure like a thin bump or a sharp step will get mangled by phase errors. Not
as severely as here (see Figure 1), but mangled some.

6

Exercises

. Consider the linearized gas dynamics problem with coefficient matrices

(21) in three dimensions. Show that the characteristic speeds in direc-
tion k are vg with multiplicity 2 and v; & c. Here vy, = 37, kjv; is the
velocity in the k direction. Show that the corresponding modes are: (a)
two shear modes with no density/pressure disturbance but transverse ve-
locity disturbance (perpendicular to ), and (b) two acoustic modes with
density disturbance and longitudinal velocity disturbances (i.e., velocity
disturbances only in the direction of k.

. The Friedrichs scheme (also called Lax Friedrichs because Lax suggested

that it be used in practice while Friedrichs only used it to prove something)
is a stabilized version of the unstable centered difference in space, forward
Euler in time scheme. Instead of Ujj, it uses the average %(Uj—l,k +
Ujt1,%). The scheme is

At

1
Ujkt1 = 5Uj—1k + Uj1,6) — As

3 AUjsr e —Uj—1k) -

(a) Show that this scheme is first order accurate.

(b) Do the von Neumann analysis to show that the scheme is stable if the
PDE is strongly hyperbolic (full family of real linearly independent
eigenvectors) and the geometric CFL condition is satisfied.

(c) Fun fact: the scheme is inconsistent if At = Az? as Ax — 0. That
is, || Rx|| does not go to zero as At — 0 with Az = At'/2,

3. The scalar wave equation with variable propagation speed c(z) is

OPu=c(x) ANu. (36)

This second order equation can be converted to a first order system, or it
can be solved with schemes specific to second order problems. The leap
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frog scheme® in two dimensions is

1

N (Ui k1 = 2Ui ji + Ui jk—1)

1
= CQ(Ii,yj)@ Uitk +Uict gk + Uijre + Ui g1k — 4Ui jk) -

(a) Show that the scheme is second order accurate, for smooth solutions.

(b) Assume that ¢ is constant. Show that the PDE (36) has plane wave
solutions that move with speed ¢ in any direction k. (This justifies
calling ¢ the “sound speed” or “propagation speed”.)

(c) Assume that c is constant. Show that the scheme is stable (assume
periodic boundary conditions in space. Use von Neumann analysis
in space and recurrence relation type analysis in time.

4. Write a code to solve the variable speed scalar wave equation (36) with
propagation speed

o(z,y) =1 — (1 — cpin)e @ T¥/@)

This wave speed has a maximum ¢ = 1 for large (z,y) and a minimum
Cmin > 0 at (z,y) = (0,0). The parameter r sets the length scale of the
region where waves go slower. Choose initial data a plane wave moving
to the right in the x direction but starting to the left of the slow region
(you decide the precise parameter values and wave shape). Note that you
have to choose initial data u(x,y,0) and dyu(x,y,0). These must work
together to get the desired plane waving moving right. Do this in a square
box with Neumann boundary conditions (Carl Neumann is not related to
John von Neumann). The are 0,u = 0 at vertical boundaries and 9y = 0
at horizontal boundaries. Show that the Neumann boundary condition
can be enforced by symmetry like the Dirichlet boundary condition. But
the Neunann condition symmetry is even rather than odd symmetry. Use
a natural discretization of the Neumann boundary condition that comes
from discrete symmetry. Make a movie or some contour plots to show
what happens to the plane wave at the slow patch. Do a grid refinement
study to demonstrate that you have computed the solution accurately.
You will observe wave focusing as the wave crosses the slow region if r is
enough bigger than the length scale of the plane wave initial data.

5The name comes from a kids’ game where kids take turns jumping over each other. The
scheme does a leap from t;_1 to tpy.
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