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Section 4: Some solution techniques

1 Affine models

Affine models are pricing equations in finance that have particular exponential
solutions. The Heston stochastic volatility model is a famous example. Pricing
problems for these models have semi-analytic solutions that take the form of
an explicit formula for the Fourier transform. There does not seem to be an
explicit formula for the Fourier integral, but even so, the FFT makes it possible
to evaluate the solution quickly and accurately. The book The Volatility Surface
by Jim Gatheral has more background and details than are presented here. And
much of what’s here comes from there.

1.1 The mathematical idea

The basic idea goes back at least to the great Russian physicist L. D. Landau.
A linear PDE with constant coefficients may be solved by the Fourier transform
because it has solutions that are plane waves. Landau observed that variable
coefficient linear PDEs also may have plane wave solutions, but the wave vector
will be time dependent. As a first model problem, take a linear advection
equation with linear velocity field:

∂tu − α∂x (xu) = 0 . (1)

We have solved the initial value problem for this equation before, so we know
that if the initial data form a plane wave, u(x, 0) = eipx, then the solution has
the form

u(x, t) = A(t)eip(t)x . (2)

Before, we derived (2) from (1) using the method of characteristics. Now we
do it a different way that illustrates the general method. Assume that (1) has
a solution of the form (2) and seek formulas for p and A that make it work. In
other words, we make (2) an Ansatz for the solution of (1). Rewrite the equation
in characteristic form

∂tu − αx∂xu − αu = 0 ,

and plug in ∂tu = Ȧeipx + iṗxAeipx and ∂xu = ipAeipx, to get

Ȧeipx + iṗxAeipx + αxipAeipx + αAeipx = 0 .
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First we cancel the common exponential factor:

Ȧ + iṗxA − αxipA − αA = 0 .

Then we set the coefficient of x and the coefficient of the constant term equal
to zero separately, which gives

ṗ = αp0 , Ȧ = αA . (3)

Therefore,
p(t) = eαtp(0) , A(t) = A(0)eαt .

Thus we learn that if u(x, 0) = eipx, then

u(x, t) = eαt eie
αtpx . (4)

First verify that the solution formula (4) agrees with what the solution is
supposed to look like. Look at the imaginary part, eαt sin(eαtx). If α < 0,
the characteristics diverge, carrying the points where u = 0 away from the
origin. The zeros of sin(eαtx) do spread out as they should. We also recognize
the exponential decay of the amplitude of the solution in the case of diverging
characteristics. Finally, the solution formula is somewhat complicated. This
will get worse as we consider more complicated models.

The general initial data may be written as an integral superposition of plane
waves

u(x, 0) = f(x) =
∫ ∞
−∞

eipx f̂(p) dp .

Since (4) says what happens to eipx, so we have

u(x, t) =
∫ ∞
−∞

eαt eie
αtpx f̂(p) dp .

In complicated models, we will stop here, but for this case we can continue.
Change variables in the integral: eαtp = q:

u(x, t) =
∫ ∞
−∞

eiqx f̂(e−αtq) dq . (5)

Recall that the Fourier transform of f(λx) is 1
λ f̂(p/λ) and take 1/λ = e−αt

and we see that f̂(e−αtq) is the Fourier transform of eαtf(eαtx). Therefore, the
integral (5) is

u(x, t) = eαtf(eαtx) .

Please check that this formula satisfies the original advection equation (1). You
found the same result in Homework 2 using the method of characteristics. Note
that if α > 0 and the characteristics are converging, the solution at x at time t is
determined by the initial data at point eαtx, which is further away as it should
be. The amplitude is determined by the condition that

∫
u(x, t)dx =

∫
f(x)dx.
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The same method applies when we add a diffusion term to (1):

∂tu − αx∂xu − αu =
1
2
∂2
xu . (6)

The ansatz (2) is the same and the parameter equations (3) become

ṗ = αp , Ȧ = αA − 1
2
p2A . (7)

Again p(t) = p(0)eαt, which gives

Ȧ =
(
α − e2αt p(0)2

2

)
A .

The solution is

A(t) = eαt exp

(
−
(
e2αt − 1

)
p(0)2

4α

)
A(0) .

One use of this formula is to write the general solution in terms of the Fourier
transform of the initial data. We write p for p(0) and f̂(p) for A(0):

u(x, t) =
eαt√
2π

∫ ∞
−∞

eipe
αtx exp

(
−
(
e2αt − 1

)
p2

4α

)
f̂(p) dp .

This is not quite in the form of a Fourier integral since it has eipe
−αtx instead

of eipx. This can be fixed as above using the substitution q = eαtp :

u(x, t) =
1√
2π

∫ ∞
−∞

eiqx exp

(
−
(
1− e−2αt

)
q2

4α

)
f̂(e−αtq) dq . (8)

Observe that this formula states that the Fourier transform of u(x, t) in the x
variable is

û(p, t) = exp

(
−
(
1− e−2αt

)
p2

4α

)
f̂(e−αtp) . (9)

In particular, û(0, t) = f̂(0), which indicates that
∫
u(x, t)dx =

∫
f(x)dx, as it

should.
These formulas are getting complicated and will get more complicated. What

use are they? One use finding a formula (also complicated) for the Green’s
function. The Green’s function satisfies the initial value problem with initial
data f(x) = δ(x−y), with y a fixed parameter. The solution is G(y, x, t). Since
we may write any initial data as f(x) =

∫
f(y)δ(x − y)dy, we get a different

formula for the solution of the initial value problem (review of Section 1)

u(x, t) =
∫
f(y)G(y, x, t) dy .
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The Fourier transform of δ(x− y) is∫ ∞
−∞

1√
2π
e−ipxδ(x− y) dx =

e−ipy√
2π

.

Using this in (9) gives

G(y, x, t) =
1

2π

∫ ∞
−∞

eipx exp

(
−
(
1− e−2αt

)
p2

4α

)
e−ipe

−αty dp

=
1

2π

∫ ∞
−∞

eip(x−e
−αty) exp

(
−
(
1− e−2αt

)
2α

· p
2

2

)
dp .

This might look like a mess, but the integral is over p and the exponential in
the integrand has is just a linear plus a quadratic function of p. There is an
explicit formula for such an integral, which we know as the Fourier transform
of a Gaussian: ∫ ∞

−∞
eiβt−

γ2

2 t
2
dt =

√
2π
γ

e−β
2/2γ .

Setting t = p, β = x− e−αty, and γ =

√
1− e−2αt

2α
, gives

G(y, x, t) =
√

α

π (1− e−2αt)
e−(x−e−αty)2

α/(1−e−2αt) . (10)

As a function of x, this is a Gaussian with mean e−αty. The variance converges
to 1/2α as t → ∞. You may remember from Stochastic Calculus that the
probability density of a particle satisfying the Ornstein Uhlenbeck process dX =
−αXdt+ dW converges to that same Gaussian as t→∞.

Integral formulas like (8) also are good for finding approximations to the solu-
tion in special cases. Such approximations may be more useful than complicated
formulas. Look at (8) for large t. The integrand in (8) decays exponentially
unless f̂ misbehaves. Therefore, most of the answer is determined by not too
large q values. If t is large, f̂(e−αtq) ≈ f̂(0). Also, the real exponential factor
is approximately e−q

2/4α. Therefore,

u(x, t) ≈ 1√
2π
f̂(0)

∫ ∞
−∞

eiqxe−q
2/4α dq .

But f̂(0) = 1√
2π

∫
f(x)dx, and the remaining integral is

√
π/4α e−αx

2
, so

u(x, t) ≈
√
α

π
e−αx

2
·
∫ ∞
−∞

f(y) dy .

This shows that the solution of the initial value problem for (6) has

u(x, t) →
√
α

π
e−αx

2
·
∫ ∞
−∞

f(y) dy as t→∞ .
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You should check that e−αx
2

is a steady solution (a solution with ∂tu = 0)
because it satisfies α∂xu + αu = 1

2∂
2
xu. The constants

√
α/π and

∫
f(y)dy

are determined by conservation of mass. You probably learned in Stochastic
Calculus that this is supposed to happen. The large time behavior of u depends
only on the initial mass. It forgets everything else about the initial data.

1.2 Other exponential solutions

The exponential ansatz (2) and the algebra around it apply also to complex
valued functions p(t). The corresponding solutions are quite different despite
the similarity in the algebra. The formula (10) suggests that we put quadratic
terms as well as linear ones in the exponent. For example, we could seek a
solution of (6) of the form

u(x, t) = A(t)eb(t)x .

(Note the change in notation that signals the changing nature of the solution
– the exponent is not a wave vector so we don’t call it p.) The equation (6)
becomes (dropping the t dependence for simplicity)

Ȧebx + Aḃxebx − αxAbebx − αAebx =
1
2
Ab2ebx .

We drop the common term ebx, then equate coefficients of x, then the constant
(in x) terms:

ḃ = αb , Ȧ = αA +
Ab2

2
.

Of course, this is the same as (7) with the substitution p = ib. You should
check that you understand why the exponential eb(t)x becomes steeper with
time (hint: α > 0 implies compression) and why the overall amplitude grows as
well (diffusion).

The motivating formula (10) has a quadratic in the exponent. If we take
such an ansatz:

u(x, t = A(t)eb(t)x+c(t)x
2/2 , (11)

then (6) becomes (leaving out the common exponential factor)

Ȧ + ḃAx + ċA
1
2
x2 − αxb − αx2c − αa =

1
2
c2x2A + bcxA +

1
2
(
b2 + c

)
A .

We collect the coefficients of x2 to get:

ċ = αc +
1
2
c2 . (12)

This implies that if c(0) > 0, then c blows up at some time T > 0. This
means that c(t) → ∞ as t → T . It indicates that there is no solution of this
form beyond that point. It does not contradict the existence theorem because
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the existence theorem depends on some bound on how the initial data grow at
infinity. Initial data like ec(0)x

2
grows too fast.

On the other hand, if c(0) < 0 then the solution of (12) converges to a fixed
point, c∗, which is a value of c for which cot c = 0. This is αc + 1

2c
2 = 0, or

c∗ = −2α. Of course, 1/c∗ = 1/2α is the asymptotic variance that was clear
already in (10). We can find the solution corresponding to the Green’s function
by looking for c→ −∞ as t→ 0. See Problem 2 of Homework 4.

1.3 The Heston model

The Heston model produces a theoretical price, u(s, v, t), for a European style
option that expires at time t from now assuming that the current (spot) price
is s, the spot volatility is v, and the option payout is f(st). The PDE is

∂tu =
vs2

2
∂2
su + rs∂xu + ru + ρηvs∂v∂su +

1
2
η2v∂2

vu + λ(v−v)∂vu . (13)

We will talk about the derivation later, but for now, v represents the instanta-
neous squared volatility and s the spot price. They satisfy

dS(t) = µs(t)dt +
√
V (t)S(t)dW1(t)

dV (t) = −λ(V (t)− v)dt+ η
√
V (t)dW2(t) ,

where W1 and W2 are Brownian motion paths with correlation coefficient ρ.
We use the convention of representing random quantities by capital letters and
the variables themselves (whatever that means) by lower case. As usual, µ is
the (constant) rate of expected return, η is the volatility of volatility (volvol),
v is the equilibrium squared volatility, and λ is the rate of memory loss for the
fluctuating volatility. See Jim Gatheral’s book.

We do some routine reductions before getting to the main point. Substituting
x = ln(s) gives

∂tu =
v

2
∂2
xu + (r − v

2
)∂xu + ru + ρηv∂v∂xu +

1
2
η2v∂2

vu + λ(v − v)∂vu .

The substitution u = ertũ removes the term ru. The change of variable x =
x̃− rt removes the r∂xu term. What remains is a little smaller:

∂tu =
v

2
∂2
xu −

v

2
∂xu + ρηv∂v∂xu +

1
2
η2v∂2

vu + λ(v − v)∂vu .

If we had all day (or all week as Heston must have had), we could solve this
equation using the Fourier transform in x and v space. The first step would be
to find solutions of the form

u(x, t) = A(t)eip(t)x+iq(t)v .

Unfortunately, this path leads to complex (in both senses) and confusing algebra
that we don’t have time to pick our way through.
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Instead there is a simpler method for the most important case where the
payout is independent of v (as most payouts are). This has the consequence that
the initial data, which is the payout, are independent of v: u(x, v, 0) = f(x).
None of the coefficients depends on x so we may take the Fourier transform in
x only, to get û(p, v, t), which satisfies

∂tû =
−vp2

2
û − ivp

2
û +

1
2
η2v∂2

v û +
(
iρηvp + λ(v − v)

)
∂vû .

This is a PDE in one variable with coefficients proportional to that variable and
p as a parameter. The initial condition is a constant (that depends on p but
not v). Therefore, we seek a solution of the form

û(v, t; p) = A(t)eD(t)v ,

with D(0) = 0. The technique is as above but the algebra is more complicated.
There is no closed form formula for the resulting Fourier integral u(x, v, t) =∫
eipxû(p, v, t)dp. It is done in practice using the FFT.
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