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Always check the class bboard on the blackboard site from home.nyu.edu (click on academics, then

on the course name) before doing any work on the assignment.

Assignment 2, due February 5

Corrections: (none yet)

1. Suppose Z € R" is a multivariate standard normal. That means that the
joint density is given by f(z) = W exp (Z Yp_; 22). In this problem,

||z|| always represents the Euclidean norm ||z||* = Sh_ 2

(a)
(b)

Show that [|Z||> = S27_, Z2 has a x2 distribution. (This is for
emphasis, since it’s almost the definition of x2.)

Let V C R™ be a linear subspace of dimension m, and let Py be the
orthogonal projection onto V. If z € R” and w = Pyz € V, show
that w solves the minimization problem

. 2
min |Jw — z||” .
weV

(Again for emphasis, since this is closely related to the definition of
orthogonal projection.)

Let W = Py Z, with Z as above. Show that W is a standard nor-
mal random variable in V' in the same sense in which Z is a stan-
dard normal in R™ (covariance = I,,x.,). Use this to show that
[W* = S27_, W2 has a x2, distribution. Tt may help to think of an
orthonormal basis of m vectors in V.

Let x = (x1,...,2,) € R"™ be given fixed vector (not random) and
let V' be the set of z € R™ orthogonal both to both z and 1. Let
W = PyZ as above. Show that we can write W = Z — al — bz,
where a and b depend on Z. Find formulas for ¢ and b in terms of x
and Z, Hint: minimize over a and b the expression

n

2 2
IWI* = > (2, —a— bay)
k=1
by setting the derivatives with respect to a and b to zero. This is one
way to look at standard least squares regression.

Show that a and b are Gaussian random variables. Find their means,
variances, and covariance. Recall that Z is random and z is not
random. The answers may depend on x, but not on Z.

Show that >"}_,(Zx — a — bxg)? ~ x2_,, using the optimal a and b
from part (d).



2. Suppose X and Y are jointly normal with mean zero, variances o2 and
0%, and covariance oxy. (X and Y are each one dimensional.) Write the

joint probability density f(z,y). Use this to show that

By = [ [ feydey = ot +ob +03,. ()

This is an example of a general formula called Wick’s theorem. The pur-
pose of this exercise is to give you practice manipulating Gaussian prob-
ability densities.

3. Suppose X € R™ and Y € R™ are jointly normal with (n +m) X (n +m)
covariance matrix
” - ( OXX OXY )
oyx Ovy

This is a 2x 2 block matriz, with each entry representing a matrix. The top
left entry is the n x n covariance matrix of X, The bottom right entry is
the m x m covariance matrix of Ywith oxx. The top right entry contains
covariances between X and Y components:

OXY,jk = Ccov (Xj, Yk) .

This matrix has one row for each component of X and one column for each
component of Y, which makes it an n x m matrix. The lower left matrix
is the transpose of this. You should check that this o is the covariance
matrix of the n +m component vector (X,Y).

(a) What is the marginal distribution of Y if we do not observe X7 It
will be easier to describe it as a certain joint normal distribution than
to write the probability density function.

(b) What is the conditional distribution of Y given an observation of X?
This may be written as a density f(y | X), but it again is easier to
describe it as a multivariate normal whose parameters depend on X
in some way.

(c) It the context of Bayesian statistics, suppose that X ~ N(u,1),
were we have a prior on p that is g ~ N (o, ai), and a conditional
distribution that given pu, X ~ N(u,0%). In the general Bayesian
framework p is called 0 and the distribution of X given p is f(x | p).
We are saying f(x | u) = N(u, 0% ). Here we interpret u as a random
variable rather than an unknown constant. Suppose that we first
choose p1 ~ N (pg,07,), then choose X ~ N(u,0%). Show that the
resulting joint density of (X, i) is normal in the sense above, with p
playing the role of Y.

(d) Suppose instead we choose X = (Xi,...,X,), with each compo-
nent from the N(u,0%) distribution, but with the X}, independent.
Show that this (X, u) falls under the above general framework. De-
scribe the posterior distribution of u given the n observations X =
(X1,...,Xn).



(e) Show that the posterior variance of p (the variance of u | X) is on
the order of 1/n.

(f) The parameter o, represents our prior confidence of our knowledge
of p. Show that the answer to part (d) has the property that the
mean of the posterior distribution converges to the sample mean as
0, — o0. In this way, the Bayesian estimate converges to the usual
one if the the case of a flat prior — one with no information.

(g) Show that the posterior distribution of x converges to g as 0‘3 — 0.
How do you interpret this?

4. In Matlab you use rand to generate independent random variables uni-
formly distributed in [0,1]. Suppose U is such a random variable and
T = —In(U)/A. Show that T is an exponential random variable with
rate parameter A. The probability density of such a random variable is
f(t) = Xe 2 if t > 0, and f(t) = 0if ¢t < 0. In Matlab, generate a large
number (maybe a million) of such independent exponentials, make a his-
togram, and show that the histogram has the right shape. Meucci’s book
has some hints about histograms. In particular, you need to make the bin
size not so large that you don’t see the distribution and not so small that
the heights of the individual bars are very noisy. If At is bin size, the ex-
pected number of samples in a given bin is approximately nf(¢)At, where
t is the midpoint of the bin and n is the number of samples in all. Have
Matlab put the histogram and the expected heights on the same graph so
that you can see that the random variables are being generated correctly.
Use one or two different A values.



5. Calculate u and o2, the mean and variance of the exponential random
variable of Question 4. For each m, define the random variable

Ry, = %;(Tj — pir) -

For large m, the distribution of R,, should (according to the Central Limit
Theorem) be approximately normal with mean zero and variance o2. For
various values of m, make a plot similar to that of Question 4, with the
histogram and the probability distribution. Put the normal approximation
on the same plot. For small m (2, 5, ..), the fit will not be very good,
the histogram values will not be so well fit by the normal approximation.
For larger m the fit should improve. Hand in a few plots that illustrate
improving fit as m increases.

6. Suppose V = 2U — 2 is uniformly distributed in [—1, 1] and we use it to
make the two component random variable X = V, Y = V3. Compute
the 2 x 2 variance/covariance matrix of (X,Y). Let R,, = ﬁ oy Vi
and S, = \/% Z;anl ng. Use Monte Carlo simulation to estimate A,, =
E[R2, S2 ] for various values of m both small and large. Show that for large
values of m, the result is approximately given by the normal approximation

you can calculate from Question 2. Use a large number of samples (maybe
a million) for each value of m.



