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1. We are interested in estimating the large n bias of maximum likelihood es-
timation. We do this in two steps. The first step is a general mathematical
fact that underlies Ito’s lemma.

(a) Suppose X ∼ N (xo, ε). Suppose that f(x) is a smooth and bounded
function of x. Show that

E [f(X)] = f(x0) +
ε

2
f ′′(x0) + O

(
ε2
)
.

(b) Show that the bias in maximum likelihood estimation satisfies, for
large n,

E
[
θ̂
]
− θ∗ ≈

c

n
,

and give a formula for c that has something in common with the
formula for I. Hint: start as in class with

0 = M(θ̂) ≈ M(θ∗) + M ′(θ∗)
(
θ̂ − θ∗

)
+

1
2
M ′′(θ∗)

(
θ̂ − θ∗

)2

.

Assume that M(θ∗) ∼ N (0, I/n) and that M ′ and M ′′ have their
expected values.

2. A mixture model is a model that says that a given sample is chosen from
population 1 with probability p and from population 2 with probability
1 − p. Suppose population j has probability density fj(x). For each
sample, we first choose j = 1 or j = 2 with Pr(j = 1) = p. Then we
choose X ∼ fj . All choices are independent. In this exercise, we suppose
the distributions f1 and f2 are known and that we only want to estimate
the mixture parameter, p.

(a) Write an expression for the probability density f(x, p), where p is the
probability parameter above. Show that the information in estimat-
ing p is given by

I = E

[
(f1(X)− f2(X))2

f(x, p)2

]
=
∫

(f1(X)− f2(X))2

f(x, p)
dx . (1)
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(b) Suppose f1 = N (0, 1) and f2 = N (0, 4). Use Matlab to make a
plot of the integrand (1) and use some integration method (trape-
zoid rule, Simpson’s rule, some built in Matlab integrator, whatever)
to compute the integral to within 1%. The reason to plot the inte-
grand before integrating is that the plot will tell you what range of
integration to use. Use p = .2.

(c) Generate a set of L independent samples of the distribution of part
(b) (with p = .2) and use the method of maximum likelihood to
estimate p. Take L = 50. The challenge of this part is that you have
to find a way to solve the equations M( ~X, p̂) = 0, given your artificial
data set ~X = (X1, . . . , XL). This amounts to finding a way to solve
one nonlinear equation in one unknown. You can use bisection or
Newton’s method or find a Matlab function that does it.

(d) Repeat the computation of part (c) n times and get n independent
estimates p̂k for k = 1, . . . , n. Each p̂ comes from a new and indepen-
dent dataset ~X. This requires nL independent samples of f in all.
Compute the sample mean and sample variance of the p̂. Do these
satisfy our theoretical large n theory of mean and variance of p̂?

(e) Make a histogram of the samples of p̂ and compare it to a normal
with the correct mean and variance. Take n = 106.

(f) Repeat part (e) with L = 10 and L = 200. For L = 10, you should
clearly see departure of the distribution of p̂ from normality. Note
that the mean and variance of p̂ depend on L.

3. Consider a statistical model Y = a + bX + R, where R has a two sided
exponential distribution with density

f(r) =
λ

2
e−λ|r| . (2)

This is a non-gaussian distribution that has thin tails, though fatter than
gaussian tails. Suppose we have L pairs (Xk, Yk) and we want to estimate
a and b using maximum likelihood using the probability model

Yk = a + bXk + Rk , (3)

where the Rk are independent samples of the density (2).

(a) Show that (2) represents a probability density by checking that the
integral is one.

(b) Show that maximum likelihood estimation of a and b leads to the
condition that a be the median of the numbers Yk − bXk, and that∑
±Xk = 0, where the sign multiplying Xk depends on the sign of

the residual for point k.

(c) What is the maximum likelihood estimator of λ?
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(d) Let ân and b̂n be the estimates of a and b using n data points. Show
that there is an absolute bound C (which depends on X1, . . . , Xn and
Y1, . . . , Yn, but not on the new data point, so that∣∣∣ân+1 − ân

∣∣∣ ≤ C ,
∣∣∣̂bn+1 − b̂n

∣∣∣ ≤ C .

This C is independent of the new data point, (Xn+1, Yn+1), no matter
how large or strange it may be. Show that “linear” regression (based
on least squares, which is maximum likelihood with a gaussian error
model) does not have that property. On the contrary, a new data
point can make arbitrarily large changes to the regression coefficients.
This shows that using the double exponential error model leads to
more robust estimates of a and b. Accidental corruption of a small
number of data points does not completely ruin the answer.
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