Risk and Portfolio Management with Econometrics, Courant Institute, Spring 2009
http://www.math.nyu.edu/faculty/goodman/teaching/RPME09/index.html
Always check the class bboard on the blackboard site from home.nyu.edu (click on academics, then on the course name) before doing any work on the assignment.

Assignment 5, due February 25

Corrections: (none yet)

1. Verify the formula (7) in the proof of the Lemma.
2. Verify the second step in the proof of the SVD, that $u_{3}=A v_{3}$ is orthogonal to u_{1} and u_{2}. Note that one of these verifications is a consequence of the lemma.
3. Suppose A is an $n \times m$ matrix with $m \leq n$. Show that

$$
\sigma_{m}=\min _{\|y\|=1}\|A y\|
$$

Hint: Try using:

$$
\|A y\|^{2}=(A y)^{t}(A y)=y^{t}\left(A^{t} A\right) y
$$

4. Show that $\left\|X-X_{k}\right\|_{F}^{2}=\sum_{j=k+1}^{m} \sigma_{j}^{2}$. That is, the error in the optimal rank k approximation is the sum of the neglected singular values (principal components).
5. Show that the Tychanoff regularization formula is the solution to the penalized least squares minimization problem

$$
\min _{b}\left(\|Y-X b\|^{2}+\epsilon^{2}\|b\|^{2}\right)
$$

Here, ϵ is the penalty parameter that penalizes very large regression coefficients.

