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Section 1, Mean variance analysis
All models are wrong. Some models are useful.

– George Box, Statistician

1 Risk and return

The buy side of the financial services industry is about deciding how to invest
resources. An investor is a person who has (or an institution that has) an
endowment to invest for the purpose of increasing the endowment. This investor
could be an individual with retirement savings, a university with an endowment,
a pension fund manager, a company with capital, or a professional manager
investing in behalf of clients.

The investor, or the buy side professional acting on the investor’s behalf,
has a tradeoff between expected return and risk. He or she makes investment
decisions without knowing which ones will yield the greatest return. Of course,
we try to predict the returns of various investments. But we also model the
uncertainty in our forecasted returns. An investor may hesitate to invest in
a scheme that is likely to make him or her wealthy but has some chance of
bankrupting him or her instead.

The theory of investment frames these issues systematically using probability
models and optimization. The probability model is a description of the future
as a random variable. We cannot predict the future state of the world, but
we try to predict or model the probability distribution it is taken from. The
optimization problem is to choose the best possible investment (or investment
strategy) in light of the potential gains and risks as quantified in the probability
model.

This class will follow the historical development of this subject and start
with probability models and portfolio selection criteria that now are believed to
be naive and dangerous.2 Nevertheless, it will serve as a basis for more refined
probability models and selection criteria that prudent investment institutions
use today.

It is possible to discuss these issues in a philosophical way, but I prefer to
begin by formulating specific if unrealistic models. The drawbacks of these
simple models will guide the more sophisticated models and selection criteria
that are the main object of this course.

1Disclaimer: The author of these notes holds some opinions that differ from those of some of
the authors of the standard texts and some investment practitioners. He sometimes indicates
areas of disagreement, but the reader should understand that some of the opinions expressed
in these notes are not universally shared by all investors.

2The popular book The Black Swan, by Nassim Taleb (Fellow of the program in financial
mathematics at Courant) makes this point forcefully.
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2 Mean Variance analysis

Classical portfolio theory, as it existed in about 1975, had two parts. The
first was mean variance analysis as a way to allocate assets in a world of risk
and return. The investor was assumed to know the risks and the returns of all
available investments, but his or her choices were assumed not effect the market,
neither prices nor uncertainties in returns. The second part explored what the
world would be like if every investor used mean variance analysis, using identical
estimates market parameters. We comment on this CAPM model briefly below.

A simple multi-asset investment problem is as follows. We have n risky
assets. Let Ri denote the return3 on asset i. We suppose our total wealth to
be invested is 1, in some units. We will allocate wi to asset i. Assuming that
the investment is linear (not true in many business decisions, but nearly true in
investments), the total return will be

R =
n∑

i=1

wiRi . (1)

The total expected return is

µR = E [R] =
n∑

i=1

wiE [Ri] =
n∑

i=1

wiµi , (2)

where µi = E [Ri] is the expected return from asset i. We postpone a longer
discussion of some of the ways (1) and (2) can be wrong. But one of the major
ways is that (2) implicitly assumes that the numbers µi are known. We must
take (1) subject to the endowment constraint

n∑
i=1

wi = 1 . (3)

Since the wi sum to unity, they often are called weights in the portfolio allocation
problem. However, we do not always constrain the wi to be positive, so some
of the asset weights can be negative.

The most naive possible portfolio allocation problem would be to choose the
wi subject to the constraint (3) in a way that maximizes the expected return
(2). This leads to trivial results. If there are no constraints on the wi other
than (3), there is no optimum (except in very special cases). We put a large
positive weight on the asset with the largest µi and compensating negative
weights on assets with smaller expected return. Such allocations are illegal or
anyway impossible for most investors.

But even if possible, most investors would find such extreme choices too
risky. Although the expected return is a large positive number, there also is a

3If you buy at price P1 and sell at price P2, the return is the dimensionless number
R = (P2 − P1)/P1.
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substantial probability of a large negative return. Most investors would want to
balance the expected return of an investment with the risk involved.

Variance is one measure of the risk of an asset allocation. Suppose the Ri

have variances and covariances:

σ2
i = σii = var [Ri] = E

[
(Ri − µi)

2
]
, (4)

and
σij = cov [Ri, Rj ] = E [(Ri − µi) (Rj − µj)] . (5)

The the variance of the total return in (1) is

σ2
R = var[R] =

n∑
i=1

n∑
j=1

wiwjσij = wtΣw , (6)

where we use matrix notation for the last equality: w is a column vector whose
components are the wi, wt is the row vector that is the transpose of w, and Σ is
the covariance matrix whose entries are the variances and covariances (4) and
(5).

The risk averse investor chooses the weights wi to make the expected return
(2) large and the risk, as measured by the variance (6) small. There is no
universal risk/return tradeoff that holds for all investors. Some will tolerate
more risk for the sake of higher expected return, while others will tolerate lower
expected return for the sake of less risk. This class will cover many technical
ways to specify the risk/return tradeoff, but all of them have disadvantages.

We cannot identify a universal optimal portfolio, but we can identify many
portfolios as sub-optimal. In the context of mean/variance analysis, a portfolio
is called inefficient if it is possible to increase the expected return without
increasing the variance, or (which is the same thing), if it is possible to decrease
the variance without decreasing the expected return. A portfolio is efficient if
it is not inefficient. The set of efficient portfolios forms the efficient frontier in
w space, the space of all portfolios that satisfy the wealth constraint (3).

2.1 Market assumptions

The mean and variance analysis we do here uses many simplifying assumptions
and approximations. A complete list would degenerate into philosophy, so here
are just a few.

• The matrix Σ and the vector µ are known exactly.

• The investor can purchase any amount of any asset, either positive or
negative. Having a negative amount of a risky asset is short selling, or
simply shorting. Having a negative amount of the risk free asset is called
borrowing. There is no restriction that the number of shares owned should
be an integer.
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• The investor is a price taker, which means that the investor may purchase
any amount of the asset, and nothing the investor does will effect the asset
price. The price per share is independent of the amount purchased.

• The price is the same for long and short positions. This really is a combi-
nation of previous points.

• There are no transaction costs, which means that if an investor first buys
w worth of any asset then immediately sells it back, the net change of
wealth of the investor is zero. If there were transaction costs, this round
trip would have a non-zero net cost to the investor. This also is implicit
in the above points.

None of these is exactly true in actual markets. Market parameters are not
known exactly. There are costs associated with borrowing beyond paying the
risk free rate. There are limits to the investor’s ability to borrow, limits that
have become more severe in the past year.

Even small investors are not pure price takers. For example, if the ask price
for a given security is X, that means that someone has an outstanding offer
to sell shares of that security at the price X. In a typical situation, there is
a relatively small number of shares available at the ask price, as few as 100
shares. If the investor wishes to purchase 200 shares, he or she will have to buy
the second 100 at a slightly higher price. This is called moving the market. The
total price per share for the 200 shares will be slightly more than X.

There usually is a gap between the lowest ask price and the highest bid price,
the price at which there is an outstanding offer to buy. The difference between
these is the bid-ask spread.4 If an investor would buy then immediately sell a
share, he or she would lose the bid-ask spread, even if the market did not move
(the bid and ask prices did not change) and there were no other transaction
costs.

An asset is liquid if it is easy to buy or sell. It is rare that an asset is totally
illiquid – cannot be bought or sold at any price. More commonly, the degree
of liquidity of a market traded asset is measured by its bid-ask spread and how
much transactions move the market. Very liquid assets are, for example, market
index futures. Less liquid are individual corporate bonds.

Unknown liquidity is a form of risk as important as unknown µ and Σ.
Published prices typically are only the best bid and ask prices. It may be hard
to know in advance how many shares will be available at the bid and ask prices,
or how much a given size of transaction will move the market. For example,
suppose X(t) is the time varying price of a given asset. A stop loss strategy
is to sell asset at price X0 the first time X(t) = X0. A lack of liquidity may
make this impossible. Many institutional investors suffered large losses in the

4Small price differences often are called spreads. For example, the difference in a bond
price for a default free bond and a bond that may default is the credit spread. The difference
between the return on short dated US Treasuries and LIBOR rates with the same maturities
is the TED spread – Treasury Euro-Dollar.
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Black Friday market decline in 1987 (20% drop in one day) as stock prices fell
discontinuously and bid offers disappeared completely.

2.2 Lagrange multipliers

The method of Lagrange multipliers is a mathematical technique for finding the
maximum or minimum of a function subject to constraints. In the simplest case,
there are n variables, x1, · · · , xn that form the components of a vector x ∈ Rn.
The problem is to find x that maximizes a smooth function f(x) over all x that
satisfy the constraint g(x) = c. The gradients ∇f and ∇g have to point in the
same direction at the optimal x. Otherwise, it is possible to change x in say
that g is constant but f increases (draw a picture to see this). The geometrical
condition about the gradients is expressed as requiring that there is a constant,
traditionally called λ (for Lagrange), so that

∇f = λ∇g . (7)

An interesting consequence of this is that we get the same kind of condition if
we seek to maximize g with a constraint on the value of f : ∇g = µ∇f . The
gradients still have to align, regardless of which is the objective function and
which is the constraint.

If there are m constraints gk(x) = ck, then there is a separate Lagrange
multiplier for each constraint:

∇f =
m∑

k=1

λk∇gk . (8)

In general, a collection of unknown variables is determined by the same number
of equations. In the present case, the n+m unknown variables are the n original
xi and the m Lagrange multipliers λk. The equations are the m equations
gk(x) = ck and the system of n equations (8).

As a minor technical aside, we remark that calculus is not needed for the
problem of maximizing a quadratic function subject to linear constraints. All
the results may be found by algebraic methods – completing the square. To
illustrate this, consider the problem of finding the unconstrained maximum of
f(x) = btx− 1

2x
tAx, where A is a symmetric n× n matrix. We could calculate

∇f = b − Ax and find x = A−1b by setting ∇f = 0. On the other hand, an
n dimensional version of completing the square would be the identity (reader:
check this):

f(x) = −1
2
(
x−A−1b

)t
A
(
x−A−1b

)
− 1

2
btA−1b .

Since A is positive definite, the smallest value of the right hand side is achieved
when the first term is zero, i.e. x−A−1b = 0. In the same way, neither Lagrange
multipliers nor calculus are really needed to derive the results below. We use
the calculus approach because it is clearer and simpler.
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2.3 The two fund theorem

An efficient portfolio minimizes the variance (6) with the expected return (2)
and total wealth (3) fixed. This forms a constrained optimization problem,
with f(w) =

∑
ij wiwjσij , g1(w) =

∑
i wiµi, and g2(w) =

∑
i wi. Because

the numbers σij form a symmetric matrix (cov [Ri, Rj ] = cov [Rj , Ri]), we have
(check this in the 2× 2 case, f(w1, w2) = w2

1σ11 +w1w2σ12 +w2w1σ21 +w2
wσ22,

if it is not clear)

∂wi
f(w) = 2

n∑
j=1

σijwj

The Lagrange multiplier condition (8) with m = 2 constraints for this case
becomes

n∑
j=1

σijwj = λ1µi + λ2 . (9)

This may be formulated as a matrix equation. Let µ = (µ1, . . . , µn)t be a
vector of expected returns and 1 = (1, . . . , 1)t be the vector of all ones. Then
(9) may be written Σw = λ1µ + λ21, or (we will see why the matrix Σ should
be invertible)

w = λ1Σ−1µ + λ2Σ−11 . (10)

A fund, f , (short for mutual fund) is a linear combination of assets 1, . . .,
n with asset i getting weight fi. Investing amount λ in fund f means that the
amount you buy of asset i is λfi. The formula (10) implies the two fund theorem:
any efficient portfolio is a linear combination of two mutual funds, f1 = Σ−1µ,
and f2 = Σ−11. Every investor uses the same two funds, but allocate between
them differently depending on their risk preferences. Different investors have
different Lagrange multipliers, λ1 and λ2, but every investor has the same f1
and f2.

2.4 A risk free asset and the mutual fund theorem

This analysis simplifies if we assume that there is one asset that has zero risk.
This is the same as saying that the asset pays a known return, which we call
r. The right side of (10) may not make sense, given that Σ is singular – the
variance of the risk free asset being zero. The above analysis assumed that Σ−1

exists. We have to do it over in a slightly different way if there is a risk free
asset.

Let w0 be the amount invested in the risk free asset, and wk the amount
invested in risky asset i, for i = 1, . . . , n. The total wealth constraint (3) now is

w0 = 1−
n∑

i=1

wi . (11)
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The total expected return is (use (11) to eliminate w0)

µR = E [R] = w0r +
n∑

i=1

wiµi = r +
n∑

i=1

wi (µi − r ) . (12)

The quantity µi − r is the excess return of asset i, the amount by which the
expected return on the risky asset exceeds the risk free rate. Excess returns
need not be positive.

The variance of the portfolio is still given by (6) because the risk free part
makes no contribution to the variance. The difference here is that

∑n
i=1 wi 6= 1.

Minimizing (6) with (12) as a constraints leads to

n∑
j=1

σijwj = λ (µi − r ) . (13)

In vector notation, vector of risky asset weights (w = (w1, . . . , wn)t is the vector
consisting only of risky asset weights) in the mutual fund is

w = λΣ−1 (µ − r1 ) . (14)

Note that this is a linear combination of the two mutual funds in the two fund
theorem (10). The wealth constraint (11) in vector form is

w0 = 1− 1tw = 1 − λ1tΣ−1 (µ − r1 ) . (15)

The formula (15) explains λ as a parameter that represents the level of risk
aversion of the investor. For λ = 0, the investor tolerates no risk, and puts
all of his or her endowment in the risk free asset. As λ increases from zero
(assuming the coefficient of λ is positive), the investor starts to put some assets
in the risky mutual fund. When λ is very large, w0 is negative, which indicates
borrowing. An investor who is willing to tolerate high levels of risk will borrow
at the risk free rate to invest in risky assets that have a higher expected return.
Amplifying the return on an investment by borrowing is called leverage and is
discussed a little more below.

2.5 The efficient frontier

The set of all efficient portfolios forms the efficient frontier. Any investor using
mean variance analysis5 would choose some portfolio on the efficient frontier.
Such investors choose efficient portfolios that suit their risk preferences. The
mutual funds f1 and f2 depend only on the market, and not the individual
investor. The investor must choose λ1 and λ2 to satisfy the wealth constraint.
After that, there remains a one parameter family of choices.

The reader is warned that not every solution of the Lagrange multiplier
equations is a minimum, or even a local minimum. Even for a single function

5Such investors sometimes are called rational, but there are many rational reasons not to
use mean/variance analysis, see below.
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of one variable, f(x), not every solution of f ′(x) = 0 is a local minimum. It
is possible to be a local maximum, for example. This would correspond to the
largest possible variance compatible with a given wealth constraint and expected
returns (reader: Can this happen?).

The efficient frontier, the set of efficient portfolios, form as straight line in
risk/return space. We illustrate this in the case where there is a risk free asset.
The expected return (12), in vector notation, is

µR = E [R] = r + (µ− r1)t
w = r + λ (µ− r1)t Σ−1 (µ− r1) . (16)

As discussed above, λ = 0 puts all the assets in the risk free fund and therefore
returns r. Increasing λ increases the expected return, proportionate to λ. The
expected return goes to infinity as λ→∞.

We find the variance by substituting (14) into (6) and using Σ−1Σ = I:

σ2
R = var[R] = λ2 (µ− r1)t Σ−1 (µ− r1) . (17)

The standard deviation is the square root of the variance:

σR = sd[R] = λ

√
(µ− r1)t Σ−1 (µ− r1) .

This also is proportional to λ. The value λ = 0 has zero risk.
The Sharpe ratio is a quantity that measures the relation between risk and

return in a mutual fund. It is the ratio of the excess return and the standard
deviation. In the present case, it is

SR =
µR − r

σR
=
√

(µ− r1)t Σ−1 (µ− r1) . (18)

The Sharpe ratio of a portfolio of stocks measures the skill of the portfolio
manager. You can increase the expected return without using skill, but simply
by using leverage – borrowing at the risk free rate to invest in risky assets.
The Lagrange multiplier, λ measures this leverage. The ratio (18) is designed
explicitly to remove λ from the equation.

2.6 Portfolio β

Let R be the return on the optimal mean variance mutual fund. In the case
where there is a risk free asset, some linear algebra (below) gives the relationship

µi − r = βi (µR − r) , (19)

where

βi =
cov[Ri, R]

σ2
R

. (20)

Before giving the derivation, we comment on the formulas themselves. The
mutual fund has assets with a variety of returns, some high and some low.
The formula (19) says that the excess return of an asset is proportional to the
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overall excess return of the mutual fund, the proportionality constant being the
covariance of that asset with the overall mutual fund. The linear algebra below
shows that the weights in the mutual fund are adjusted to make this true.

The ratio (20) is the beta of asset i to the overall mutual fund. Some assets
in the optimal fund may have negative beta to the fund. It might seem that if
µi−r < µR−r, it would be better to leave asset i out of the portfolio. However,
a negative beta means that asset i is anti-correlated to the mutual fund as a
whole. This means that asset i tends on average to decrease when the mutual
fund increases. Including asset i therefore reduces the variance – the risk – of
the mutual fund more than it reduces the expected return.

The proof of (19) with (20) starts with a simple formula for the covariance
in question (see (13)):

cov[Ri, R] =
n∑

j=1

cov[Ri, wjRj ] =
n∑

j=1

σijwj = λ (µi − r) ,

so
µi − r =

1
λ

cov[Ri, R] .

Here, the value of λ is the one that gives the pure mutual fund, that is,

n∑
i=1

wi = 1tw = 1 .

Therefore, the desired (19) and (20) follow from understanding that this value
of λ is

λ∗ =
σ2

R

µR − r
. (21)

Here is the algebra behind (21). When λ = λ∗, so that
∑

i wi = 1, we have

µR − r =
n∑

i=1

wi (µi − r)

= wt (µ− r1) .

Using (13) to express µ− r1 in terms of w gives

µR − r =
1
λ∗

wtΣw =
1
λ∗

σ2
R ,

which is the formula (21).

2.7 The CAPM interpretation of β

The Capital Asset Pricing Model (CAPM) is a fanciful speculation of a possible
alternate universe in which everyone in the world invests using mean variance
analysis using the same µ and Σ. In that universe, everyone uses the same stock
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weights, though by different total amounts depending on their risk preferences.
Therefore, in that world, the total capitalization of asset i is proportional to
wi, the weighting in the optimal mutual fund of mean variance analysis. The
capitalization of a company is the total value of its outstanding stock. Therefore,
the mutual fund is the entire market. If you want to buy it, you just buy each
asset in proportion to its total capitalization. Therefore, in the CAPM universe,
the mutual fund is called the market, and the beta of an asset is the same as its
beta to the market.

In this case, the beta of a particular stock depends on the covariance of that
stock price with the market portfolio. Then (19) and (20) become predictions
that relate the expected return of a stock to the covariance of that stock to
the market. One could test the CAPM model by estimating µi and σiM for
each i. Here, σiM is the covariance of the price of asset i with the “market”.
According to CAPM, the market portfolio is the universe of all available assets,
each weighted its total capitalization. The complete failure of the markets to
satisfy CAPM constraints is explored at great length in many ways in the book
Financial Econometrics by Campbell, Lo, and McKinley.

Why mention this apparently silly model of the world? Because it influences
the way people think about markets. For example, there are many investment
funds (hedge funds mostly) that claim to be “beta neutral”. This means that
their returns are uncorrelated with some overall market index. In the Gaussian
world, this would mean that the fund returns are independent of the market
index. If there were many such funds, and if they were independent of each
other, this would be a wonderous investment opportunity. Just put a little
money in each one and (through diversification) earn a high return at very low
risk. It is highly unlikely that there are many brilliant investors with secret and
independent high yield beta neutral investment strategies.

2.8 Criticisms of mean/variance analysis

All models are wrong. Some models are dangerous.

There are many drawbacks to mean variance analysis. Much of this class is
devoted to overcoming these drawbacks. They fall into five rough categories:

1. Investors care about more than just mean and variance.

2. The µ and Σ are hard to estimate.

3. They are not a complete description of market returns.

4. Returns are not linear functions of the investment weights.

5. Investment strategies are not simple.

1. Investors care about more than just mean and variance. There are
many measures of risk other than variance. For example, the probabilities of
low or negative returns, F (r) = Pr(R ≤ r) may important (see (1)). Values of
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r for which F (r) is small are tail probabilities that prudent investors will want
to understand.

This is particularly important when returns are not Gaussian. Empirical
studies show returns rarely are Gaussian. If6 R ∼ N (µ, σ2), then a three sigma
shortfall is very unlikely:

Pr (R < µ − 3σ ) ≈ .5% .

However, there are non-Gaussian distributions with µ = E [R] and σ2 = var[R]
so that the same event is twenty times more likely

Pr (R < µ − 3σ ) ≈ 10% .

If a three sigma shortfall has serious consequences, it is prudent to know more
about the distribution of R than its mean and variance.

Many modern investment opportunities and strategies amplify the non-
Gaussian nature of returns. The simplest example is a stock option that pays
V = S−K (S is the stock price and K is the strike price of the option) if S > K,
and V = 0 if S < K. Even if S may be Gaussian or nearly Gaussian, V is far
from Gaussian. A CDS (credit default swap) is a more extreme example of non-
Gaussian returns. The issuer of a CDS receives a steady stream of small fixed
payments as long as a certain company makes its contracted interest payments
(coupons) on its outstanding bonds. If the company defaults (fails to make a
coupon payment), the issuer of the CDS must pay the entire principle of the
bond. To be sure, CDS instruments may be a thing of the past (in 2009). But
there are other ways for an investor to take a position that has a high probability
of a small positive return and a small probability of a large negative return.

What should you do if you want a systematic quantitative investment pro-
cedure? What should you optimize? One possibility is robust optimization,
that optimizes in a mean/varance sense as above, but with protections such as
constraints on the probabilities of large losses. Robust optimization procedures
take into account the uncertainty in our statistical estimates of µ and Σ. These
are ad-hoc but very practical. More systematic approaches involve optimizing
expected utility. This has important philosophical backing, but suffers from the
drawback that nobody knows what their “utility” is. Both robust optimization
and utility approaches are discussed later in this class.

2. The µ and Σ are hard to estimate. An investor using a mean vari-
ance needs estimates of µ and Σ. Some will make their own estimates from
historical market data. Others will buy estimates from vendors, such as Barra
or Bloomberg. Either way, the investor will be using estimated values7 µ̂ and
Σ̂ instead of the actual µ and Σ. Simply using the estimates in mean variance
analysis would lead to

ŵ = λ1Σ̂−1µ̂ + λ2Σ̂−11 . (22)
6This notation means that R is a Gaussian (normal) randome variable with mean µ and

variance σ2.
7Statisticians use θ̂ to denote a statistical estimate of a parameter θ.

11



A matrix, Σ, is called ill conditioned if relatively small changes in Σ lead to
much larger relative changes in Σ−1. A typical large covariance matrix is likely
to be ill conditioned. This means that even if Σ̂ is close to Σ, still Σ̂−1 may be
far from Σ−1. Portfolio weights (22) may give a portfolio that has much more
risk that it appears to (the left side is actual variance, the right side is estimated
variance):

ŵtΣŵ � ŵtΣ̂ŵ .

The weights (22) also may give variance much larger than is the best possible:

ŵtΣŵ � wtΣw .

Decision theory is a branch of statistics that takes into account statistical
errors in decision making. Different kinds of errors may have vastly different
consequences. For example, a statistical over-estimate of the risk may lead to
investments that are slightly too cautious, while a statistical under-estimate
would expose an investor to possibly large losses.

A closely related framework is Bayesian, in which you assume that Σ actually
is a random variable with its own prior distribution. The statistical estimate
Σ̂, is just another random variable with a different distribution, the posterior
(prior for “before”, and posterior for “after”, that is, after taking into account
the actual data). In this case R is a very complicated function not only of the
market returns Ri but also of the market data used in (22). We still could try
to minimize variance for a given return, but

var[R] 6= ŵtΣ̂ŵ , (23)

Unlike classical statistics based on least squares and linear algebra, modern
statistics relies on Monte Carlo simulation to estimate things like var[R]. This
class will involve considerable simulation, as an alternative to simple but naive
and incorrect closed form formulas.

3. Σ and µ are not a complete description of market returns. Only a
Gaussian is completely described by its mean and variance. A one dimensional
non-Gaussian random variable may be represented by its probability density or
distribution function, which may be estimated from data. The harder problem
is modeling relationships between variables Ri when the Ri are not Gaussian.
For Gaussians, the only relationship is covariance. Giving the variances and
covariances specifies the joint distribution completely.

Relationships between non-Gaussian random variables may be more subtle.
For example, suppose that Ri is the one day return on stock i. It is well known
that the apparent correlation between the Ri is much larger on on days in which
the overall market has a large loss. A popular approach these days is the copula
method, which is a way of separating the model of the distributions of individual
random variables from the model of the relationships between random variables.
These are discussed in this class.

Regime changing models are a different way to model the relationship be-
tween random variables. In its simplest form, there may be one binary random
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variable that is “good economy” with probability p and “bad economy” with
probability 1 − p. In the good economy state, n individual bonds default in-
dependently with 1% probability each. In a bad economy, defaults are still
independent, but the probability increases to 20%. If p = 95%, the overall
default probability is approximately 2% (reader, calculate it exactly).

Suppose a portfolio contains n = 100 bonds that may default. It is virtu-
ally impossible to have more than ten defaults in the good economy state, so
the probability of more then ten defaults is approximately the probability of
being in the bad economy state, which is 5%. If the 100 defaults were indepen-
dent with 2% probability each (the independent default model with the same
default probability), the probability of more then ten defaults is a thousand
times smaller than this. Going from the regime changing model to independent
defaults changes the probability of more than ten defaults from a small but
important 5% to a totally negligible .004%.

The choice of models has a large impact on our ability to estimate the
parameters. Suppose, for example, we have 20 observations of the defaults
of 100 bonds. In the independent default model, that is 2000 observations of an
event that has probability about 2%. This will mean (see later in the class) that
we can estimate the default probability somewhat accurately but not precisely
(the expected number of defaults is ten). However, in the regime changing
model, there is a good chance that in 20 observations we never see a regime
change (this has 50% probability). Our 20 observations are not nearly enough
to estimate the regime changing model. If we believe in regime change, we must
find a fundamentally different way to fit it to data, or find far more data.

Regime changing models raise a larger issue: what about the market actu-
ally is stationary and what is changing in time? The regime changing model
has the default probability changing in time. Other market parameters also
could change, µ and Σ in particular. In fact, our NYU colleague Robert Engle
received a Nobel Memorial Prize in Economics partly for modeling the way Σ
might change in time (ARCH, Auto-Regressive Conditional Heteroskedasticity
– skedasticity being another word for variance). Chapter 3 of Attilio Meucci’s
book is about what parameters might be stationary, and how to tell from data.

4. Returns are not linear functions of the investment weights. In real
life, investment returns are not linear. If you want a startup company to succeed,
you need to give enough resources. Otherwise it will fail. Half the necessary
resources will not lead to half success. More subtle nonlinearities come from
market frictions such as transaction costs. Suppose there are 100 shares of a
stock for sale at $12.34/share, 200 more for sale at $12.36/share, and another
100 at $12.37/share. The price for 200 shares is more than double the price for
100. Yes, only a little more, but small costs like this have a major impact on
high frequency trading strategies. If you are a large investor and word gets out
that you want a million shares, the price can jump a lot. Courant Math Finance
Fellow Robert Almgren and co-founder of the program Neil Chriss have written
important papers on this issue. Conversely, a smaller investor may be able to
profit from discovering that a large investor is trying to acquire a large stock
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position.

5. Investment strategies are not simple. Most institutional investment
strategies are far more sophisticated than simply choosing n weights for the
available assets. Finding the optimal strategy of a certain form may be impos-
sible because there are too many possibilities to do a systematic search.
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