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Section 3, Singular Value Decomposition (SVD),
Principal Component Analysis (PCA)

Let A be an n ×m matrix. Think of column k of A as the column vector
ak. Then A is made up of m of these columns:

A =



a11 a1k a1m

...
...

...
aj1 · · · ajk · · · ajm

...
...

...
an1 ank anm

 =


| | |
| | |
a1 · · · ak · · · am

| | |
| | |


so ak is the column vector

ak =



a1k

...
ajk

...
ank


It is useful to keep in mind the common cases n� m (tall thin A), and n� m
(long, short A).

We use the l2 norm

‖a‖l2 =

(
n∑

k=1

a2
j

)1/2

.

In three dimensions, this corresponds to ordinary length. We use no other norm
in this section, so we just write it as ‖a‖. There are other useful norms, such as
the l1 norm of the last homework. But least squares regression and Principal
Component Analysis are all l2 related. That is a strength (there is so much
helpful structure in l2) and a weakness (other norms are more appropriate in
many applications).

An n×n matrix U is orthogonal if U tU = I. This is the same as saying that
the columns of U form an orthogonal basis of Rn. You should check that the
(j, k) entry of U tU is equal to (

U tU
)
jk

= ut
juk

where the vectors uk are the columns of U . If j 6= k, this says that uj is
perpendicular to uk. For j = k, this says that ‖uj‖ = 1.

The Singular Value Decomposition of A is the decomposition

A = UΣV t , (1)
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where U is n×n orthogonal, V is m×m orthogonal, and Σ is pseudo-diagonal,
with diagonal entries ( Σ11 = σ1 ) ≥ ( Σ22 = σ2 ) ≥ · · ·. The numbers σj are
the singular values of A. Pseudo-diagonal means that Σjk = 0 if j 6= k. The
actual matrix Σ is n ×m. If n > m, then there are m singular values. There
are n if n < m. The columns of V are right singular vectors and the columns
of U are left singular vectors. Either the singular vectors of the singular values
(or both) are called principle components. The matrix Σ does not have to be
square and has nothing to do with what we called Σ in earlier sections of notes
– the covariance matrix of a multivariate random variable.

In general, a matrix decomposition is a factorization of a matrix into the
product of other matrices of a specified form. Other decompositions include the
QR decomposition: A = QR, where Q is orthogonal and R is upper triangular
(Rjk = 0 if j > k).

The SVD matrix equation (1) is a compact way of writing relationships
involving A and the left and right singular vectors. Multiplying both sides by
V , and using V tV = I on the right, puts (1) in the form AV = UΣ. In terms
of the columns of V and U , this becomes

Avk = σkuk , (2)

where the vk are an orthonormal family in Rm and the uk are an orthonormal
family in Rn. If n > m, the relations (2) hold only for k ≤ m. The relations
(2) say nothing about the uk for k > m, but we elsewhere have required them
to be orthonormal. If m > n, then (2) holds only for k ≤ n. For k > n we have
Avk = 0, and also that the vk form an orthonormal family. Therefore, one thing
the SVD does is supply an orthonormal basis of the kernel (or null space) or A,
the set of vectors x with Ax = 0.

Taking the transpose of (1) gives At = V tΣtU . Everything we said about
columns of A, U , and V has an analogue involving columns of At (rows of A),
and columns of U t and V t with the same singular values σk. In particular, if
n > m, the last n−m columns of U t (the transposes of the bottom n−m rows
of U) form an orthonormal basis of the null space of At.

Recall the basic facts about eigenvalues of symmetric matrices. If B is
a symmetric n × n matrix, then B has n real eigenvalues and a family of n
orthonormal eigenvectors. The eigenvectors are almost unique if the eigenvectors
are distinct. The singular values and singular vectors of A give the eigenvalues
and eigenvectors of the matrices AAt and AtA (not only are these not equal,
one is m×m and the other is n× n). For example, we have (using V V t = I at
the end)

AAt =
(
UΣV t

) (
UΣV t

)t = UΣV tV ΣtU t = UΛU t ,

Where Λ = ΣΣt is an n × n matrix with the numbers λk = Λkk = σ2
k on the

diagonal. If n > m, then we run out of singular values before the end, so λk = 0
for k > m. This may be written AAtU = UΛ, which in individual columns is(

AAt
)
uk = σ2

kuk .
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This means that the columns of U are the eigenvectors of AAt, and the eigen-
values AAt are the squares of the singular values of A. In a similar way, we
could see that (

AtA
)
vk = σ2

kvk ,

so the columns of V are the eigenvalues of AtA. Depending on whether n > m
or n < m, one of the eigenvalues of AAt or AtA have to be padded with zeros,
once we run out of singular values.

An interesting consequence of this is the Theorem: the non-zero eigenvalues
of AAt are equal to the nonzero eigenvalues of AtA. For example, if

A =
(

1 1 1
1 2 3

)
.

then

AAt = B =
(

3 6
6 14

)
, AtA = C =

 2 3 4
3 5 7
4 7 10

 .

According to Matlab, the eigenvalues of B are λ1 = 16.64 and λ2 = .036.
Matlab also says that the eigenvalues of C are λ1 = 16.64, λ2 = .036, and
λ3 = 0. Matlab also says that the SVD of A is

A =
(
−.403 −.915
−.915 .403

)
·
(

4.079 0 0
0 .601 0

)
·

−.323 −.5548 −.772
−.854 −.183 .487
.408 0.817 .408

 .

We can check that λ1 = σ2
1 , which is 16.64 = 4.082, and λ2 = σ2

2 , which is
.036 = .6012, both of which are true.

1 Orthogonality, variational principles, and the
existence theorem

In order to explain the various components of the SVD, here is one of the proofs
that the SVD exists. The proof goes by first constructing v1, u1, and σ1, then v2,
u2, and σ2, and so on. Some of the properties are obvious and automatic in the
construction. In particular, the vk and uk will have unit length by definition.
The σk are positive and decreasing (well, non-increasing and non-negative).
The vk are orthogonal. What is not part of the definition is that the uk are
orthogonal. That comes from the variational principle. Orthogonality often
comes from least squares optimization, as happens here.

The starting point is the form for the norm of a matrix

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

. (3)
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Before discussing what the answer is, we discuss the reason for the answer to
exist. Let f(x) be any continuous function of x. We say x∗ is a maximizer of
f over the set B if f(x∗) ≥ f(x) for all x ∈ B. If x∗ is a maximizer, we say
f(x∗) = maxx∈B f(x), and x∗ = arg maxx∈B f(x). A continuous function need
not have a maximizer. For example, the function f(x) = 1/(1 +x2) would seem
to have maximum value equal to zero, but there is no x∗ so that f(x∗) = 0.

A theorem in elementary analysis states that the maximizer does exist if f
is a continuous function of x and if B is a compact set. A set is compact if it
is bounded and it contains all its limit points. The maximization problem (3)
fails both these tests. It is not bounded because it allows arbitrarily large x.
It does not contain the limit point x = 0: there is a sequence xn ∈ B with
0 = limn→∞ xn not in B. I hope that the theorem seems plausible.

Back to our case (3), we compactify the optimization problem by using scal-
ing. In particular, for every x 6= 0 there is a y with ‖y‖ = 1 and y = mx for some
m > 0: just take m = 1/ ‖x‖. Note that the factor m does not change the quo-
tient in (3): ‖Ay‖ = ‖Ay‖ / ‖y‖ = ‖Amx‖ / ‖Amx‖ = ‖Ax‖ / ‖x‖. Therefore,
the maximum in (3) is equal to

‖A‖ = max
‖y‖=1

‖Ay‖ . (4)

The maximum is attained, there is a maximizer, because the function f(y) =
‖Ay‖ is continuous and the set of allowed values

The norm of a matrix is a single measure of its size. The formula (4) gives
‖A‖ as the largest amount by which A stretches a vector (by the scaling argu-
ment, we need only consider vectors of unit length). We will define σ1 = ‖A‖.
Then σ2 will be the second largest stretch, σ3 the third, and so on.

More specifically, let v1 = y∗ in the optimization problem (4) and define σ1

and1 uu by Av1 = σ1u1. This makes u1 a vector of unit length, as it is supposed
to be. This is (2) for the case k = 1.

We now define σ2 as the largest stretch possible using a vector perpendicular
to v1:

σ2 = max
‖y‖=1, vt

1y=0
‖Ay‖ .

There is a maximizer, as before, so call it y∗ = v2. This satisfies ‖v2‖ = 1 and
vt
1v2 = 0, as it is supposed to. Define u2 by Av2 = σ2u2, which is (2) with
k = 2. So the vectors v1, v2, u1, and u2 satisfy all the properties we asked,
except that we do not know that u1 is perpendicular to u2. It turns out that
this is automatic, which is the main interesting fact that makes the SVD work
as it does.

The fact that u2 is perpendicular to u1 is a consequence of a simpler fact
that is easier to verify:
Lemma. If v1 is a maximizer of (4) and vt

1y = 0, and Av1 = σ1u1, then
ut

1Ay = 0.
Proof of Lemma. This is a proof by contradiction. We show that if there is a
y 6= 0 with vt

1y = 0 and ut
uAy 6= 0, then u1 is not the maximizer of (4). If such

1In the lecture, I interchanged uk and vk. I hope they are correct here.
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a y would exist, we could define a curve in Rn w(t) = v1 + ty/ ‖v1 + ty‖. Since
y is perpendicular to v1, the denominator has

d

dt
‖v1 + ty‖

∣∣∣∣∣
t=0

= 0 ,

so
d

dt
w(t)

∣∣∣∣∣
t=0

= y .

The same kind of calculations show that

d

dt
‖Aw(t)‖

∣∣∣∣∣
t=0

= σ1u
t
1Ay ,

Assuming σ1 6= 0 (σ1 = 0 implies that A = 0), this shows that the derivative
of ‖Aw(t)‖ is not zero when t = 0. The value at t = 0 is σ1. If the derivative
is not zero, then σ1 is not the maximum. This is the contradiction that proves
the lemma.

The rest of the singular vectors and singular values are constructed in this
way. We find v3 by maximizing Ay over the set of y with ‖y‖ = 1 and vt

1y = 0
and vt

2y = 0. Then Av3 = σ3u3 defines u3. The orthogonality of u3 with u1 and
u2 is not part of the definition, but follows from an argument like the lemma.
Clearly σ1 ≥ σ2 ≥ · · ·.

There are three possible endings to this procedure. One is that m < n and
we come to k = m. Then the m vectors vk form an orthonormal basis for Rm,
but the m vectors uk are not yet a basis for Rn. We simply find n −m extra
orthonormal vectors to make the n vectors uk into an orthonormal basis of Rn.
This provides matrices U and V that work in (1). Another ending is that m > n
and we come to k = n. We then have constructed n orthonormal vectors uk

that are an orthonormal basis for Rn, but we do not have enough vectors vk

to be a basis for Rm. The argument of the Lemma above shows that any y
perpendicular to all the vk so far has Ay = 0. Therefore, we can choose any
completing orthonormal vectors to complete the vk we have into an orthonormal
basis. The final possibility is that we come to σk = 0 for k < n and k < m. In
that case, we complete our existing vk and uk in any way.

There are effective computational algorithms for computing the SVD. Run-
ning one of them will produce complete orthogonal matrices V and U . As we
said above, the last columns of V and U might be somewhat arbitrary.

2 Low rank approximation

The rank of a matrix A is the dimension of the space spanned by its columns.
It is also the number of non-zero singular values. It happens often in statistics
that a most of the non-zero singular values of a large matrix A are very small
compared to the largest ones. Setting the small singular values to zero results in
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a matrix not much different from A but with much smaller rank. Furthermore,
that procedure produces the optimal low rank approximation to A in the least
squares sense. This is one of the most important uses of the SVD in practice.

Here are the details. If the columns of A span a space of dimension k, then
there are k column vectors that form a basis of that space. Call then w1, . . .,
wk. Since the columns of A are in the space spanned by the wj , for each i

there are numbers bij so that ai =
∑k

j=1 bijwj . In matrix form, this may be
written A = WB, where W is the n × k matrix with columns wj and B is
the k ×m matrix whose entries are the bij . This shows that a rank k matrix
may be written in the form A = WB with the dimensions given. Conversely, if
A = WB with those dimensions, then A has rank at most k.

The SVD of A gives a way to construct the W and B above. Suppose that
only the first k singular values are different from zero. Then the bottom rows of
Σ in (1) are all zeros. This means we get the same result if we use the smaller
k×k matrix Σ̃ that only has the first k singular values (the only non-zero ones)
on the diagonal, and only top k rows of V t and the first k columns of U . The
matrix B is Σ̃ multiplying the top k rows of V t. This is an explicit rank k
representation of A.

3 Linear least squares

Least squares problems in statistics are described using different notation from
that used above. The object is to estimate the parameters in a linear regression
model:

y = b1x1 + · · ·+ bmxm + R . (5)

The idea is that we want to predict y given regressor values x1, . . . , xm. More
than that, we will do the prediction in a purely linear way. The linear predictor
is determined by only of m coefficients b1, . . . , bm. The model expressed by (??)
is that R is a Gaussian with mean zero and variance σ2, where σ2 is another
unknown constant. That is, the observed Y is a linear combination of the xj

combined with a certain Gaussian noise.
The model is calibrated using n data rows (Yj , Xj,1, . . . , Xj,m). For given

coefficients bi, the residual for row i is

Ri = Yi −
m∑

j=1

Xij b̂j . (6)

This is the error in predicting Yi as a linear combination of the regressors Xij

with linear prediction coefficients b̂j . If we assume that the residuals are inde-
pendent N (0, σ2), the maximum likelihood estimator of the bj results in mini-
mizing the sum of the squares of the residuals:

b̂ = arg min
b

n∑
i=1

R2
i . (7)
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This may be formulated in vector terms. The residual is R ∈ Rn with entries
Ri. The data takes the form of a vector Y and a matrix X. The definition (??)
then is written as

R = Y − Xb̂ , (8)

and the goal is to find the vector b̂ ∈ Rm to minimize

‖R‖ =
∥∥∥Y −Xb̂∥∥∥ . (9)

Of course, minimizing ‖R‖ is the same as minimizing ‖R‖2. One approach to
this is the normal equations discussed elsewhere.

Here we discuss the approach using the SVD:

X = UΣV t . (10)

Substituting (??) into (??), and using the fact that U and V are orthogonal,
gives ∥∥∥Y − UΣV tb̂

∥∥∥ =
∥∥∥U tY − ΣV tb̂

∥∥∥ =
∥∥∥Ỹ − Σb̃

∥∥∥ ,
where

Ỹ = U tY , b̃ = V tb̂ .

We look in more detail at R̃ = Ỹ −Σb̃ under the assumption that X has full
rank m and none of the singular values are zero. It is

R̃1

...
R̃m

R̃m+1

...
R̃n


=



Ỹ1

...
Ỹm

Ỹm+1

...
Ỹn


−



σ1 0 · · · 0
0 σ2 0 · · ·
... 0

. . . 0
σm−1

0 · · · 0 σm

0 · · · · · · 0

0 · · · 0



 b̃1
...
b̃m



In this form, the solution to the least squares problem is obvious. The choice of
b̃ has no effect on the residuals R̃i for i > m. On the other hand, choosing

b̃i =
Ỹi

σi
(11)

sets R̃i = 0 for i ≤ m. The choice (??) clearly minimizes
∥∥∥R̃∥∥∥. Since R̃ = U tR,

this also minimizes ‖R‖.
The individual component formula (??) gives the user detailed control over

difficult least squares fitting problems. Many least squares problems are prob-
lematic because they are ill conditioned. The condition number of a least squares
problem is

cond(X) =
σ1

σm
.
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This is the ratio of the maximum to minimum stretch. You can think of it as a
simple way to measure the range of values in X, in the way ‖X‖ represents the
size of X. Large data sets often have very ill conditioned matrices. If σ1 � σm,
it is likely that b̃m � b̃1. As σm → 0, (??) shows that b̃m → ∞. This implies
that the b̂, the vector of estimated regression coefficients, has

∥∥∥b̂∥∥∥→∞ as well.
A signature of ill conditioned least squares problems is very large regression
coefficients.

Regularization means compromising on the exact regression formula (??) in
order to control the size of the regression coefficients. For example, one common
procedures is Tychanoff regularization, which replaces (??) by

b̃i =
Ỹi

(σ2
i + ε2)1/2

(12)

The denominator is designed so that it is approximately equal to σi if σi is much
larger than the cutoff parameter, ε. Very small σi is (approximately) replaced
by ε.

The formula (??) has a geometric interpretation. Linear least squares re-
gression computes the orthogonal projection of Y onto the columns of X. The
residual is what is left over after that projection. The formulas (??) accom-
plish that projection, as we now explain. Suppose first that we have subspace
spanned by a single vector, u ∈ Rn, and that ‖u‖ = 1. The projection of Y
onto the subspace determined by u is

PuY =
(
utY

)
u .

This is a vector that points in the direction of u. We saw already that the first
m columns of U form an orthonormal basis for the subspace of Rn spanned by
the columns of X. The formulas (??) essentially perform the projection of Y
onto the column space of X using the orthonormal basis u1, . . .,um.

4 SVD and low rank approximation

If x ∈ Rn and U is an n× n orthogonal matrix, then ‖Ux‖ = ‖x‖. You can see
this from

‖x‖2 =
n∑

k=1

x2
k = xtx .

because (transpose reverses the order of the factors, even of one factor is a
vector)

‖Ux‖2 = (Ux)t
Ux = xtU tUx = xtx = ‖x‖2 ,

Similarly, if B is an n × k matrix, we can define the Frobenius norm in terms
of the sums of the squares of the entries:

‖B‖2F =
∑
ij

b2ij . (13)
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This is the same as the sum of the squares of the norms of the columns of B:

‖B‖2F =
k∑

j=1

‖bj‖2 .

For that reason, we also have

‖UB‖2F = ‖B‖2F ,

because ‖Ubj‖2 = ‖bj‖2, and multiplying B by U is the same as multiplying
each column of B by U .

The SVD of X allows us to solve the problem: find the rank k matrix that
best approximates X in the least squares sense (??):

min
Xk

‖X −Xk‖2F ,

where the minimization is over all matrices, Xk of rank k. The optimal Xk is
easy to find in terms of the SVD of X: use the largest k singular values, together
with the corresponding left and right singular vectors.

We see this much as we saw the SVD solution of the linear least squares
problem above. Using the fact that U and V are orthogonal matrices, we have
(multiply from the left by U t and from the left by V as before)

‖X −Xk‖2F =
∥∥UΣV t −Xk

∥∥2

F
=
∥∥Σ− U tXkV

∥∥2

F
.

This reduces the general optimization problem to the problem

min
X̃k

∥∥∥Σ− X̃k

∥∥∥2

F
,

where Σ is (pseudo-)diagonal, and X̃k = U tXkV . Not more than ten minutes
thought should convince you that the solution to this problem is to take X̃k =
Σk, the pseudo-diagonal matrix using the largest k singular values. This gives2

Xk = UΣkV
t = UkΣkV

t
k ,

which uses the largest k singular values and corresponding singular vectors.
This low rank approximation is a form of

2There is a slight inconsistency in this formula. In the middle, Σk is the n × m matrix
with k non-zero diagonals. On the right, it is the k× k matrix with the same non-zeros in the
same places.
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