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Assignment 1

1. The residual in a linear least squares problem is

r = Ax− b .

Assume A is m × n with m > n and that A has full rank, n. Define a
function f(x) = 1

2 ‖r‖
2
. The gradient if f is the column vector whose

entries are the partial derivatives

∇f(x) =


∂f
∂x1

...
∂f
∂xn

 .

Find a formula for ∇f and show that ∇f(x) = 0 is equivalent to the
normal equation system ATAx = AT b.

2. The system of equations Ax = b is underdetermined if there are more
unknowns than equations. If A is m × n, with an n−component vector
x of unknowns and an m−component vector b of data, the system is
underdetermined if m < n. The minimum norm solution is x that satisfies

min ‖x‖2 with Ax = b .

Describe an algorithm for solving the minimum norm problem that uses
the QR decomposition of AT , assuming A has full rank.

3. (I learned this algorithm Professor Anthony Jameson.) The matrix Lya-
punov equation, for continuous time problems, is

AC + CAT = R . (1)

The unknown is a symmetric positive definite n×n matrix C. The givens
are a general matrix A and a symmetric positive definite matrix R. The
problem is to find an algorithm to compute C.

The problem comes from a stochastic process d
dtX(t) = AX(t) + ξ(t).

Without going into details, ξ(t) represents input noise that is characterized
(details missing) by a positive definite and symmetric covariance matrix
R. If the process goes on a long time, then X comes to a statistical steady
state with covariance matrix C, which is determined by the Lyapunov
equation. This is true only if the process without noise is stable, in the
sense that the eigenvalues of A all have negative real parts.
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Your computational algorithm should use the upper Schur factorization
A = QLQ∗. Note that even if A is real, its eigenvalues and Schur factor-
ization may not be. For that reason, we say Q is unitary and satisfies the
complex version of the orthogonality relation, which is Q∗Q = QQ∗ = I.
Note that AT = A∗ (because A is real) but AT = A∗ = QL∗Q∗. The
matrix L∗ is upper triangular and its diagonal entries are the complex
conjugates of the corresponding diagonal entries of L.

Your algorithm should first ask scipy for the Schur factorization of A.
Show that the Lyapunov equation is equivalent to

LC̃ + C̃L∗ = R̃ .

where C̃ and R̃ come from C and R using Q. Then show that the entries
of C̃ can be found one-by-one using a back substitution strategy and the
fact that L is triangular. A final step would be to get C from C̃. The total
work of your part (not the part done by scipy should be on the order of
n3, like ordinary matrix multiplication. The stability hypothesis about the
eigenvalues of A is needed to guarantee that the algorithm works. Why?

4. A Tikhonov regularized linear least squares problem is

min
x
‖Ax− b‖22 + λ ‖x‖22 .

The regularization parameter is λ. It might be called a hyper-parameter
to distinguish λ from the problem parameters xk, and to indicate that it’s
a parameter in the algorithm, not in the solution. The parameter/hyper-
parameter distinction is not absolutely clear. Explain how to solve the
Tikhonov regularization problem using the SVD of A. Show that the
algorithm is correct. (This was done in class, but possibly too quickly and
without enough detail.)

5. (This exercise is motivated by the PhD thesis of Dan Foreman-Mackey.)
A function R(x) is radial if R(Qx) = R(x) whenever Q is an orthogonal
matrix. A radial function is a function of the length of x, measured in the
2−norm, which means R(x) = φ(‖x‖2). A radial basis function is a radial
function that is smooth and goes to zero as ‖x‖ → ∞. It is called a “basis
function” because other functions may be written as, or approximated by,
linear combinations of radial functions. A radial function approximation
with centers cj and weights wj has the form

g(x) =

n∑
j=1

wjφ(‖x− cj‖) . (2)

This is a representation of g as a linear combination of shifted radial basis
functions. A popular radial basis function, with length scale S, is the
quadratic exponential

φ(r) = e−
1
2

r2

S2 .
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This exercise is to use radial basis functions, in one dimension, to estimate
a function f(x) from noisy data. There are m observation points xk and
data values yk = f(xk) + noisek. We seek a function g(x) of the form
(2) to fit the data. Take the centers cj to be uniformly spaced in [0, 1].
The fitting residuals are rk = g(xk)− yk. Write a code that estimates the
weights wj by minimizing the loss function (Tikhonov regularized linear
least squares)

C =

m∑
k=1

r2
k + λ

n∑
j=1

w2
j .

The code should assemble the matrixA and use the function from numpy.linalg

to find its SVD, then use the formula from Exercise 4 to find the optimal
weights wj . Formulation and notation are part of this Exercise. The fit-
ting parameters are called wj here and xj in the general theory. The data
values are yk here and bk in the theory. The matrix entries Akj depend
on the function φ and the observation points and centers.

Start with the posted code fakeData.py. This generates and plots fake
data (“data” values created by a computer random number generator
rather than being measured in nature, used to test algorithms on prob-
lems with known answers). Add the SVD and fitting and plot the best fit
function g(x) along with the data. Also output the condition number of
A. The plot should give the values of λ, S, and n.

Experiment with your code to see how well you can recover the underlying
function f(x), depending on the number of data points, the observation
noise, and the steepness parameter L (in the fakeData.py code). Try to
verify the following points:

• The condition number is too high to do fitting without regularization
if the distance between observation points xk is too small relative to
the length scale S.

• If S is too small, the function g(x) has too much fine scale oscillation
to approximate f well.

• When A is ill conditioned, a small amount of regularization makes
the weights wj much smaller while making the fit quality only a little
worse.

• The fitting function g(x) may “overshoot” the true function f , par-
ticularly on either side of the “corners” 1

2 ±
L
2 .

• RBF fitting is harder for small L.
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