
Scientific Computing, Fall 2022
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html

Assignment 3

1. Suppose A is an m× n matrix with singular values

σmax ≥ · · · ≥ σmin .

Suppose σmin > 0. Suppose that all norms are 2−norms (vector or matrix
operator norms). Define F (x) = Ax. Consider the worst case condition
number

κ(A) = max
x 6=0
‖DF (x)‖ ‖x‖

‖F (x)‖
Show the following formula holds if n > m, if n = m, or if n < m

κ(A) =
σmax

σmin
.

2. Suppose A is an m× n matrix with singular values

σmax ≥ · · · ≥ σmin .

Let ∆A be a small perturbation of A and let ∆σj be the estimated change
in σj using first order perturbation theory. Show that these formulas are
true ∑

jk

A2
jk =

∑
j

σ2
j∑

jk

(∆Ajk)
2

=
∑
j

(∆σj)
2
.

What does this tell you about the sensitivity of singular values to small
changes in A?

3. (properties of convex functions) You may assume the following basic fact
from calculus for functions of one variable: If u(t) is twice differentiable on
the interval [0, 1] and u′′(t) ≥ 0 for 0 ≤ t ≤ 1, then u(t) ≤ 0 for 0 ≤ t ≤ 1.

(a) Show that if g′′(t) ≥ 0 on an interval [a, b] with b > a, then g is
convex on that interval. This means that if 0 ≤ λ ≤ 1 and z(λ) =
λx+ (1− λ)y then

g(z(λ)) ≤ λg(x) + (1− λ)g(y) .

Hint. Define u(λ) = λg(x) + (1− λ)g(y)− g(z(λ)) and use the basic
calculus fact.
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(b) Suppose f(x) is defined for x ∈ Rn and the hessian of f is positive
semi-definite for all x. Show that f is convex. Hint. Use the trick of
part (a). The fact that H is positive semi-definite tells you something
about the second derivative of u with respect to λ.

4. (This exercise gives an example of an unstable algorithm for a well con-
ditioned problem. The algorithm is unstable because it relies on a sub-
problem that is ill conditioned.)

The problem comes from computing probabilities related to a simple hop-
ping process. A hopping process is a random process in which a particle
“hops” between neighboring “sites” at random times. A simple one di-
mensional hopping process “lives” on sites {0, 1, · · · .n− 1} (the integers
between 0 and n − 1, including 0 and n − 1. The location at time t is
X(t), which is a random site. The value of X(t) is one of the integers
0, 1, · · · , n − 1. We say X hops at time t if the value changes at that
time. As a mathematical function, X(t) is “piecewise constant”, with
discontinuities at the time with it hops.

Suppose X(t) = k with 0 ≤ k ≤ n− 1. In a time interval from t to t+ dt,
if k < n − 1, it hops up to k + 1 with probability ru dt. If k > 0, the
particle hops down to k−1 with probability rd dt. If X(t) = n−1, then it
cannot hop up, and if X(t) = 0 then it cannot hop down. The occupation
probabilities are pk(t) = Pr(X(t) = k). There is a small probability of
having a hop in a small interval of time, but if you neglected it then there
would be no hops at all. The probability of more than one hop is even
smaller and (take my word for it) may be neglected.

These probabilities satisfy a system of differential equations derived as
follows. We denote conditional probability using the symbol “|”, so Pr(A |
B) is the probability of A conditional on B. Conditional probability allows
to express pk(t+dt) in terms of pk(t), pk−1(t), and pk+1(t). If X(t+dt) =
k, then X(t) = k (most likely), or X(t = k − 1) and there was a hop up,
or X(t) = k + 1 and there was a hop down. The derivation neglects the
possibility of more than one hop in interval dt. Here is the calculation,
which some explanations after:

Pr(X(t+ dt) = k) = Pr(X(t+ dt) = k | X(t) = k − 1) · Pr(X(t) = k − 1)

+ Pr(X(t+ dt) = k | X(t) = k + 1) · Pr(X(t) = k + 1)

+ Pr(X(t+ dt) = k | X(t) = k) · Pr(X(t) = k)

pk(t+ dt) = Pr(hop up) · pk−1(t)

+ Pr(hop down) · pk+1(t)

+ Pr(no hop) · pk(t)

pk(t+ dt) = ru dt pk−1(t) + rd dt pk+1(t) + (1− ru dt− rd dt) pk(t)

pk(t+ dt) = pk(t) + [rupk−1(t) + rdpk+1(t)− (ru + rd)pk(t)] dt .

The basic rule of conditional probability (if you haven’t taken a big prob-
ability course) is that if A is an “event” (X(t+ dt) = k in this case) and
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B, C, and D are distinct ways A can happen (B is X(t) = k − 1, C is
X(t) = k, etc.) then

Pr(A) = Pr(A | B) · Pr(B) + Pr(A | C) · Pr(C) + · · · .

The first equality in the derivation is this conditional probability formula.
The probability ofX = k at t+dt is the sum of the conditional probabilities
multiplying the probabilities for the possible values of X at time t. The
second equality says the same thing, using the above terminology and
notation. The third inequality comes from substituting in the hopping
probabilities. The probability of “no hop” is 1 minus the probability of a
hop, which is 1− ru dt− rd dt. The notation is ru for the rate to jump up
and rd for the rate to jump down. The code MatrixExponential.py uses
rl = ru+rd for the “loss rate”, which is the rate to jump out of site k. The
corresponding probability to jump out of site k is rl dt. The probability
not to jump out is 1− rl dt.
These formulas have to be modified if k = 0 (no down hops) or k = n− 1
(no up hops). The modified formulas are

p0(t+ dt) = p0(t) + [rd p1(t)− ru p0(t)] dt

pn−1(t+ dt) = pn−1(t) + [ru pn−2(t)− rd pn−1(t)] dt .

These relations may re-arranged and expressed in traditional calculus no-
tation as

d

dt
p0(t) = − p0(t) ru + p1(t) rd

d

dt
pk(t) = pk−1(t) ruru − pk(t)(rd + ru) + pk+1(t) rd , for 1 ≤ k ≤ n− 2

d

dt
pn−1(t) = pn−2(t) ru − rd pn−1(t)

This system if differential equations is expressed in matrix/vector form,
by tradition, using a row vector (not column vector) for the probabilities
p(t) = (p0(1), · · · , pn−1(t)). The matrix form is the differential equations
is

d

dt
(p0(1), · · · , pn−1(t)) = (p0(1), · · · , pn−1(t))



−ru rd 0 · · · 0

ru −(ru + rd) rd
...

0 ru
. . .

. . .
...

. . . rd
0 · · · ru −rd


In matrix/vector form, this is

d

dt
p(t) = p(t)L .
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The matrix L is the generator of the random hopping process. You can see
that it is tri-diagonal, with non-zero elements only on the “main diagonal”
and the nearest “off diagonals”.

(a) A diagonal scaling (more properly, diagonal re-scaling) is

L̃ = W−1LW , W = diag(1, w2, · · · , wn−1) .

Show that if W is non-singular, then the eigenvalues of L and L̃
are the same. Find W so that L̃ is symmetric. Conclude that the
eigenvalues of L are real. Show that right eigenvectors of L are not left
eigenvectors. Hint for the last. If Lv = λv, then WW−1LWW−1v =
λv so L̃ṽ = λṽ, with suitable ṽ. [Not to hand in: any sign symmetric
tridiagonal matrix (you supply the definition, allow for zeros on the
off diagonal if you want) is similar to a symmetric tridiagonal matrix
in this way. In differential equations, a Sturm Liouville operator
(second order differential operator in one variable) is similar to a self-
adjoint differential operator, using a diagonal “weighting function”.
Tri-diagonal matrices may be thought of as a discrete analogue of
one-variable second order differential operators.]

(b) The code MatrixExponential.py implements three methods for solv-
ing the matrix differential equations d

dtp = pL using the fundamental
solution and matrix exponential. See MatrixExponential.pdf for
more on this and a description of the methods. Experiment with the
code on a variety of problems (change the dimension, the final time,
how different the hopping rates are) to get a feel for which methods
give accurate results for which problems. Look for problems that are
not extreme that make the eigenvalue method look bad, and problems
that make the matrix exponential method look bad. Note that you
don’t change the problem (or the solution algorithms) if you double
the hopping rates and cut the final time in half.

(c) Modify the function mee(L,t) to return a tuple (Python term) con-
sisting of the computed matrix exponential and the condition number
of the eigenvector matrix R. Modify the function meT(L,t,n) to re-

turn its computed exponential and the largest norm
∥∥∥ tk

k!L
k
∥∥∥. Modify

the output part of the main program (lines above 80) to add this in-
formation to the printout table. Comment on why/how well/not well
this information explains the accuracy/inaccuracy of each method.

(d) (Not for credit, only if it seems interesting to you). Write a module

that uses eigenvalyes/eigenvectors of the “symmetrized” matrix L̃ to
compute the exponential. This should be stable (unlike the unstable
mee) because the symmetric eigenvalue/eigenvector problem is well
conditioned. You might get the idea that using the symmetrized
matrix is a cure-all. It isn’t because most matrices cannot be sym-
metrized.
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