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Assignment 4

Corrections: [1] Formula (3) of Exercise 4 has been corrected to have Jx
n)−1

instead of just J . [2] formula (3) corrected again to have g(xn)− a

1. Consider applying the simple Newton method to minimizing

f(x) =
√

1 + x2 .

“Simple” means the step size is always equal to one. Show that f is strictly
convex but not “uniformly convex” (|f ′′(x)| → 0 as x → ∞) Show that
xn → x∗ = 0 if x0 is small enough but |xn| → ∞ if x0 is too large.

2. Consider the problem of fitting a time series to a sum of simple oscillations
with frequencies ωj and amplitudes Aj . The loss function is

L(A1, ω1, · · · , Ad, ωd) =

m∑
j=1

(
Yj −

d∑
k=1

Ak sin(ωktj)

)2

. (1)

Suppose that L has a local minimizer with distinct frequencies (ωj 6= ωk if
j 6= k). Show that L has more than 100 local minima if d > 4 frequencies
are used and more than 1000 local minima if more than d > 6 frequencies
are used.

3. The Gauss Newton method is a way to solve optimization problems involv-
ing sums of squares. Such problems come up in data fitting and modeling.
Suppose a model has parameters x = (x1, · · · , xd) and makes predictions

yj = gj(x) , j = 1, · · · ,m .

Suppose you measure Yj and want to identify (estimate, learn) the values
of the parameters x. Least squares parameter estimation is

x∗ = arg min
x

m∑
j=1

(Yj − gj(x))
2
.

The loss function is the sum of squares error

f(x) =

m∑
j=1

(Yj − gj(x))
2

= (Y − g(x))
T

(Y − g(x)) . (2)

The Gauss Newton method is like Newton’s method in that it uses a local
model of the loss function. For Gauss Newton, it replaces the nonlinear
functions gk with linear approximations

gj(x+ x′) ≈ gj(x) +

d∑
j=1

∂gj
∂xk

(x) (x′k − xk) .
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In matrix/vector form, let J be the jacobian of g and write

g(x+ x′) ≈ g(x) + J(x) (x′ − x) = g̃x(x′) .

Assume that m > d (more data than parameters) and that J has rank d.
We define g̃x(x′) using g̃x instead of g in (2). The Gauss Newton iteration
is

xn+1 = arg min
x
f̃xn

(x) .

Answer the following questions about the Gauss Newton iteration.

(a) Define the search direction as pn = xn+1 − xn. Is pn a descent
direction for f at xn?

(b) Is the Gauss Newton method affine invariant?

(c) Is the Gauss Newton method locally quadratically convergent?

(d) Does the Gauss Newton method have faster local convergence if the
model fits the data better?

4. There is a form of Newton’s method for solving systems of nonlinear equa-
tions. Suppose you have d equations gj(x) = aj involving d unknowns xk.
Suppose that g(x∗) = a and the jacobian J(x∗) = Dg(x∗) is non-singular.
Newton’s method is the iteration

xn+1 = xn − J(xn)−1 [ g(xn)− a] . (3)

(a) Consider the case d = 1. Show that the Newton iteration is equivalent
to the geometric method from Calculus, where you try to find x∗ with
g(x∗) = a using the intersection of the tangent line at xn with the
line y = a.

(b) Show that if you apply this Newton’s method to g(x) = ∇]f(x) = 0,
you get the Newton’s method for optimization.

(c) Show that Newton’s method (3) is locally quadratically convergent
as long as J(x∗) is nonsingular.

5. Equality constraints are equations that a point x ∈ Rd must satisfy exactly
in order to have x ∈ F (the feasible set). This exercise describes gradient
descent for equality constrained optimization. We suppose the equality
constraints involve equations

gj(x) = aj , j = 1, · · · ,m .

We suppose the gj are differentiable and have gradient vectors that are
linearly independent. This is expressed in matrix terms using the function
g that takes Rd to Rm.

g(x) =

 g1(x)
...

gm(x)

 .
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The jacobian of this function is an m! ×d matrix B(x) = Dg(x). We
suppose F is defined by the constraints gj(x) = aj only:

F = {x | g(x) = a } .

We always suppose rank(B(x)) = m for all x ∈ F . A vector p ∈ Rd is
tangent to F at a point x ∈ F if

d

ds
g(x+ sp)

∣∣∣
s=0

= 0 .

You may assume the following theorem, which is related to the implicit
function theorem: If p is tangent to F at x and if s is small enough, then
there is y(x) ∈ F with y(s) = x+ sp+O(s2). This implies that

d

ds
y(s)

∣∣∣
s=0

= p . (4)

The vector space of all p tangent to F at x is the tangent space to F at x
and is written Tx. The equality constrained optimization problem is

min
x∈F

f(x) .

(a) What is the dimension of Tx, assuming that B(x) has full rank?

(b) The orthogonal projection of ∇f(x) onto Tx is the tangent vector p
that solves

min
p∈Tx

‖p−∇f(x)‖22 .

Find a way to find this p using the QR factorization of B.

(c) Show that it is possible to express the projection p from part (b) as

p = ∇f(x)−
m∑
j=1

λj∇gj(x) .

Find the normal equations that the vector λ satisfies.

(d) The following are related. Take the first ones as hints for the last.
Show that the projection p at x∗ is zero if

x∗ = arg min
x∈F

f(x) .

Show that x is not a local minimizer of f in F if p 6= 0. Show that
−p is a descent direction for f within F at x if p 6= 0. Show that if
p 6= 0 and s is small enough, then f(y(−s)) < f(x).

(e) Show that if x∗ is a constrained minimizer of f , then there are num-
bers λj (Lagrange multipliers) so that

∇f(x∗) =

m∑
j=1

λj∇g(x∗) .
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(f) Nonlinear projection to F means finding y ∈ F that is close to x +
sp. If the functions g defining F are nonlinear then F is likely to
be curved so x + sp is not in F . The “projection” is not uniquely
determined if F is curved. One kind of projection looks for variables
wj so that

y = x+ sp+

m∑
j=1

wj∇gj(x) ∈ F .

The goal is to find w so that g(y) = a. This is a nonlinear system of
equations. There are m equations and m unknowns (the wj), which
may be written as h(w) = 0, where h represents m functions of m
variables. Show that Newton’s method for finding w needs only first
derivatives. Write wn+1 = H(wn) as the Newton iteration mapping.
Show that if ‖w‖ and s are small then ‖DwH(w)‖ is small so that
linearized analysis suggests that the Newton iteration succeeds in
finding w with h(w) = 0, using initial guess w0 = x+ sp.

(g) Combine these parts to suggest a gradient descent method for finding
x∗ by searching on F . The algorithm will have an outer iteration,
which goes from xn ∈ F to xn+1 ∈ F and has f(xn+1) < f(xn)
unless the projection of ∇f(xn) onto Txn

is zero. Each outer step
involves an inner iteration that goes from xn − snpn to xn+1 ∈ F
using nonlinear projection.
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