Scientific Computing, Fall 2022 http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html

Assignment 4

Corrections: [1] Formula (3) of Exercise 4 has been corrected to have J_n^x)⁻¹ instead of just J. [2] formula (3) corrected again to have $g(x_n) - a$

1. Consider applying the simple Newton method to minimizing

$$f(x) = \sqrt{1 + x^2} \, .$$

"Simple" means the step size is always equal to one. Show that f is strictly convex but not "uniformly convex" $(|f''(x)| \to 0 \text{ as } x \to \infty)$ Show that $x_n \to x_* = 0$ if x_0 is small enough but $|x_n| \to \infty$ if x_0 is too large.

2. Consider the problem of fitting a time series to a sum of simple oscillations with frequencies ω_j and amplitudes A_j . The loss function is

$$L(A_1, \omega_1, \cdots, A_d, \omega_d) = \sum_{j=1}^m \left(Y_j - \sum_{k=1}^d A_k \sin(\omega_k t_j) \right)^2 .$$
 (1)

Suppose that L has a local minimizer with distinct frequencies $(\omega_j \neq \omega_k \text{ if } j \neq k)$. Show that L has more than 100 local minima if d > 4 frequencies are used and more than 1000 local minima if more than d > 6 frequencies are used.

3. The *Gauss Newton* method is a way to solve optimization problems involving sums of squares. Such problems come up in data fitting and modeling. Suppose a model has parameters $x = (x_1, \dots, x_d)$ and makes predictions

$$y_j = g_j(x)$$
, $j = 1, \cdots, m$.

Suppose you measure Y_j and want to identify (estimate, learn) the values of the parameters x. Least squares parameter estimation is

$$x_* = \arg\min_x \sum_{j=1}^m (Y_j - g_j(x))^2$$
.

The loss function is the sum of squares error

$$f(x) = \sum_{j=1}^{m} \left(Y_j - g_j(x) \right)^2 = \left(Y - g(x) \right)^T \left(Y - g(x) \right) \ . \tag{2}$$

The Gauss Newton method is like Newton's method in that it uses a local model of the loss function. For Gauss Newton, it replaces the nonlinear functions g_k with linear approximations

$$g_j(\overline{x} + x') \approx g_j(\overline{x}) + \sum_{j=1}^d \frac{\partial g_j}{\partial x_k}(\overline{x}) \left(x'_k - \overline{x}_k \right) \;.$$

In matrix/vector form, let J be the jacobian of g and write

$$g(\overline{x} + x') \approx g(\overline{x}) + J(\overline{x}) (x' - \overline{x}) = \widetilde{g}_{\overline{x}}(x')$$

Assume that m > d (more data than parameters) and that J has rank d. We define $\tilde{g}_{\overline{x}}(x')$ using $\tilde{g}_{\overline{x}}$ instead of g in (2). The Gauss Newton iteration is

$$x_{n+1} = \arg\min_{x} f_{x_n}(x)$$

Answer the following questions about the Gauss Newton iteration.

- (a) Define the search direction as $p_n = x_{n+1} x_n$. Is p_n a descent direction for f at x_n ?
- (b) Is the Gauss Newton method affine invariant?
- (c) Is the Gauss Newton method locally quadratically convergent?
- (d) Does the Gauss Newton method have faster local convergence if the model fits the data better?
- 4. There is a form of Newton's method for solving systems of nonlinear equations. Suppose you have d equations $g_j(x) = a_j$ involving d unknowns x_k . Suppose that $g(x_*) = a$ and the jacobian $J(x_*) = Dg(x_*)$ is non-singular. Newton's method is the iteration

$$x_{n+1} = x_n - J(x_n)^{-1} \left[g(x_n) - a \right] .$$
(3)

- (a) Consider the case d = 1. Show that the Newton iteration is equivalent to the geometric method from Calculus, where you try to find x_* with $g(x_*) = a$ using the intersection of the tangent line at x_n with the line y = a.
- (b) Show that if you apply this Newton's method to $g(x) = \nabla [f(x) = 0,$ you get the Newton's method for optimization.
- (c) Show that Newton's method (3) is locally quadratically convergent as long as $J(x_*)$ is nonsingular.
- 5. Equality constraints are equations that a point $x \in \mathbb{R}^d$ must satisfy exactly in order to have $x \in \mathcal{F}$ (the feasible set). This exercise describes gradient descent for equality constrained optimization. We suppose the equality constraints involve equations

$$g_j(x) = a_j , \quad j = 1, \cdots, m .$$

We suppose the g_j are differentiable and have gradient vectors that are linearly independent. This is expressed in matrix terms using the function g that takes \mathbb{R}^d to \mathbb{R}^m .

$$g(x) = \begin{pmatrix} g_1(x) \\ \vdots \\ g_m(x) \end{pmatrix} \,.$$

The jacobian of this function is an $m! \times d$ matrix B(x) = Dg(x). We suppose \mathcal{F} is defined by the constraints $g_j(x) = a_j$ only:

$$\mathcal{F} = \{ x \mid g(x) = a \} .$$

We always suppose rank(B(x)) = m for all $x \in \mathcal{F}$. A vector $p \in \mathbb{R}^d$ is tangent to \mathcal{F} at a point $x \in \mathcal{F}$ if

$$\left. \frac{d}{ds} g(x+sp) \right|_{s=0} = 0 \; .$$

You may assume the following theorem, which is related to the *implicit* function theorem: If p is tangent to \mathcal{F} at x and if s is small enough, then there is $y(x) \in \mathcal{F}$ with $y(s) = x + sp + O(s^2)$. This implies that

$$\left. \frac{d}{ds} y(s) \right|_{s=0} = p \;. \tag{4}$$

The vector space of all p tangent to \mathcal{F} at x is the *tangent space* to \mathcal{F} at x and is written T_x . The equality constrained optimization problem is

$$\min_{x\in\mathcal{F}}f(x)\;.$$

- (a) What is the dimension of T_x , assuming that B(x) has full rank?
- (b) The orthogonal projection of $\nabla f(x)$ onto T_x is the tangent vector p that solves

$$\min_{p \in T_x} \|p - \nabla f(x)\|_2^2 \ .$$

Find a way to find this p using the QR factorization of B.

(c) Show that it is possible to express the projection p from part (b) as

$$p = \nabla f(x) - \sum_{j=1}^{m} \lambda_j \nabla g_j(x)$$
.

Find the *normal equations* that the vector λ satisfies.

(d) The following are related. Take the first ones as hints for the last. Show that the projection p at x_* is zero if

$$x_* = \arg \min_{x \in \mathcal{F}} f(x)$$

Show that x is not a local minimizer of f in \mathcal{F} if $p \neq 0$. Show that -p is a descent direction for f within \mathcal{F} at x if $p \neq 0$. Show that if $p \neq 0$ and s is small enough, then f(y(-s)) < f(x).

(e) Show that if x_* is a constrained minimizer of f, then there are numbers λ_j (Lagrange multipliers) so that

$$\nabla f(x_*) = \sum_{j=1}^m \lambda_j \nabla g(x_*)$$

(f) Nonlinear projection to \mathcal{F} means finding $y \in \mathcal{F}$ that is close to x + sp. If the functions g defining \mathcal{F} are nonlinear then \mathcal{F} is likely to be curved so x + sp is not in \mathcal{F} . The "projection" is not uniquely determined if \mathcal{F} is curved. One kind of projection looks for variables w_j so that

$$y = x + sp + \sum_{j=1}^{m} w_j \nabla g_j(x) \in \mathcal{F}$$

The goal is to find w so that g(y) = a. This is a nonlinear system of equations. There are m equations and m unknowns (the w_j), which may be written as h(w) = 0, where h represents m functions of m variables. Show that Newton's method for finding w needs only first derivatives. Write $w_{n+1} = H(w_n)$ as the Newton iteration mapping. Show that if ||w|| and s are small then $||D_wH(w)||$ is small so that linearized analysis suggests that the Newton iteration succeeds in finding w with h(w) = 0, using initial guess $w_0 = x + sp$.

(g) Combine these parts to suggest a gradient descent method for finding x_* by searching on \mathcal{F} . The algorithm will have an *outer iteration*, which goes from $x_n \in \mathcal{F}$ to $x_{n+1} \in \mathcal{F}$ and has $f(x_{n+1}) < f(x_n)$ unless the projection of $\nabla f(x_n)$ onto T_{x_n} is zero. Each outer step involves an *inner iteration* that goes from $x_n - s_n p_n$ to $x_{n+1} \in \mathcal{F}$ using nonlinear projection.