
Scientific Computing, Fall 2022
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html

Final Project

This project involves writing a package to solve an ODE system in the stan-
dard format, verifying the code, then using it to make movies. Before you start,
please read the posted files on Python classes. When you’re ready to make
a movie, look at the posted movie demo file. Confession. I don’t understand
Python graphics and particularly animation very well. The demo I posted works
for me, but the movie player crashes a lot. I would be grateful if someone who
understands it better could explain it to me.

This project is in part about the process of developing a piece of scientific
computing software. In particular, there should be a range of tests. The problem
should not be too closely integrated into the solution software to allow for easier
testing problems for validation. That’s even if the overall project has a specific
target application. Please upload code and whatever movie/movies you make.
Part of the grade will be on the quality of the code and movies using criteria such
as thoughtfulness of the scales, symbols, labels, etc (for movies) and modularity,
clarity and ease of use of the software. Chapter 8 of the book Principles of
Scientific Computing has the necessary background on ODE solvers. I had to
give my NYUid (not Courant ID) and password to access this.

Principles of Scientific Computing
https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf

Basic solver

Write a basic solver for the initial value problem

ẋ = f(x) , x(0) = x0 , x(t) ∈ Rm . (1)

(Below, d will be the space dimension, either 2 or 4, and n will be the number
of planets.) This should have the option of using the first order forward Euler
method or the four stage fourth order explicit Runge Kutta method (often called
“the” Runge Kutta method). The solver should take as input an object that
evaluates f(x) for a given x, the initial condition x0, the time step ∆t, and
the final time T . For order of accuracy checking, you might add the option of
specifying ∆t and the number of time steps, but this should not be used for the
big runs that make the movie or movies.

Validate your code using the m = 2 model problem

ẋ =
π√

x2
1 + x2

2

(
−x2

x1

)
, x0 =

(
1
0

)
, x(t) =

(
cos(πt)
sin(πt)

)
. (2)

This problem has some features of a good testing problem

• It is simple and has a simple explicit solution.

1

https://cs.nyu.edu/courses/spring09/G22.2112-001/book/book.pdf

• It is not too simple. For example, a d = 1 model problem might miss
indexing bugs in the software.

• It is non-linear. It is possible (I have done it) to get the Runge Kutta for-
mulas wrong in a way that leads to 4-th order accuracy for linear problems,
but not for non-linear ones.

Verify that both the Euler and the Runge Kutta options give the correct answer
for T = 2 in the limit ∆t→ 0.

Order of accuracy verification

Compute the error for a sequence ∆t, 1
2∆t, etc. Do the convergence analysis

to verify that the Euler version is first order and the Runge Kutta is fourth
order. UseTt = 2 or T = 4 or some larger value. You may find that the clean
verification for Runge Kutta is harder because the error is so small that roundoff
spoils the computed asymptotic error expansions. It is possible that a larger T
makes the Runge Kutta verification easier because the error is larger, maybe.

For the n body simulations below, it is helpful to have a qualitative idea
what the errors from Euler’s method look like. For this, make a simulation up
to a long time such as T = 20 or T = 40 and make a 2D plot of the trajectory
(one plot for each method?). You should see the Euler trajectory spiral out
while the Runge Kutta solution follows the circle better, and for a longer time.

Adaptive ∆t

Build on top of the ODE solver a routine that knows the order of accuracy but
not the solution and tries to find ∆t to achieve a specified error. This code
should have as input ε and a first guess at ∆t. It should do runs with ∆t and
1
2∆t to estimate the first term (after the true solution) in the error expansion.
This allows you to estimate the error:

r(∆t) ≈ x(∆t)(T)− x(t) .

Stop if this estimated error suggests that∥∥∥r(∆t)
∥∥∥ ≤ ε . (3)

Otherwise replace ∆t with 1
2∆t and repeat. When you have found a ∆t that

satisfies the accuracy criterion (3), return the best estimate of the solution,
which is x(∆t)(T) + r(∆t). Test this using the test problem (2), for which you
know the actual answer. Does this adaptive ∆t solver produce solutions of
accuracy ε? Is the solution more or less accurate? Try for Euler and Runge
Kutta. Things to be careful of

• The simple procedure may fail if ε is too small because of roundoff error.
The code should have a maximum number of ∆t reductions before it prints
an error message and gives up.

2

• It might be that x(1
2 ∆x) − x(∆x) is smaller than the target accuracy ε but

the asymptotic error expansion does not work because of roundoff. What
should the code do in that case?

• What will/should the code do if ∆t or T is so large that the asymptotic
error expansion is not a good approximation (we say the expansion is
“invalid”, but that’s an inappropriate word for this situaton.)

Planets, the n body problem

The n body problem is the ODE system that describes the motion of n “planets”
(objects) under gravitational attraction. Suppose there are planets at locations
r1 and r2 in R2 or R3. The force on the planet at r1 coming from the planet at
r2 given by Newton’s law of gravity:

F12 = gm1m2
r2 − r1

‖r3 − r1‖3
.

The masses of the planets are m1 and m2 respectively. The overall gravitational
constant is g. It is a dimensional constant, but we will set g = 1 for simplicity.
The force F12 pulls the r1 planet toward the r2 planet, which accounts for the
sign r2−r1 rather than r1−r2. The strength of the force is gm1m2 ‖r2 − r1‖−2

.
This is Newton’s inverse square law. Planets move according to Newton’s law
of motion

Ftot = ma .

Here, Ftot is total force on a planet, which is the sum of the forces from the
other planets. On the right is m, the mass x2 of the planet, and a = r̈, which
is the accelleration. Altogether,

mj r̈j =
∑
k 6=j

gmjmk
rk − rj
‖rk − rj‖3

.

Note that mj cancels from both sides. It will take some coding to put these
equations into the standard ODE form You should do (at least in the beginning)
the restrictted n body problem which means d = 2 instead of the physically
relevant d = 3. There are phenomena that happen in the restricted or the full
problem, and others that only happen for d = 3. For d = 2 and n planets, ODE
system (1) will have m = 4n.

The two body (n = 2) problem has periodic elliptical trajectories if the
initial velocities are small enough. See how well the Euler and Runge Kutta
solvers reproduce this. The signature of periodicity is that if you run for a long
time, you trace out the same ellipse many times. The solver does this only
approximately, depending on ∆t. If you take r1(0) = 0 and r2(0) = (1, 0), make
sure the initial velocities are not on the x axis, or you will see a line segment
rather than an ellipse. Does the adaptive ∆t finder work on this problem?

You should be able to imitate a star centered system by taking m1 to be
many orders of magnitude (powers of 10) larger than the other masses, and by

3

taking ṙ1(0) = 0. The solvers should not break and you should not need a very
small ∆t.

The n = 3 body problem (or n > 3) does not have simple behavior. Exper-
iment with various situations to see what interesting movies you can make. If
there is a central star and if the orbits are nearly circular and distinct, then the
orbits change slowly. After a while a planet can be “ejected” by other planets.
Astronomers believe there are lots of ejected (rogue) planets from various planet
systems “out there” but we can’t see them because they don’t shine.

4

