
Scientific Computing, Fall 2022
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html

Scientific Computing
Jonathan Goodman, Fall, 2022

1 Linear Algebra, matrix factorization

Prerequisites. This Section assumes a familiarity with linear algebra at a
“good undergraduate level”. Specific topics assumed include the relation be-
tween matrices and linear transformations, formulation of systems of linear
equations in terms of matrices and solution via LU factorization, solvability
conditions, subspaces and bases for subspaces, change of basis and invariance
of dimension, eigenvalues and eigenvectors. The linear algebra book by Gilbert
Strang is a good source for “review”.

This Section and the next describe Computational linear algebra. This Section
covers some common linear algebra problems and solution strategies that rely on
matrix factorizations. Most computational linear algebra is done this way. The
user formulates a linear problem and creates a strategy for solving it that uses
information from one of the standard matrix factorizations. The corresponding
code uses available linear algebra software to compute the factorization. In
Python, this linear algebra software is in numpy.linalg or in scipy.

What’s missing from this Section is guidance on how to choose between
different strategies to solve a given problem. For example, a linear system of
equations may be solved using the LU factorization, or QR or SVD. The LU
factorization may be simpler and faster, but the SVD allows you to treat ill-
conditioned problems with more numerical stability. Numerical stability and
conditioning are not discussed here, but are discussed in future classes. Also
delayed is a discussion of the computational algorithms used to get the factoriza-
tions. It may seem strange to put the topics in this order, but the other orders
seem strange too. The full picture involving problems, approaches, conditioning
(perturbation theory) and algorithms should be clear.

Approximate arithmetic, quantitative vs. qualitative properties. Com-
putational linear algebra is an important part of scientific computing because
many problems are linear, and because linear approximations are useful in many
non-linear problems. The techniques and software of computational linear alge-
bra are so powerful that we look for ways to apply them whenever possible.

Working with linear algebra means going back and forth between concrete
and abstract ways of thinking. In the most concrete view a vector is a one-
index array of numbers (components) and a matrix is a two-index square or
rectangular array. The other extreme is the abstract theory of vector spaces
and linear transformations between them. Concrete and abstract reasoning are

1

often used together. For example, there are linear transformations such as the
FFT (discussed in a later Section) that are implemented by a code that does
not store or compute the entries of the FFT matrix.

Doing practical computational linear algebra can feel different from doing
theoretical linear algebra. Theoretical linear algebra has theorems that depend
on whether a number is zero, whether eigenvalues are equal, or real, etc. The
code zeroDemo.py provides an example. One experiment involves the matrix

A =

 π e
√

2

e
√

2 π

π + e e+
√

2
√

2 + π


The experiment could work with different entries in the first two rows, so long
as they are not represented exactly in floating point. Mathematically, the de-
terminant is zero because the third row is the sum of the first two rows. The
computed determinant (double precision arithmetic, top notch algorithm) is
-6.5418e-16. This number is within roundoff of zero, but it is not actually
zero. A second experiment involves the n× n matrix with entries Ajk = uj+k.
This is an example of a Vandermonde matrix and is non-singular. With u = .9
and n = 11, the determinant was computed to be -5.3623e-39 (smaller than
the determinant of the singular matrix). This computation has high relative
accuracy, since it agrees with the Vandermonde formula for the determinant of
a Vandermonde matrix. Clearly the computer cannot tell whether A is singular
by testing the determinant.

The singularity or inevitability of a matrix is a qualitative question that “the
computer” cannot answer, as zeroDemo.py shows. Other qualitative properties
of a matrix include being positive definite, and being diagonalizable (n linearly
independent eigenvectors). Such qualitative questions should be replaced by
quantitative ones that the computer has a better chance of answering reliably.
Instead of asking whether A is invertible, we can ask how accurately A−1 may
be computed in floating point, which is a quantitative question. The accuracy of
A−1 depends on the accuracy of the computer arithmetic (e.g., single or double
precision) and the conditioning of the matrix inversion problem. The linear
algebra software in numpy includes functions that estimate condition number
reliably enough to know how accurate a computation of A−1 might be.

Computational software should be written and used with the understanding
that it will fail on some problems. For example, a routine matrix inverse(A)

should fail if the entries of A−1 are outside the range of floating point numbers.
A deeper discussion of which matrices are invertible in floating point is coming
in a future class. All the routines in numpy.linalg report failure when appro-
priate. Any routine that uses this software should look for error reports and act
accordingly.

Factorizations and the computational kernal. This is the first of several
Sections on numerical linear algebra. This Section focuses on matrix factoriza-
tions, what they are and how they used. A matrix factorization is an expression

2

of a matrix A as a product of several matrices A = BC · · · , where the factors
B, C, etc., have specified properties. In many cases an analysis of a matrix or
linear transformation may be formulated as constructing a matrix factorization.
Such formulations are useful because there may be several ways to construct a
matrix factorization other than the “direct” method that led to it.

The focus on matrix factorizations is a guiding principle of modern compu-
tational linear algebra. In several senses, matrix factorizations form the compu-
tational kernel of that field. If a solution strategy involves matrix factorizations,
probably most of the computer time is spent doing the factorizations. Identi-
fying a small set of clearly defined factorizations has allowed the development
of amazing (optimized, reliable, easy to use) software that is widely available.
Optimizing these core tasks the best way to speed up overall computations.
This involves mathematical problems and also The best widely available soft-
ware computes factorizations of large matrices far faster and more reliably than
anything a small team could created by themselves.

There are many good books on linear algebra and numerical linear algebra.
There is the basic linear algebra book of Strang and the beautiful but more
abstract book of Lax. For numerical linear algebra, the book of Demmel has
much detail (some outdated) and important material on conditioning and per-
turbation theory. A shorter and gentler book is by Trefethen and Bau. The
old but still great book by Dahlquist and Björk is a great source for almost
anything related to numerical computing, including numerical linear algebra.

2 LU factorization

The LU factorization, which many readers will be familiar with, most often used
to store most of the work needed to solve a system of linear equations. The direct
solution of systems of linear equations starts with an elimination phase in which
variables are ‘eliminated” from equations. This allows the “substitution” phase
in which the values of the variables are found one by one. For an n× n matrix,
the elimination phase takes O(n3) operations while substitution takes O(n2).
The LU factorization stores the result of the elimination phase.

Here, we give a backwards explanation of LU factorization. First we say
what it is, then (next Section) we say how accurate it might be, then, finally, we
give some hint how it is computed. This re-ordering of the material is motivated
in part by the fact that most users will use “black box” software to compute
the factorization. The algorithms behind that software are too sophisticated
and specialized to be described in a beginning Scientific Computing course.
Instead, people need to know how the factors are used and how accurate the
computations are likely to be, or when they are likely to be inaccurate.

The LU factorization more than just

A = LU , L lower triangular, U upper triangular.

In fact, there are square matrices A that cannot be expressed as a product in

3

this way. An example is A =

(
0 2
3 4

)
. This A is non-singular, so it cannot

be written as a product where one of the factors is singular. A strict (lower
triangular)∗(upper triangular) would be(

0 2
3 4

)
=

(
a 0
b c

)(
d e
0 f

)
We equate the individual matrix entries on the left and right, which gives

A11 : 0 = ad

A12 : 2 = ae

A21 : 3 = bd

A22 : 4 = be+ cf

The A11 equation gives ad = 0, which implies a = 0 or d = 0 (or both). If

a = 0 then the first factor on the right is

(
0 0
b c

)
, which is singular. If d = 0

then the second factor is singular. Thus, the strict LU factorization implies
that one of the factors is singular, which contradicts the fact that the product
is non-singular.

The practical LU factorization is either A = PLU , or A = PrLUPc, where
the various P matrices represent permutations of the equations or the variables.
To motivate this, suppose the example above came from a system of linear
equations, written in various ways

Ax = b(
0 2
3 4

)(
x1

x2

)
=

(
b1
b2

)
0 · x1 + 2 · x2 = b1

3 · x1 + 4 · x2 = b2 .

In the latter form, the one that gives individual linear equations, we can list the
equations in the opposite order

3 · x1 + 4 · x2 = b2

0 · x1 + 2 · x2 = b1 .

In matrix form, this is (
3 4
0 2

)(
x1

x2

)
=

(
b2
b1

)
.

The matrix involved has lower/upper factorization(
3 4
0 2

)
=

(
1 0
0 1

)(
3 4
0 2

)
.

4

The LU factorization was possible after a permutation that re-ordered the equa-
tions.

The permutation is included in the LU factorization formalism in the form
of a permutation matrix P . A permutation is a re-ordering of the numbers
(1, 2, . . . , n). The new order is specified using a mapping π that puts k in po-
sition π(k). For example, if n = 3 and π(1) = 3, π(2) = 1, and π(3) = 2, then

the new order defined by π is (2, 3, 1). A mapping (1, . . . , n)
π−→ (1, . . . , n) is a

permutation if all values are taken and no value is repeated. The “pidgenhole
principle” is that these conditions are equivalent. A permutation matrix corre-
sponding to π is the n×n matrix with all zeros except that column k has a a 1

in row π(k). In our example, since π(1) = 3, column 1 of P is

0
0
1

. This has

the effect that if y = Px, then y3 = x1. The full permutation matrix is

P =

0 1 0
0 0 1
1 0 0

 .

You can see that yπ(k) = xk. Column k of P determines the effect of xk on
y = Px. The entry in row j determines the effect of xk on yj . If this column
is all zero except for 1 in row π(k), this makes yπ(k) equal to xk. That is, the
permutation matrix P permutes the entries of the vector.

The 2 × 2 example above involved the permutation (1, 2) → (2, 1). The

corresponding permutation matrix is P =

(
0 1
1 0

)
. This matrix has P−1 = P ,

which is not true of general permutation matrices. The example has (multiplying
by P in the last step)

P−1A =

(
0 1
1 0

)(
0 2
3 4

)
=

(
3 4
0 2

)
=

(
1 0
0 1

)(
3 4
0 2

)
A =

(
0 1
1 0

)(
1 0
0 1

)(
3 4
0 2

)
A = PLU .

Putting the permutation matrix in front of the factors LU corresponds to re-
ordering the equations in the equation system, which is equivalent to permuting
the rows of the matrix A. It is called partial pivoting.

Practical LU factorization does partial pivoting (row exchange) or full pivot-
ing (row and column exchange) to make the factorization algorithm stable. The
example above was misleading in one sense. It used pivoting to avoid having a

5

0 in the (1,1) position of the matrix A. That is necessary for A to have a repre-
sentation in the form A = LU in the mathematical sense. But pivoting is used
not mainly to prevent mathematical impossibliities, but to prevent numerical
instability that results from dividing by small numbers. Full pivoting results
in A = PrLUPc, where Pr corresponds to permuting the rows of the matrix,
and Pc permutes the columns. Permuting the rows is the same as permuting
the equations in an equation system. Permuting the columns is the same as
permuting the components of the unknown x.

The A = PLU factorization can be used to solve an equation system through
permutation, forward substitution and backward substitution, which together
may be called back substitution. We write the equations Ax = b in factored
form as PLUx = b, then

find c with Pc = b , (c = P−1b) (1)

find y with Ly = x , (y = L−1c) (2)

find x with Ux = y , (x = U−1y) (3)

The final x satisfies Ax− b because

Ax = PLUx

= PL(Ux)

= PLy

= P (Ly)

= Pc

= b

The calculation is written out in such detail with parentheses to emphasize
the fact that it depends on the associative property of matrix multiplication.
Associativity is the key to many clever algorithms is numerical linear algebra.

The steps (1), (2), and (3) are done using “algorithms” rather than explicitly
computing the inverse matrices P−1, L−1 and U−1. For step (1), we use the
definition of P in the form cπ(k) = bk to get the numbers cj (thanks to the
pidgenhole principle). For step (2), we write it out writing ljk for the entries of
L and using the fact that L is lower triangular with ones on its diagonal:

1 0 0 · · ·
l21 1 0 · · ·
l31 l32 1

...



y1

y2

y3

...

 =


c1
c2
c3
...


We write out the equations corresponding to the rows and say what we do with

6

that information

(row 1) y1 = c1 =⇒ y1 = c1

(row 2) l21y1 + y2 = c2 =⇒ y2 = c2 − l21y1

(row 3) l31y1 + l32y2 + y3 = c3 =⇒ y3 = c3 − l31y1 − l32y2

etc.

This is forward substitution because we find the yk in the forward order y1,
then y2, etc. It is possible to form the matrix L−1, but it is not necessary. The
action of L−1 can instead be implemented in the form just given.

Getting x from y in step (3) is similar. The matrix U is upper triangular so
the matrix form is

. . .
...

· · · 0 un−1,n−1 un−1,n

· · · 0 unn




...

xn−1

xn

 =


...

yn−1

yn

 .

The individual equations corresponding to the rows are written out, but starting
from the last one, which is row n.

(row n) unnxn = yn =⇒ xn =
1

unn
yn

(row n− 1) un−1,n−1xn−1 + un−1,nxn = yn−1 =⇒ xn−1 =
1

un−1,n−1
(yn−1 − un−1,nyn)

etc.

The components xk are found one-by-one, starting from xn. This process is
backward substitution because it starts from the k = n rather than k = 1.

The LU factorization of A can be used to evaluate the determinant.

3 QR factorization, least squares

The QR factorization is a representation of an m×n matrix A as the product of
an m×m (square) orthogonal matrix Q and an m× n upper triangular matrix
R. R and A have the same shape, which could be square or rectangular. Upper
triangular means that the entries of R are zero below the diagonal: rjk = 0 if
j > k. All three cases m < n, m = n and m > n occur in applications.

A real square matrix Q is orthogonal if it satisfies QQT = I. This is equiv-
alent to QTQ = I because AB = I is equivalent to BA = I for any square
matrices A and B. In terms of columns, Q is orthogonal if its columns are an
ortho-normal basis for Rn. To see this more explicitly, write Q in terms of its

7

columns qk ∈ Rn

Q =


...

...
q1 · · · qn
...

...

 .

We write QTQ as

QTQ =

· · · qT1 · · ·
...

· · · qTn · · ·




...
...

q1 · · · qn
...

...


For any matrix Q (orthogonal or not), the (j, k) entry of QTQ seen to be qTj qk.

If QTQ = I, then qTj qk = 0 when j 6= k so the column vectors qk are orthogonal

to each other. The diagonal entries of the identity matrix are 1, so qTj qj = 1.
Recall that if x and y are any two column vectors, then (using various notations
for inner product)

xTy =

n∑
k=1

xkyk = x · y = 〈x, y〉 .

The 2 norm of a vector x is given by

√
xTx =

(
n∑
k=1

x2
k

) 1
2

= ‖x‖2

The columns of an orthogonal matrix are “normalized” to have ‖qj‖2 = 1. A
system of vectors that are normalized and orthogonal to each other is an ortho-
normal system.

Orthogonal matrices have the important property of preserving norms and
inner products of vectors. This means that if x and y are any two column
vectors in Rn, then

〈Qx,Qy〉 = 〈x, y〉 .

This is verified by a matrix/vector calculation, which uses the fact that ma-
trix/vector multiplication is associative ((AB)C = A(BC), (AB)(CD) = A(BC)D,
etc.) and transpose reverses order ((AB)T = BTAT):

〈Qx,Qy〉 = (Qx)
T

(Qy)

=
(
xTQT

)
(Qy)

= xT
(
QTQ

)
y

= xTIy

= xTy

= 〈x, y〉 .

8

In particular, orthogonal transformations preserve orthogonality and the pre-
serve length

〈x, y〉 = 0 =⇒ 〈Qx,Qy〉 = 0 (preserve orthogonality)

‖x‖2 = ‖Qx‖2 . (preserve length)

Computations with orthogonal matrices tend to be more stable than computa-
tions with general matrices.

The QR factorization is simpler from a mathematical point of view than the
LU factorization is because there is no permutation matrix P and no problem
with the factorization not existing in certain cases. The QR factorization is
more expensive than LU both in operation counts and in memory needed. The
number of multiplies needed to find Q and R is roughly twice the number needed
to find P , L, and U , as we will see in a later Section. The memory needed also
is more, but how much more depends on the implementation. Suppose n = m
(square matrices). For LU , you can store all the entries ljk and ujk in a single
n × n array, because off the diagonal either ljk = 0 or ujk = 0. The diagonal
may be used to store ukk because lkk = 1 does not need storing. It is impossible
to pack both Q and R into a single n× n array.

If you use QR rather than LU to solve a system of equations, it may be
because QR is more stable or because you want to use the information in R to
take action if A is badly conditioned. A later Section will discuss conditioning
and stability. For now, just note that if A = QR and A is square, then the
linear system Ax = b may be solved using QTQ = I and back substitution

Ax = b

QRx = b

Rx = QTb (4)

x = R−1
(
QTb

)
(5)

The step (4) is done by direct matrix/vector multiplication to get y = QTb. The
step (5) is done using back substitution on the upper triangular system Rx = y.

3.1 Least squares via QR

Least squares problems arise when you try to choose a small set of parameters
to fit a lot of data using a linear model. An abstract version of “linear model”
is m equations that try to predict the numbers bj using parameters xk. There
are n parameters xk and m “data values” bj . The residuals in the fitting are m
numbers rj . The definitions are

n∑
k=1

ajkxk = bj + rj . (6)

In matrix form, there is the model matrix A, the parameter vector x, the data
vector b and the residual vector r, which satisfy

Ax = b+ r . (7)

9

The linear least squares problem is to find x that minimizes the sum of squares
of the fitting residuals,

m∑
j=1

r2
j = ‖r‖22 .

The goal of least squares is to choose the parameters xk to make the sum of
squares of the residuals as small as possible – achieve the “least squares”.

Throughout scientific computing, residual means the amount by which some
equations are not satisfied. It is generally the case that the computer can
(approximately) evaluate residuals. The error is the difference between an es-
timated answer and the true mathematical answer. If you could evaluate the
error, you would add it to the approximate solution and have the exact solu-
tion. The residuals can be known but the errors cannot be. The equations here,
written in matrix form, are Ax = b. If there are more equations than fitting
parameters, which is m > n, then it is probably impossible to find an x that
satisfies the equations exactly. The question then becomes: how small can the
residuals be? If you measure residuals in the 2−norm, this is the linear least
squares problem

The QR factorization of A can be used to solve the least squares problem

min
x
‖Ax− b‖22 . (8)

To see this, use A = QR and the properties of orthogonal matrices:

‖QRx− b‖22 =
∥∥QT (QRx− b)

∥∥2

2

=
∥∥QTQRx−QTb∥∥2

2

=
∥∥∥Rx− b̃∥∥∥2

2
.

This shows that we can solve the least squares problem (8) in three steps,

(step 1) compute the QR factorization of A

(step 2) compute b̃ = QTb
(step 3) solve the triangular least squares problem:

min
x

∥∥∥Rx− b̃∥∥∥2

2
(9)

The work needed for step 1 is O(nm2). Future classes will have some material
on work estimates and factorization algorithms. The work for steps 2 and 3
respectively is O(m2) and O(n2). Both of these are much smaller than the work
for step 1. Matrix factorization, usually, is the most expensive part of a large
numerical linear algebra computation.

The QR factorization makes it easy to solve least squares problems because
Step 3, and the solution of (9), is easy when R is upper triangular. The quantity

10

being minimized is r̃ = QTr. The element of r̃ are found explicitly as

R11 R12 · · · R1n

0 R22 R2n

...
. . .

...
. . .

0 Rn−1,n−1 Rn−1,n

0 · · · 0 Rnn
0 · · · · · · 0
...

...
0 · · · · · · 0





x1

x2

...

xn−1

xn

 −



b̃1
b̃2
...

b̃n
b̃n+1

...

b̃m


=



r̃1

r̃2

...

r̃n
r̃n+1

...
r̃m


This tells you how to choose the components of x to minimize r̃. Component n
is

Rnxn − b̃n = r̃n .

You achieve r̃n = 0 by taking Rnnxn = b̃n. After this, you set r̃n−1 = 0 by
solving for xn−1 in

Rn−1,n−1xn−1 +Rn−1,nxn = b̃n−1 .

Everything in this equation is already known, except xn−1. This backward
substitution process can continue until all the components of x are found and
the first n residuals r̃1, . . ., r̃n are set to zero. This is the smallest residual you
can make, because the rest of the residual components are independent of x
because of the zeros in the matrix R. The remaining residuals are equal to the
remaining b̃j . As a result, the solution to the least squares problem (8) satisfies

min
x
‖Ax− b‖22 =

m∑
j=n+1

b̃2j .

3.2 Orthogonal complements via QR

Suppose you have m < n linearly independent vectors in Rn. It is common (for
example in algorithms for constrained optimization) to seek a complementary
set of n−m vectors that are orthogonal to this subspace. More precisely, suppose
the vectors are a1, · · · , am. We want vectors qm+1, · · · , qn that are linearly
independent and orthogonal to the vectors ak, which can be written as

qTj ak = 0 , if j > m , k ≤ m . (10)

To do this, let A be the n×m matrix A and take its QR factorization. The
desired vectors are the last n − m columns of the orthogonal matrix Q. The
orthogonality conditions (10) can be expressed in this matrix notation as

qTj A = 0 .

11

The components in qTj A are the numbers qTj ak. With the QR factorization, we
can write the matrix orthogonality conditions as

qTj QR = 0 .

But qj is orthogonal to every column of Q except column j, so all the entries
of qTj Q are zero except entry j, which is equal to 1, which may be written as

eTj . (ej is the column vector with all zeros except a 1 as component j.) Finally

eTj R = 0 because R has all zero entries below row m (being upper triangular).
The algebra is

qTj A = qTj QR =
(
qTj Q

)
R = eTj R = 0 .

If you have m vectors aj , your code might have to copy their components
into an n×m matrix A. Then you ask numpy for the QR factorization. Then you
copy out the last n−m columns of Q. Note that the vectors from Q of the QR
factorization are orthogonal to each other, which implies that they are linearly
independent. For many applications you don’t need the qj to be orthogonal.
But orthogonality guarantees that the qj you get will be “well conditioned”, in
the sense that they will not seem almost linearly dependent to the computer.

4 Symmetric matrices, Cholesky and LDLT

Many computational linear algebra problems involve symmetric matrices. The
normal equations (21) are one example. The hessian matrix of a function f(x)
of n variables is the n× n matrix of second partial derivatives

Hjk =
∂2f

∂xj ∂xk
.

The Hessian matrix is symmetric. If AT = A, it is natural to look for a factor-
ization of A that preserves the symmetry.

A large symmetric matrix can be stored in roughly half the space of a general
n×n matrix. You don’t have to store Ajk = Akj if you’re also storing Akj . You
can, for example, store just the elements in the lower triangle, Ajk with j > k,
plus the diagonals. This is 1

2n(n+ 1) ≈ 1
2n

2 elements.
An LU factorization of A would require n2 elements if L and U are unrelated.

Also, if A is symmetric and A = LU , then A = AT = UTLT . This is also an LU
factorization, because UT is lower triangular and LT is upper triangular. If the
factorizations are the same, then UT = L, which would give

A = LLT . (11)

A factorization of this form is a Cholesky factorization. The number of elements
of L is the same as the number of possibly distinct elements of A, which is
approximately 1

2n
2, so the Cholesky factorization, should there be one, would

half as much storage as an LU factorization. The algorithm for computing L, if

12

L exists, takes half the work of the algorithm to find the LU factorization of an
n× n matrix.

A matrix with a Cholesky factorization must be positive (semi) definite. A
matrix A is positive definite if

xTAx > 0 , if x 6= 0 .

The matrix is positive semi definite if

xTAx ≥ 0 , for all x .

If A is positive semi-definite and non-singular, then A is positive definite. This
makes semi-definiteness a borderline case. If A has a Cholesky factorization
(11) the A is positive semi-definite, because

xTAx = xT
(
LLT

)
x =

(
xTLT

)
(Lx) ≥ 0 .

The converse is also true: if A is positive semi-definite then A has a Cholesky
factorization of the form (11).

A general symmetric matrix is not positive semi-definite. It turns out that
any symmetric matrix may be written in the form

A = LDLT . (12)

Here, L is a lower triangular matrix with Ljj = 1 (all ones on the diagonal) and
D being a diagonal matrix. The work to calculate L and D is essentially the
same as the work in finding the Cholesky factorization (when that exists). The
storage also is the same, since you can store the n diagonal elements Djj in the
spaces you would have used for the diagonal entries Ljj . In LDLT , the ones on
the diagonal of L do not have to be stored explicitly.

If you have the LDLT factorization (12), then you can tell whether A is
positive definite or positive semi-definite by looking at the diagonals Djj . We
want to know the sign of xTAx. Define a new variable y = Lx. This is a one-to-
one transformation because L is invertible if L is lower triangular and has ones
on the diagonal, so x = L−1y. Then

xTAx = xTLTDLx

=
(
xTLT

)
D (Lx)

= yTDy

=

n∑
j=1

y2
jDjj .

If all the Dj are positive, then this is positive whenever y 6= 0, which means A
is positive definite. If there is a j with Djj < 0, then we may choose yj = 1 and
yk = 0 for k 6= j. This y has yTDy = Djj < 0, so A is definitely indefinite. The
borderline case is where Djj ≥ 0 for all j but some of the Djj may be equal to
zero.

13

5 Principal components and SVD

The singular value decomposition, usually called the SVD, of a matrix A is a
factorization of the form

A = UΣV T . (13)

Assuming A is m× n, the matrices have the form

• U is m×m and UTU = I (U is orthogonal)

• V is n× n and V TV = I (V is orthogonal)

• Σ is m× n and “diagonal” in the sense that Σjk = 0 if j 6= k.

• The diagonal entries of Σ are Σjj = σj ≥ 0 and σ1 ≥ σ1 ≥ · · · .

The σj are the singular values of A. The columns of V are the right singular
vectors and the columns of U are the left singular vectors of A. The SVD of A
is often called the principal component analysis, or PCA, of A. This term is not
as precise as SVD, and it is not clear whether the columns of U or the columns
of V are the principal “components”.

The SVD has many derivations and many applications.

5.1 Low rank approximation

The rank of a matrix A is the dimension of the space spanned by its columns.
You might call this the “column rank”, but a fundamental theorem of linear
algebra is that the column rank is equal to the row rank (dimension of the
subspace spanned by the rows). This “row rank equals column rank” theorem
may seem surprising because the subspaces involved are different. The column
space is column vectors with m components. The row space is row vectors with
n components. They are different even if m = n because row vectors are not
column vectors.

If the matrix A has rank 1, then every column of A is in the same one
dimensional subspace. This means there is a single vector, w ∈ Rm so that the
columns of A satisfy aj = xjw, for j = 1, · · · , n. This means that the entries of
aj are akj = xjwk. To summarize, A is a rank one matrix if and only if there
are column vectors w ∈ Rm and x ∈ Rn so that

A = wxT .

Similarly, a matrix has rank r if there are vectors wi and xi so that

A =

r∑
i=1

wix
T
i . (14)

There are several seemingly different ways to come to the SVD. We give
variational principles that define the SVD. A variational principle for something
is a definition of that thing as the solution of an optimization problem. In linear

14

algebra, optimizing (maximizing or minimizing) a sum of squares often leads to
orthogonality. For the SVD, it is the singular vectors that are orthogonal to
each other.

A simple drawing in the plane illustrates the orthogonality principle. Draw
any straight line L that does not go through the origin. Then, identify the point
u = (ux, uy) on L closest to the origin. Observe that the line from the origin to
u is orthogonal to L. In formulas, L is defined by a linear constraint ax+by = c.
We require that a and b are not both zero in order that the “line” not include
the whole plane. We require c 6= 0 so that L does not go through the origin.
The closest point on L to (0, 0) satisfies

minimize x2 + y2 under the constraint ax+ by = c .

Minimizing the sum of squares is equivalent to minimizing the length because
one is the square root of the other

‖(x, y)‖2 =
√
x2 + y2 .

5.2 Fitting A as a linear transformation

Let A be an m×n matrix, and x an n component column vector. Then y = Ax
is an m component column vector. The SVD expresses the mapping

x
A−→ y = Ax

as a sum of rank one mappings

x
σjUjV

t
j−→ yj = σjUjV

T
j x .

Here is a a sequence of optimizations that gives the pieces

x −→ σjUjV
T
j x .

First the principal singular value contribution (j = 1, σ1 = σmax), then the next
largest (j = 2), and so on.

The principal singular value may be found using a variational definition

σ1 = max
‖x‖2=1

‖Ax‖2 . (15)

Let V1 be a unit vector that achieves this maximum:

‖V1‖2 = 1 , ‖AV1‖2 = σ1 .

As this says, AV1 is a vector of length σ1. This vector may be written as a unit
vector, multiplied by σ1, as in:

AV1 = σ1U1 , ‖U1‖ = 1 .

15

Being careful the way mathematicians are, note that σ1 is uniquely defined by
the variational principle (15), but neither V1 nor U1 is defined uniquely. For
one thing, we could use −V1 and −U1 instead of V1 an U1. But there can be
more non-uniqueness than just changing sign. The identity matrix is an extreme
example, where V1 can be any unit vector, corresponding to the principal (and
only) singular value σ1 = 1.

The next right singular vector V2 has a more complicated variational prin-
ciple. We ask for the largest stretch, constraining x to be orthogonal to V1

σ2 = max
‖x‖2=1, V T

1 x=0
‖Ax‖2 . (16)

We let V2 be an optimizer:

σ2 = ‖AV2‖2 , ‖V2‖ 2 = 1 , V T1 V2 = 0 .

As we did for V1, we write AV2 as σ2 multiplied by a unit vector

AV2 = σ2U2 , ‖U2‖2 = 1 .

We know σ2 ≤ σ1 because the variational principle (16) has an extra constraint
(optimizes over fewer vectors x) than (15). We do not, yet, know that U2 is
orthogonal to U1. That extra piece of orthogonality is a consequence of the
variational principles. It is the basic math behind the SVD.

This SVD math is contained in the lemma: If x = V1 is an optimizer for
(15) and if y is orthogonal to x, then Ay is orthogonal to AV1. One proof of
this lemma goes by contradiction: if y is orthogonal to x and y 6= 0 and Ay
is not orthogonal to AV1, then V1 is not optimal. It simplifies the argument a
little to replace the optimization problem (15) with the equivalent optimization
problem

σ2
1 = max

x 6=0

‖Ax‖22
‖x‖22

. (17)

To see the equivalence, suppose x is a maximizer in (17), then y = 1
‖x‖2

x is a

maximizer in
σ2

1 = max
‖y‖2=1

‖Ay‖22 .

Then you take the square root of both sides to get the original problem (15).
To finish the argument, we take the supposed y perpendicular to V1 that has

Ay not perpendicular to AV1. We do a calculation to show that if there were
such a y 6= 0, then x = V1 would not optimize (17). We just take x = V1 + ty
and show that if t is small enough with the correct sign, then the ratio (17)
decreases. The calculation has elements that might seem familiar by now. The
numerator is

‖A(V1 + ty)‖22 = [A(V1 + ty)]
T

[A(V1 + ty)]

= V T1 A
TAV1 + 2tV T1 A

TAy +O(t2) .

16

The coefficient of t is the inner product of AV1 with Ay, so it is not zero if AV1

is not perpendicular to Ay. The denominator is

‖V1 + ty‖22 = V T1 V1 + 2tV T1 y +O(t2)

= ‖V1‖22 +O(t2) .

The linear term 2tV T1 y is zero because y is supposed to be perpendicular to V1.

d

dt

‖V1 + ty‖22
‖V1 + ty‖22

∣∣∣∣∣
t=0

=
2V T1 A

TAy

‖V1‖22
6= 0 .

Thus, taking t to be a small positive number or maybe a small negative number
will make the ratio larger than its t = 0 value, which was supposed to be
the the maximum. This shows that there cannot be any such y, if V1 is the
optimizer. Thus, V2 perpendicular to V1 and V1 being optimal implies that U2

is perpendicular to U1.
This argument could be done for the latter singular vectors. If V1, · · · , Vk are

all optimal and have the right orthogonality properties, and if x is perpendicular
to all of the Vj , then Ax is perpendicular to all the corresponding Uj . For that
reason, Uk+1 must be orthogonal to U1, · · · , Uk.

5.3 Fitting A as a data matrix

This approach treats the entries of A as data. For example, Ajk could be a
measurement of quantity j at time k. In this case, row k of A, which has entries
A1k, . . ., Ank represent the “snapshot” at time k, while column j, which has
entries A1,k, . . ., Amk, represents the time series of measurements of quantity j.

A variational problem would be to find a feature that best “explains” the
columns of A. This feature would be an m component column vector U that
can be scaled to fit all the columns of A in the least squares sense. Let Ak be
column k of A, which could be thought of as m elements of a time series. Let
Sk be a number that “scales” the feature vector U to match Ak as well as it
can. The best scaling minimizes the sum of squares difference between Ak and
the scaled U , which is

‖Ak − SkU‖22 =

m∑
j=1

(Ajk − SkUj)2
. (18)

The notation in this expression is not ideal. Ajk is entry (j, k) of A, and is entry
j of the column vector Ak. Sk is a scaling factor, a number, for column k. The
numbers Uj are the m entries of the column vector U . The best scalings Sk
may be found by differentiating with respect to Sk and setting the derivative to

17

zero. This gives

m∑
j=1

Uj (Ajk − SkUj) = 0 =⇒ Sk =

m∑
j=1

UjAjk

m∑
j=1

U2
j

.

This precise form of this formula for Sk is not important, except for two things:
One is that Sk is uniquely determined. The other is that we may normalize U
so that ‖U‖22 = 1. If we multiply U by a scale factor a, we can get the same
quality of fit by adjusting the scale factors Sk by 1

a .
The optimal column vector U is the one that minimizes the sum of the fitting

errors over all n of the columns. We assume that we use the optimal scaling
factor Sk for column k. The U we seek satisfies

min
‖U‖22=1

n∑
k=1

‖Ak − SkU‖22 . (19)

A theorem of mathematical analysis implies that there is an optimal U . Too bad,
it doesn’t say that this optimal U is unique and it does not give an algorithm
for finding it.

The quantity being minimized in (19) is

n∑
k=1

m∑
j=1

(Ajk − SkUj)2
.

The numbers Sk and Uj play a similar role in this expression. You can think of
the numbers Sk as the components of an n−component column vector, S. Then
the numbers SjUk are the elements of the matrix m×n matrix UST . The rank
of a matrix is the dimension of the span of the columns of that matrix. The
“row rank = column rank” theorem says that this is also the dimension of the
space spanned by the rows. The column rank of UST is one, because all the
columns are proportional to U . The row rank is one because all the rows are
proportional to S, and because row rank is equal to column rank.

5.4 Tikhonov regularization

6 Summary

• A = m× n matrix.

– x ∈ Rn y = Ax ∈ Rm (a “real” matrix), or x ∈ Cn, y ∈ Cm (a
“complex” matrix)

– m = number of rows, n = number of columns

– m = n is a square matrix.

18

– m < n is a “short-fat” matrix. There is x 6= 0 with Ax = 0.

– m > n is a “tall-thin” matrix. There is y with Ax 6= y for any x.

– entries called ajk or Ajk

• L = lower triangular matrix. Ljk = 0 for j < k. Sometimes normalized
to have ones on the diagonal: Ljj = 1. Sometimes not. Often implicitly
assumed to be square, not always.

• U = upper triangular matrix, transpose is lower triangular, sometimes
normalized to have ones on the diagonal. Often implicitly assumed to be
square, not always.

• If A is m× n then AT is n×m with entries

ATjk = Akj .

The conjugate transpose (or just “conjugate”, or “adjoint”) takes the com-
plex conjugate of the entries as it transposes

A∗jk = Akj .

AT = A∗ if A is a real matrix (has real entries).

• Q = orthogonal matrix: Q us real and QTQ = I.

• Q = unitary matrix: Q∗Q = I. Unitary and orthogonal are the same for
real matrices because Q∗ = QT for real Q.

• A = symmetric matrix: A = AT (automatically square)

• A = hermitian matrix: A = A∗ (automatically square)

• A = positive definite matrix: xTAx > 0 if x 6= 0. SPD means symmetric
and positive definite. Positive semi-definite allows xTAx = 0 with x 6= 0,
but not xTAx < 0.

• P = permutation matrix representing a permutation π, which is a re-
arrangement of the numbers 1, 2, . . . , n taking j to π(i). Px = y means

yπ(j) = xj . For example, if (1, 2, 3)
π−→ (2, 3, 1), which means π(1) = 3,

π(2) = 1, and π(3) = 2, then y = Px has yπ(1) = x1, which is y3 = x1,
etc.

P =

0 1 0
0 0 1
1 0 0

 ,

x1

x2

x3

 P−→ Px =

x2

x3

x1

 .

• LU factorization of a general square matrix:

A = PLU with

 P = permutation matrix
L = upper triangular, ones on the diagonal
U = lower triangular, unconstrained diagonal

19

• Cholesky factorization of a real symmetric positive semi-definite matrix

A = LLT , L upper triangular, diagonals Ljj ≥ 0.

• LDLT factorization of a real symmetric matrix:

A = LDLT , L is lower triangular ones on the diagonal, D is diagonal

• QR factorization of a square matrix

A = QR , Q orthogonal, R upper triangular, unconstrained diagonal

• Upper Schur form

A = QLQ∗ , Q unitary, L upper triangular

Diagonals Ljj are eigenvalues of A, which often are not real even when A
is real. If A is real then Q and L are real if A has all real eigenvalues.

• SVD, Singular value decomposition, m× n matrix A

A = UΣV T

 U = m×m orthogonal, unitary if A is complex
Σ = m× n , diagonal, Σjk = 0 if j 6= k, Σjj ≥ 0 (real even if A is complex)
V = n× n orthogonal, unitary if A is complex

7 Exercises

1. The normal equations are a different way to solve the linear least squares
problem (8). The operation count and memory use are less, particularly
if the number of fitting variables, n, is much smaller than the number of
data values, m. This is because it avoids creating the m×m matrix Q and
instead factors an n×n matrix. On the other hand, the normal equations
algorithm is not as stable as algorithms based on QR or SVD for ill con-
ditioned problems. Also, it does not replace other applications of the QR
factorization such as finding an ortho-normal basis of the complementary
space.

(a) A quadratic form is a function of x ∈ Rn given by

q(x) =
1

2
xTHx . (20)

The gradient of q (or any function of n variables) is the column vector
of partial derivatives

∇q(x) =



∂q

∂x1

...

∂q

∂xn


.

20

Show that if H is symmetric, then

∇q = Hx .

Hint. Use the explicit formula

xTHx =

n∑
i=1

n∑
j=1

xixjHij .

Be careful to respect the possible repetition of terms in the sum. For
example, x2x3 occurs both in x2x3H23 and x3x2H32. If H is not
symmetric, the formula is

∇q =
1

2

(
H +HT

)
x .

It is natural to assume the matrix defining a quadratic form is sym-
metric because the same quadratic form is given by the symmetrized
matrix 1

2

(
H +HT

)
:

xTHx = xT
[

1

2

(
H +HT

)]
x .

(b) Show that minimizing (8) is equivalent to (has the same solution x
as) minimizing

f(x) = xT
(
ATA

)
x− 2bTAx .

(c) Show that ∇f(x) = ATAx − ATb so minimizing f is equivalent to
solving the normal equations involving the n × n symmetric matrix
H = ATA:

ATAx = ATb . (21)

(d) Show that if A has full rank, which is n, then H = ATA is positive
definite and has a Cholesky factorization.

8 References

1. G. Strang, Linear Algebra

2. P. Lax, Linear Algebra

3. J. Demmel, Practical Linear Algebra

4. L.N. Trefethen and D. Bau, Numerical Linear Algebra

21

	Linear Algebra, matrix factorization
	LU factorization
	QR factorization, least squares
	Least squares via QR
	Orthogonal complements via QR

	Symmetric matrices, Cholesky and LDLT
	Principal components and SVD
	Low rank approximation
	 Fitting A as a linear transformation
	 Fitting A as a data matrix
	Tikhonov regularization

	Summary
	Exercises
	References

