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1 Linear Algebra, perturbations, conditioning

This Section describes tools for deciding how accurate a linear algebra calcu-
lation might be. Sometimes accuracy depends on the type of problem or the
type of matrix involved, but more often it depends on the specific problem or
the specific matrix. For example, the eigenvalues of a symmetric matrix gen-
erally can be computed reliably, except possibly the ones closest to zero. The
eigenvalues of a non-symmetric matrix, the problem of computing them, might
be too ill conditioned to be done in double precision floating point. But this
depends on the matrix.

Perturbation theory for matrices and linear algebra means estimating the
change in the solution to a linear algebra problem caused by a small change in
the input. For example, suppose Ax = b and (A+∆A)(x+∆x) = b. The change
in the answer is ∆x and the change in the problem is ∆A. Perturbation theory
for linear systems of equations describes the relation between ∆A and ∆x when
∆A is small. There is perturbation theory for eigenvalues and eigenvectors, and
for matrix factorizations.

Perturbation theory has many uses, one of them being to determine the
conditioning of linear algebra problems. It allows you to predict how rounding
the data of the problem changes the mathematical answer.

The concept of condition number or conditioning in linear algebra is more
subtle in linear algebra than for simple functions with one input. In linear
algebra, the input is a vector or matrix with many components. The effect of a
perturbation depends on the size and also on its direction. This direction may be
hard to know in advance, for example, if the perturbation is caused by rounding
the components of the input matrix or vector. A worst case analysis provides a
single number, usually called a condition number that gives the largest change
in the output that can be caused by a small change in the input in any direction.
The worst case change is caused by a perturbation in the worst case direction.

A worst case analysis calls for a way to measure the size of a perturbation
that has many components. We use vector and matrix norms for this. Unfortu-
nately there are different vector and matrix norms. Sometimes different norms
give similar answers, but sometimes not. Different norms give different results,
for example, when a norm is added as a regularization of an ill conditioned prob-
lem. We saw that regularizing a linear least squares problem using the 2−norm
(Tikhonov regularization) can be solved using the SVD. Regularizing using the
1−norm is more likely to give a sparse answer, which is an answer with many
components equal to zero.
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2 Norms

This is review, for most readers. If it is not review for you, look in a linear
algebra book for fuller explanations.

A vector norm is a number associated to a vector that “measures” the size of
the vector. The norm of a vector x is written ‖x‖. If we need to distinguish
between different norms (there are many) we use a subscript such as ‖x‖2 for
the 2−norm. A function x ‖x‖ is a norm if it has these properties:

positivity: ‖x‖ ≥ 0 for all x, and ‖x‖ = 0 only if x = 0.

homogeniety: ‖ax‖ = |a| · ‖x‖ (a is a real or possibly complex number)

triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Examples:

2−norm: ‖x‖2 =
(
|x1|2 + · · ·+ |xn|2

) 1
2

. (also called the euclidean norm)

1−norm: ‖x‖1 = |x1|+ · · ·+ |xn|

max norm: ‖x‖∞ = max{|x1| , · · · , |xn|} (also called the infinity norm)

p−norm: ‖x‖ = (|x1|p + · · ·+ |xn|p)
1
p . Must have p ≥ 1.

H−norm: ‖x‖H =
(
xTHx

) 1
2 . H is a positive definite symmetric matrix.

The 1−norm and 2−norm are the p−norm with p = 1 and p = 2 respectively.
The max norm is the limit of the p−norm as p → ∞, which explains the
notation ‖x‖∞. The 2−norm formula is simpler when the components xk are

real, because |xk|2 = x2
k. The H−norm is the 2− norm when x is real and

H = I. The fact that the p−norm satisfies the triangle inequality “might not
be obvious”. It is the Minkowski inequality.

The “ball” of “radius” r > 0, relative to a norm is

Br = { x with ‖x‖ ≤ r} .

It is a geometric ball in 3D for the 2−norm (hence the term “ball”). A “ball” for
the 1−norm in 2D is a square centered at the origin rotated so that its corners
are on the axes. A ball in the max norm, in 2D, is a square centered at the
origin with horizontal and vertical sides. The triangle inequality is equivalent
to a ball being convex. A set S is convex if x ∈ S and y ∈ S implies that
λx+ (1− λ)y ∈ S if 0 ≤ λ ≤ 1. The set of such points is the line segment from
x to y. Convex means that if points x and y are in S, then the line segment
between them is in S. A ball in 2D for an H−norm is an ellipse. In more than
two dimensions, an H−norm ball is an ellipsoid.

There is more than one notion of the norm of a matrix. One depends directly
on the sizes of the entries. Another, often called the operator norm, depends
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on A as a linear transformation. One commonly used norm that depends on
entries is the Frobenius norm

‖F‖F =

 m∑
j=1

n∑
k=1

a2
jk

 1
2

.

This norm has the property that the norm of the n× n identity matrix is

‖I‖F =
√
n .

Operator norms are defined in terms of the amount by which a matrix
“stretches” a vector. The stretch is the ratio of the size of x and the size
of Ax. Naturally, those sizes are measured using vector norms. Thus, for any
vector norm (more precisely, any pair of vector norms), there is an induced
matrix norm defined by

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

. (1)

The norm of A is the largest stretch that A creates, looking at all non-zero
vectors x. If we use the 2−norm for vectors, the corresponding operator matrix
norm is the matrix 2−norm, and similarly for other vector norms:

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

, etc.

The operator matrix norm of the identity matrix, clearly, is equal to 1 for any
dimension, because the numerator and denominator in (1) are always the same.
This shows, for example, that the Frobenius norm of a matrix is not induced by
any vector norm.

All matrix norms have properties they would have if you think of the matrix
as a vector. They are positive, homogeneous, and satisfy the triangle inequality
‖A+B‖ ≤ ‖A‖+ ‖B‖, assuming A and B have the same shape so they can be
added. An operator matrix norm, one induced from vector norms, also has the
crucial property that is:

multiplicative: ‖AB‖ ≤ ‖A‖ ‖B‖, if A and B can be multiplied.

The proof of the multiplicativity property is simple suggests how to think about
matrix operator norms. It starts with the basic observation: if s is any positive
number and if ‖Ax‖ ≤ s ‖x‖ for all x, then ‖A‖ ≤ s. To see this, let x∗ be a
vector that gives the maximum stretch in the matrix norm (1). Then

‖A‖ =
‖Ax∗‖
‖x∗‖

≤ s ‖x∗‖
‖x∗‖

≤ s .

This might be an unclear way to say something simple. Saying ‖Ax‖ ≤ s ‖x‖
for all x says that A does not stretch any vector more than by a factor of s.
That implies that the maximum stretch cannot be more than s.
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At the same time, the matrix operator norm definition (1) implies that
‖Ax‖ ≤ ‖A‖ ‖x‖. With this, we verify the multiplicitivity property. If x is any
vector, the stretch of AB applied to x is at most:

‖ABx‖ ≤ ‖A‖ ‖Bx‖ (apply the ‖A‖ inequality to the vector Bx)
≤ ‖A‖ ‖B‖ ‖x‖ (apply the ‖B‖ inequality to the vector x)

‖(AB)x‖ ≤ (‖A‖ ‖B‖) ‖x‖ (the multiplicative property)

Matrix operator norms have simple mathematical properties, but there usu-
ally is no formula for the norm in terms of the matrix elements. The exceptions
are the matrix 1−norm and max norm. The matrix 1− norm is the maximum
column sum of the matrix:

‖A‖1 = max
k

m∑
j=1

|ajk| . (2)

The sum on the right is the sum of the absolute values of the entries in column
k of the matrix. The matrix max norm is the maximum row sum

‖A‖∞ = max
j

n∑
k=1

|ajk| . (3)

The 2−norm of A is the largest singular value of A. But this is a tautology, as the
definition of σ1 involved the maximization problem (1). The proofs of (2) and
(3) have two steps. First you find a vector a vector x∗ with ‖Ax∗‖ ≤ (max) ‖x∗‖.
The max being the column or row sum, depending on which case. Then you
show that ‖Ax‖ ≤ (max) ‖x‖ for any other x.

Clearly there are many vector norms and matrix norms. The choice of
norms may or may not matter, depending on the situation. If the norm does
not matter, we just write ‖x‖ without saying which norm. All that matters is
that the same norm is used each time. The matrix operator norm definition (1)
is an example. Another example is in error bounds with unspecified constants.
As an example of that, let ff(x) = f(x1, · · · , xn) be a function of n variables.
The first order Taylor approximation for small x is

f(x) = f(x) +∇f(x)Tx+O
(
‖x‖2

)
.

The “big oh” on the right means ‘on the order of”, without saying exactly
where. Technically, it means that there are positive numbers, C and r, so that
if ‖x‖ < r then ∣∣ f(x)−

[
f(x) +∇f(x)Tx

] ∣∣ ≤ C ‖x‖2 . (4)

The ‖x‖ < r is the “where”, and |· · · | ≤ C ‖x‖2 is says the quantity on the left

is “on the order of” ‖x‖2. (There is more on big oh coming in a future section.)
The choice of norm in the error bound (4) is irrelevant because all vector

norms in any given dimension are equivalent. “Equivalent” does not mean “the

4



same” in the sense of being equal or having the same value (the literal meaning
of “equi-valent”). It means that each one is bounded in terms of the other.
If ‖·‖a and ‖·‖b are any two vector norms, then there are positive numbers
rab ≤ Rab so that, for all x,

rab ‖x‖a ≤ ‖x‖b ≤ Rab ‖x‖a . (5)

If the error bound (4) is true in the b−norm, ‖·‖b, then it is also true in the
a−norm, but with the constant C ′ = RabC. That is

C ‖x‖b ≤ CRab ‖x‖a .

The “equivalence” inequalities (5) represent the fact that different ways to
measure the “size” of a collection of n number yield different measures. For
example, let ‖x‖a be the max norm and ‖x‖b the 1−norm. If x is the vector
of all ones, then ‖x‖∞ = 1 and ‖x‖1 = 1 + · · ·+ 1 = n. This suggests that the
best R in (5) is R∞,1 = n and

‖x‖1 ≤ n ‖x‖∞ .

The factor of n may be harmless. But if n is a million (not large vector in
modern computing), it could be serious. The bigger the computer, and the
bigger the vector, the more it might matter.

The sums that define norms are problematic when the components of a vector
or a matrix have different unite. For example, suppose x is a two component
vector with x1 representing time measured in hours and x2 representing distance,
measured in meters. The expression ‖x‖1 = |x1| + |x2| does not make sense
because it is some number of hours plus some number of meters. You have to
be thoughtful when you assign a simple size number to a complicated object.

3 Condition number

The concept of condition number is critical for designing computing strategies.
But it is impossible to define precisely for problems with many inputs and
outputs. The best of the not-good approaches to conditioning for multi-variate
problems involves norms and worst-cast analysis.

Suppose the inputs of a problem are x1, · · · , xn and these numbers are ar-
ranged into a column vector x. Suppose the outputs are F1(x), · · · , Fm(x), also
arranged into a column vector F (x). (We call the problem F instead of A be-
cause A is a matrix.) A change in the input is another n component column
vector ∆x = (∆x1 · · · ,∆xn)T . The size of the perturbation is ‖∆x‖ and the
relative size is the ratio

‖∆x‖
‖x‖

.

The change in the output is ∆F = F (x + ∆x) − F (x). The condition number
ratio is

‖∆F‖
‖F‖
‖∆x‖
‖x‖

.
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For univariate functions, we just took the limit of this ratio, in the limit ∆x→ 0.
Now, even after we constrain ‖∆x‖ to be small, still ∆x can be in any direction.
The condition number we use takes the worst possible direction.

κ(x) = lim
r→0

max
‖∆x‖=r

‖∆F‖
‖F‖
‖∆x‖
‖x‖

. (6)

There is a differential formula for κ, which applies when F is differentiable.
The jacobian matrix of F at a point x may be written J(x) or F ′(x), but we
prefer DF . The matrix entries of the jacobian matrix are

(DF )jk =
∂Fj

∂xk
.

The first derivative approximation is the matrix/vector product:

∆F ≈ DF ∆x .

This is equivalent to the component by component formula

∆Fj ≈
n∑

k=1

∂Fj

∂xk
∆xk .

In the limit of (6), we may use the first derivative approximation for ∆F . This
approximation, and rearranging the fraction give

κ(x) = lim
r→0

(
max
‖∆x‖=r

‖DF ∆x‖
‖∆x‖

)
‖x‖
‖F‖

.

The max in parens is the matrix operator norm of DF , which does not depend
on the norm of ∆x. The final formula is

κ(x) = ‖DF‖ ‖x‖
‖F‖

. (7)

This formula is consistent with the one we had earlier for one simple functions

of one variable, κ(x) =
∣∣∣f ′(x) x

f(x)

∣∣∣. The formula (7) replaces scalar quantities

such as f ′ with norms of the corresponding matrix or vector quantities. Using
norms is a worst-case analyis

4 Condition number of a matrix

There is a formula for “the condition number” of a matrix. You should know
this formula because people use it a lot. But you also should understand that
it is even more of a worst case analysis than the general formula (7).

6



Suppose the function F in (7) is linear and defined by a square invertible
matrix A, as F (x) = Ax. Then A is the jacobian matrix: DF = A. The
condition number, at a point x, is

‖A‖ ‖x‖
‖Ax‖

.

We can ask about the worst case x. The worst case x is the one that maximizes
the fraction on the right. You have to rule out x = 0, where the condition
number does not make sense because the relative change of x from x = 0 is
infinite (one reason).

max
x 6=0

‖x‖
‖Ax‖

.

The maximization can be found using the change of variable y = Ax, which may
be written in the form x = A−1y. This is where it matters that A is invertible.
Using the y variable, the maximization problem becomes the definition of the
matrix operator norm of A−1:

max
y 6=0

∥∥A−1y
∥∥

‖y‖
=
∥∥A−1

∥∥ .
Therefore, if we take the worst case x in (7) we get what is called the condition
number of the matrix A itself.

κ(A) = ‖A‖
∥∥A−1

∥∥ . (8)

This formula has the strange property that

κ(A) = κ(A−1) .

This implies that the worst case conditioning of computing Ax from x is the
same as the worst case conditioning of solving Ax = b, which is the same
mathematical problem as computing x = A−1b.

5 Perturbation theory

The terms “perturbation theory” and “sensitivity” both refer to the small
changes in the answer to a problem caused by small changes in the problem.
Said more simply, they refer to derivatives.

Perturbation theory in linear algebra has many uses, past and present. Be-
fore computers, there were a few problems with explicit solutions. Perturbation
theory allowed one to find approximate solutions to nearby problems. With
computers, perturbation theory “updates” can be cheaper than recomputing
from the beginning, and accurate enough. Perturbation theory is also a theo-
retical tool that can help us design a computational strategy. We use it to study
the conditioning of various linear algebra problems.
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Perturbation theory can be thought of as ordinary differential calculus, How-
ever, some common ways of denoting ordinary derivatives seem confusing when
you’re differentiating, the eigenvectors of a matrix with respect to the matrix
entries. Instead, we may use the idea of directional derivative. The directional
derivative says how a function changes if you change the argument a little, in
a given direction. Specifically, the directional derivative of a function f(x) at a
point x in the direction y is

d

ds
f(x+ sy)

∣∣∣∣
s=0

=
(
∇f(x)

)T
y .

You can write this using a Taylor series in the single variable s

f(x+ sy) = f(x) + s
(
∇f(x)

)T
y +O(s2)

= f(x) +
(
∇f(x)

)T
(sy) +O(s2) .

This is close to (or the same as) the multi-variate first order Taylor series formula

f(x+ y) = f(x) +
(
∇f(x)

)T
y +O(‖y‖2) . (9)

Just replace y by sy. We say that the difference between f(x) and f(x+ y), to

leading order, or to first order, is
(
∇f(x)

)T
y.

There are tricks for calculating first derivatives and leading order pertur-
bations. Many of these tricks use the idea that multiplying two first order
changes gives a product that can be neglected – to first order. For example,
(x + y)2 = x2 + 2xy, to leading order. Also (x + y)3 = x3 + 3x2y, to leading
order. Therefore, to leading order

(x+ y)2(x+ y)3 =
[
x2 + 2xy + · · ·

] [
x3 + 3x2y + · · ·

]
= x2x3 + x2

(
3x2y

)
+ (2xy)x3 + · · ·

= x5 + 5x4y + · · · .

This is a way to think of the product rule from calculus, at least in the case
where x2 (derivative 2x) and x3 (derivative 3x2) are multiplied.

An example with matrices shows how easy and clear calculations like this
can be. Suppose A and B are n × n matrices, with A invertible and B small.
We want to estimate the difference between (A + B)−1 and A−1. We suppose
that there is a leading order approximation in which C (another n× n matrix)
is the perturbation. That is:

(A+B)−1 = A−1 + C + · · · .

We find a leading order formula for C, starting with the definition of inverse

8



matrix, calculating, and neglecting products of first order quantities.

I = (A+B)(A+B)−1

= [A+B]
[
A−1 + C + · · ·

]
= AA−1 +AC +BA−1 + · · ·
= I +AC +BA−1 + · · ·

AC = −BA−1 + · · ·
C = A−1BA−1 to leading order .

We can write this as

(A+B)−1 = A−1 −A−1BA−1 + · · · . (10)

This is first order perturbation theory applied to the matrix inverse.
You can think of the matrix inverse perturbation formula (10) as an instance

of the general first order perturbation formula (9). The argument x is the matrix
A (with n2 components). The function if f(A) = A−1, which is a differentiable
function of A as long as A is non-singular. The perturbation is y = B. In
the general formula (9), the change in f is linear in the perturbation y. In our
matrix formula, the change in the inverse is linear in the perturbation B. The
specific formula (10) expresses this linear relationship more easily than creating
notation to define the gradient of A−1 with respect to A. It can be done, but
the formula (10) is easier to use, at least here.

We can do matrix perturbation calculations using other notation for pertur-
bations. One possibility is writing ∆A for the perturbation in A. The matrix
inverse perturbation formula becomes

(A+ ∆A)−1 = A−1 −A−1 ∆AA−1 +O(‖∆A‖2) .

Let’s apply this kind of notation to computing perturbations of the LU factor-
ization. Suppose A = LU and A+∆A = (L+∆L)(U+∆U). The notation, and
the calculations below, assume that ∆L is lower triangular and ∆U is upper
triangular. We saw that it is possible to assume that L has ones on its diagonal,
so we assume that ∆L has zeros on its diagonal (the perturbations on the diag-
onal of L are zero because the elements themselves do not change). We ignore
the permutation matrix P , but it should be clear how to put it in if you need
to. Recall that the inverse of an upper triangular matrix is upper triangular,
and similarly for lower triangular matrices. In the last line, we multiply from
the left by L−1 and from the right by U−1.

A+ ∆A = (L+ ∆L)(U + ∆U)

= LU + ∆LU + L∆U + · · ·
∆A = ∆LU + L∆U + · · ·

L−1 ∆AU−1 = L−1∆L+ ∆UU−1 + · · · .

9



This gives an algorithm for computing the leading order perturbations ∆L
and ∆U . Each entry on the left “belongs” to only one of the matrices on the
right. The entries strictly below the diagonal belong to L−1∆L, because ∆UU−1

is zero below the diagonal. Similarly, L−1∆L is zero (it’s entries are zeros) on
the diagonal and above. This may be said formally using the notation

L−1∆AU−1 = M +N ,

Mjk = 0 for k ≥ j (M is strictly lower triangular)

Njk = 0 for k < j (N is upper triangular, including the diagonal)

Matching the non-zeros, we get two equations

M = L−1∆L =⇒ ∆L = LM

N = ∆UU−1 =⇒ ∆U = NU .

These formulas are easy to implement in code. Looking back, you can see that
∆L and ∆U are linear functions of M and N , which are linear functions of
∆A. You can see how clumsy it would be to express these linear relationships
directly in the form (9).

6 Eigenvalues, symmetric matrices

The symmetric eigenvalue problem is the problem of finding eigenvalues and
eigenvectors of a symmetric matrix A. Symmetric matrices occur in “nature”
in several ways, including as covariance matrices, as matrices of second partial
derivatives (Hessian matrices), and matrices from physical processes. Eigen-
values of symmetric matrices may be the frequencies of “normal modes” of
vibration.

The symmetric eigenvalue problem is different from the general one (not
necessarily symmetric) in several ways. Eigenvalues are real, eigenvectors cor-
responding to distinct eigenvalues are orthogonal, no non-trivial Jordan blocks
(symmetric matrices are diagonalizable). All of these properties may be seen
as consequences of a variational principle for eigenvalues and eigenvectors, a
principle that is similar to the one for singular values and singular vectors. The
symmetric eigenvalue problem is

• AT = A, A being a real n× n matrix

• Avj = λjvj , j = 1, · · · , n

• λj and vj are real

• vTj vk = 0, if λj 6= λk

• eigen-space = E(λ) = span {v|Av = λv}

• dim(E(λ)) = 0 if λ is not an eigenvalue of A
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The perturbation theory for eigenvalues and eigenvectors of symmetric ma-
trices is sometimes called Rayleigh Schrödinger perturbation theory. Lord Rayleigh
(a real British Lord) used it in the early 1900’s to estimate vibrational fre-
quencies. Erwin Schr’odinger (Austrian physicist, discoverer of the Schrödinger
equation) used it to estimate the solution of quantum mechanical problems that
are close to problems with closed form solutions.

Rayleigh Schrödinger perturbation theory may be derived using the same
style of calculation we used to for perturbations of matrix factorizations. The
simplest case is
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