
Scientific Computing, Fall 2022
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html

Scientific Computing
Jonathan Goodman, Fall, 2022

1 Optimization

The word optimal means the best possible. Optimization means finding the
optimal. The mathematical optimization problem is formulated as finding the
maximum or minimum of a function of one or more variables. The variables to
optimize are (x1, · · · , cn), which may be thought of as parameters to be chosen.
These form the components of x ∈ Rn, which we sometimes call a “parameter
combination”. We write x as a column vector in matrix/vector formulas. The
function being optimized is the objective function, or loss function, f(x). The
set of allowed values of x is the feasible set, which we call F . The optimization
problem is to find

f∗ = min
x∈F

f(x) . (1)

We write x∗ for an optimal x, which may or may not be unique. This is written

x∗ = arg max
x∈F

f(x) . (2)

Motives and goals

Optimization has the obvious use of finding the best possible parameter com-
bination for some problem. Optimization methods also are used to “tune” pa-
rameters to make an algorithm work better, even with the understanding that
the absolute best parameter combination cannot be found. Optimization is a
systematic way to improve algorithms by “learning” good parameter settings.
An engineer may be rewarded for making something work better, rather than
being penalized for not making it perfect. The loss function, if it is differentiable
(see below) is flat near x∗, so being somewhat close to the optimal x∗ may put
you very close to the optimal performance. We may care about f and f∗ more
than how close x may be to x∗.

The goal in other situation may be accurate estimation of x∗. For example,
the optimization problem might be a variational principle that characterizes
x∗. We saw variational principles for finding eigenvalues of symmetric matrices.
Many differential equation systems used in mechanical engineering have useful
variational principles (sometimes called Dirichlet principles). Examples include
the partial differential equations that determine stresses in metal beams that
hold up bridges and buildings.

1

Constraints, feasibility

An optimization problem is unconstrained if every parameter combination x is
feasible, which is written F = Rn. Otherwise the problem is constrained. Con-
straints are conditions that define the feasible set. Most optimization problems
have constraints. Different kinds of constraints lead to different kinds of opti-
mization problems. For example, some of the variables/parameters might be
constrained to be integers, as in deciding how many of which kinds of cars to
buy. Inequality constraints might apply for variables that represent the amount
of time spent on various tasks, which cannot be negative. Other constraints
might involve combinations of parameters. Examples are budget constraints in
finance, in which the parameters are amounts of money allocated to different
things and there is a limit on the total spending.

An equality constraint is a mathematical relation that must hold among the
parameters. For example, the total might be specified if the total spending must
be equal to the amount budgeted. An inequality constraint is a mathematical
relation that holds as an inequality. For example, if x = x1, x2, x3) is a point
in three dimensional space, there might be a constraint on the size of x, as in
‖x‖2 =

√
x2

1 + x2
2 + x2

3 ≤ R. An inequality constraint is relaxed if the bound in
the inequality is changed in a way that enlarges the feasible set F. For example,
if the size constraint is changed to ‖x‖2 ≤ R + 1. An inequality constraint is
binding at an optimum x∗ if the constraint inequality is an equality at x∗. It may
be useful to distinguish between weakly binding (the definition just given) and
strongly binding, which would mean that the optimum (1) gets strictly smaller
if the constraint is relaxed. For most problems, a binding constraint is strongly
binding in this sense.

Some ideas from mathematical analysis or topology are useful for discussing
constrained optimization. One is the distinction between a minimum, which
must be attained, and an infimum, which only needs to be approached. The
value f∗ is attained if there is an x∗ with f(x∗) = f∗. A value f∗ is approached
if there is a sequence xn so that

lim
n→∞

f(xn) = f∗ .

If f∗ is approached, and f∗ ≤ f(x) for all x ∈ F , then f∗ is the infimum of f ,
which is written

f∗ = inf
x∈F

f(x) .

There are several ways for an infimum not to be a minimum. One is that
xn →∞, as would happen for

f(x) =
1

1 + x2
, inf
x∈R

f(x) = 0 , f(xn)→ 0 as xn →∞ .

Another way is that the feasible set F could not contain its limit points. An
example would be looking for the minimum of f(x) = |x| over the set F =
{x | x > 0}. A minimizing sequence xn → 0 has n → ∞ (such as xn = 1

n) but

2

the point x∗ with
f(x∗) = inf

x∈F
|x| = inf

x>0
|x| = 0

is not a feasible point. A third way is for the objective/loss function not to be
continuous, as in

def f(x):

"""A discontinuous function"""

if x > 0:

return x

else:

return 1.

All of these things happen in real optimization projects.

Derivatives

Most optimization algorithms work by searching through F looking for param-
eter combinations that have smaller f . If ∇f (the gradient of f) is the vector of
first partial derivatives, then −∇f is a direction in which f decreases. Optimiza-
tion algorithms would “like” to use derivatives of the objective/loss function and
functions defining the constraints, either explicitly or implicitly.

The problem is that functions that make up the overall objective/loss func-
tion may not all be differentiable. A simple non-differentiable function is r(t) =
|t|, which has

r′(t) = sign(t) =

{
+1 if x > 0
−1 if x < 0 .

This function is not differentiable at t = 0, because the left and right values
(= ±1) disagree. The definition of derivative is

r′(0) = lim
h→0

r(h)− r(0)

h
.

The ratio on the right has no limit, because it is +1 if h > 0 and −1 if h < 0.
This is not just a picky mathematical point. Many optimization methods fail
for non-differentiable functions, even this r(t).

It happens, more often than you might think at first, that the loss function or
constraint functions are not differentiable at x∗. One example is l1 regularization
(“ell one”), which is closely related to lasso regression. Recall that Tikhonov

regularization adds a regularizing term λ ‖x‖22 to a linear least squares loss

function ‖Ax− b‖22, resulting in the unconstrained problem of minimizing

fT (x) = ‖Ax− b‖22 + λ ‖x‖22 .

Lasso regression1 uses 1−norm (also called the l1 or L1 norm) regularization

1A lasso is a simple rope trick cowboys use to catch cows around the neck with a rope. There
is a tradition in statistics of naming techniques after simple cowboy things. Other examples
(statistical techniques) are the “jackknife” (nothing to do with cutting) and “bootstrap”
(nothing to do with walking). The name is supposed to imply that the technique is simple
and easy to use.

3

instead of 2−norm Tikhonov regularization. The result is the loss function

fL(x) = ‖Ax− b‖22 + λ ‖x‖1 = ‖Ax− b‖22 + λ

n∑
k=1

|xk| .

There is (as we saw) an explicit formula for the minimizer of the Tikhonov
regularized least squares problem, which uses the SVD of A. There is no com-
parable simple algorithm for the Lasso regression problem. An advantage of
Lasso regression is that components xk with little (but non-zero) influence on

the quality of fit ‖Ax− b‖22 are set to zero exactly by the Lasso regularization
term. The value xk = 0 is where fL is not differentiable. Gradient descent for
Lasso regression is problematic (not impossible, but harder).

Landscape, local and global minimizers, convexity

The landscape for an optimization problem is the “shape” of the graph of f(x)
over F . The word “landscape” refers to the shape of a region of land – is it flat
or hilly, smooth or rocky, etc. For example, places where f is not differentiable
may be visualized as “folds” or “corners” in the graph/landscape. You should
be careful in thinking of “shape” because it implies 3D intuition where f is a
function of just two parameters. These intuitions sometimes go wrong in “high
dimensions” (large n, many parameters).

One feature of a function landscape, important for optimization, is a local
minimum. We say x∗ is a strict local minimum if any nearby feasible point has
a strictly larger value. To say this in mathematical notation, there is an r > 0
so that

f(x) > f(x∗) , if x ∈ F , ‖x− x∗‖ ≤ r and x 6= x∗ .

We say x∗ is a non-strict local minimum if there is no nearby feasible point with
a lower f . A non-strict local minimum can arise by symmetry. For example, here
is an objective function that tries to make a point in the plane a unit distance

from the origin: f(x1, x2) =
(
x2

1 + x2
2 − 1

)2
. Any (x1, x2) with x2

1 + x2
2 = 1 is a

non-strict local minimizer.
A strict global minimizer is x∗ with f(x∗) < f(x) if x 6= x∗ and x ∈ F . The

point x∗ is a non-strict global minimizer if f(x) ≥ f(x∗) for all x ∈ F . The goal
of optimization, usually, is to find global minimizers. Local minimizers that are
not global “get in the way”. The local minimum problem is one of the greatest
unsolved, probably unsolvable, challenges in optimization.

Figure 1 has an example that is typical in having more than local minimum.
It is not typical because the loss function has just one argument. As we already
said, it is hard to visualize functions of many arguments. The function arises
from fitting a frequency parameter ω to data. There are observations times tk,
which are uniformly spaced in some observation interval. The observed values
(fake data) are yk = A0 sin(ω0tk) + εj . Here, A0 and ω0 are the true values
(amplitude and angular frequency) of the signal and εj is independent mean
zero variance σ2 Gaussian noise. The fit is to be found by minimizing a sum of

4

0 1 2 3 4 5 6
omega

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0
lo

ss
Sum of squares fitting error, n = 10, sig = 0.90

0 1 2 3 4 5 6
omega

12

13

14

15

16

17

18

19

lo
ss

Sum of squares fitting error, n = 15, sig = 0.90

Figure 1: Loss function landscapes with local minima.

squares loss function

F (ω,A) =

n∑
k=1

[yk −A sin(ωtk)]
2
.

Minimizing over A is a linear least squares problem whose solution is

A∗(ω) =

∑
k yk sin(ωtk)∑
k sin(ωtk)2

.

Figure 1 has two plots a plot of

f(ω) = F (ω,A∗(ω)) .

(Different n and noise values) The true value is ω0 = 1.5. The loss function has
a local minimum near this value in both runs. On the left, the global minimum
is ω∗ ≈ 3.3, with another local min at ω ≈ 5.5. On the right ω∗ ≈ 1.6 is a deep
global min with another local min at ω ≈ 4.4.

A function is unimodal (strictly or non-strictly) if any local minimizer (strict
or non-strict) is a global minimizer (strict or non-strict). Convex functions
(defined below) are unimodal. Unimodal functions are good for optimization
because there are no local minima to get stuck in.

A set D is convex if you cannot leave D moving on a straight line between
two points of D. More precisely, suppose x ∈ D and y ∈ D. The line segment
between x and y is the set of all convex combinations z = λx + (1 − λ)y with
0 ≤ λ ≤ 1. The set D is convex if all such points z are in D. The disk{

(x1, x2) | x2
1 + x2

2 ≤ 1
}

is convex. Another convex set is the unit simplex S ⊂
R3 defined by

S = {(x1, x2, x3) | x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x1 + x2 + x3 ≤ 1}

5

This simplex is a two dimensional triangle sitting in a three dimensional space.
The simplex has corners on the coordinate axes: (1, 0, 0), (0, 1, 0), (0, 0, 1). The
unit ball in a vector space for a vector norm ‖·‖ is

B = {x | ‖x‖ ≤ 1} .

The unit ball for the 2−norm is a round ball. The unit “balls” for the 1−norm
or the max norm in 2D are both squares. The triangle inequality for vector
norms is the same as requiring the unit ball to be convex.

An objective/loss function f is convex if the feasible set F is a convex set,
and if the line segment connecting two points on the graph of f lies above the
graph. That means that if x ∈ F and y ∈ F and if z = λx + (1 − λ)y with
0 ≤ λ ≤ 1, then f(z) ≥ λf(x)+(1−λ)f(y). For example, the function f(x) = x2

is convex, while f(x) = sin(x) is not. A function is concave if its negative is
convex.2 A function is strictly convex if the line segment is strictly above the
graph, which is f(z) > λf(x) + (1 − λ)f(y) when 0 < λ < 1. The function
f(x) = x2 is strictly convex, while f(x) = |x| is non-strictly convex. A local
minimizer of a convex function is a global minimizer. A local minimizer of a
strictly convex function is a strict global minimizer.

A function of one variable is convex if its second derivative (exists and) is
positive. If f ′′(x) is defined for all relevant x ∈ R, then f ′′(x) ≥ 0 for all x
is equivalent to f being non-strictly convex. The strict inequality f ′′(x) > 0
implies that f is strictly convex. For functions of n > 1 variables, the second
derivative function is replaced by the n×n symmetric hessian matrix of second
partial derivatives

Hjk(x) =
∂2f

∂xj∂xk
.

The hessian matrix is symmetric because partial derivatives “commute” in the
sense that

Hjk(x) =
∂

∂xj

(
∂f

∂xk

)
=

∂

∂xk

(
∂f

∂xj

)
= Hkj(x) .

The function f is strictly convex if the hessian is positive definite. The function
is non-strictly convex if the hessian is positive semi-definite.

Optimization software

Most optimization algorithms search the feasible region, looking for parameter
combinations that lower the value of the objective/loss function. The algorithm
“learns” about the loss/objective function by “queries”. A query is a request
to learn the value f(x) or the gradient ∇f(x), or higher derivatives. It may
learn about the feasible set F using queries of the functions defining F . Some
problems have a feasible set defined implicitly rather than by explicit functions.
For example, the loss function may involve solving an auxiliary system of equa-
tions, which may or may not have a solution for a given x. In such cases, the

2 The calculus book terms “concave up” and “concave down” are not used professionally.

6

code evaluating f may return the value inf (the IEEE floating point standard
for “infinity”) if x is not feasible. The “user” uses the optimization software
by writing code to evaluate these. Typical optimization algorithms are simple
enough that most of the work needed to optimize f is spent in the user code
evaluating f and its derivatives. It is sensible, therefore, to measure the effi-
ciency of an optimization algorithm by asking how much progress it makes per
function/gradient evaluation.

There are exceptions to this. Optimization software for some special classes
of problems, including linear programming, ask the user to provide the data
defining f and F . There are loss functions that are expensive to evaluate ex-
actly but cheaper to evaluate approximately. One example is stochastic gradient
descent, in which f is approximated using a small random sample of the large
data set that defines f . There are many names for deterministic cheap ap-
proximations, including prox functions, approximate response surfaces, model
reduction, multi-fidelity models, etc.

2 Gradient descent iteration, unconstrained

“Entry level” optimization software uses simple iterative algorithms. After n
iterations, there is a current iterate, xn. Iteration n + 1 finds a new iterate
by applying some operations involving xn. Mathematically, this means that
there is an iteration function Φ(x) so that xn+1 = Φ(xn). A more sophisticated
algorithm might use, for example, xn−1 in addition to xn to get xn+1.

Gradient descent with learning rate s, also called step size, is the simple
iterative algorithm

Φ(x) = x− s∇f(x) . (3)

“Descent” means “going down” – reducing f in this context. Gradient descent
means reducing f by going down in the (negative) gradient direction. The
iterative algorithm corresponding to this is

xn+1 = xn − s∇f(xn) .

This may be described as moving a “distance” s in the search direction p, where
the search direction is the negative gradient

p = −∇f . (4)

This is written
Φ(x) = x− sp(x) , p(x) = −∇f(x) . (5)

This is “constant learning rate gradient descent”. The step size s is not really the
distance, which is the norm of the step. You get actual step size by multiplying
the “step size” (learning rate) by the norm of the “search direction”. That
is, ‖xn+1 − xn‖ = |s| ‖p(xn)‖. This probably also means that p(x) is not a
“direction”, because a direction is a vector of length one, while the norm of p
could be any non-negative number.

7

There is no guarantee that a gradient descent step (3) stays inside F . It
might be that x ∈ F but Φ(x) /∈ F . This constraint violation is almost guar-
anteed if the constraints include one or more nonlinear equality constraints.
But even if F is defined by simple inequalities such as positivity constraints,
these can be violated by a step that is too large. Unconstrained optimization
is supposed to mean optimization when every x is feasible, F = Rn. What
unconstrained means in practice, more often, is that we are far enough from
being bound by constraints that algorithms and analysis for problems without
constraints make sense. This would be the case, for example, if x is close to x∗,
and constraints are not binding at x∗.

Step size, line search, descent direction

You have to choose the learning rate/step size parameter s to do gradient descent
(3). If s is too large the iterates xn may diverge. If s is too small, the iterates
will move to x∗ too slowly. Step size control is an important part of any good
gradient descent software.

Let xn be the iterate and pn the search direction. Line search means finding
a good step size sn. It is called “line” search because adjusting s searches only
over the line xn + spn rather than the whole feasible set F . One criterion for a
good s is decrease of the objective function

f(xn+1) < f(xn) .

This may seem obvious, but the simple gradient descent algorithm requires ∇f
not f itself. Values of f are used only in the line search phase of gradient
descent.

Before implementing line search, you might ask whether there is any s > 0
that leads to decrease. More specifically, do you achieve decrease by making s
small enough? If this is answered by simple calculus, with an affirmative answer,
then p is a descent direction. The function value for small s has a first derivative
approximation about s = 0 given by the chain rule:

d

ds
f(x+ sp)

∣∣
s=0

= (∇f(x))
T
p .

The search direction p is a descent direction if

(∇f(x))
T
p < 0 . (6)

The negative gradient is a search direction if x is not a stationary point. A
stationary point is a point where ∇f(x) = 0. If x is not a stationary point, then
the gradient descent search direction makes the inner product in (6) equal to

− (∇f(x))
T ∇f(x) = −‖∇f(x)‖22 < 0 .

The Taylor approximation is

f(xn+1) = f(xn)− sn ‖∇f(xn)‖22 +O(s2
n) .

8

This shows that f decreases if sn is small enough.
Practical optimization software often looks for a suitable sn using bisection

search, also called binary search or something like that. Suppose x is the current
iterate, p the search direction, and s > 0 is an initial guess for the step size.
Binary search means replacing s with s

2 if s is too large. Here is some “pseudo-
code” describing the process:

while f(x+ sp) ≥ f(x) : (7)

s← 1
2s

This will produce descent. The value of s will be different at each iteration.

Sufficient decrease, convergence to stationary points

The sequence of iterates converges if the limit x∗ exists:

x∗ = lim
n→∞

xn

The sequence converges to a stationary point if∇f(x∗) = 0. If each step achieves
descent, which is f(xn+1) < f(xn, then it almost always true that x∗ is a
local minimizer if x∗ is a stationary point. Stationary points that are not local
minimizers should be unstable for the iteration.

Unfortunately, decrease at every iteration, by itself, does not guarantee con-
vergence. Convergence does not guarantee that x∗ is a stationary point. An
example of that is f(x) = 1

2x
2 in one dimension, initial guess x0 = 1 and step

size sn = an with 0 < a < 1. In this example, the gradient descent iteration
becomes

xn+1 = xn − anxn = (1− an)xn .

The step size is converging to zero exponentially fast, which slows the iteration
so much that it reaches a limit that is not 0. The limit is an infinite product

x1 = (1− a)x0 = 1− a
x2 =

(
1− a2

)
x1 =

(
1− a2

)
(1− a)

...

xn = (1− an)
(
1− an−1

)
· · · (1− a)

x∗ =

∞∏
n=1

(1− an) > 0

You can see that x∗ > 0 using the fact that log(x∗) is a convergent sum

log(x∗) =

∞∑
n=1

log(1− an) = L .

9

Therefore, x∗ = eL > 0 whatever L turns out to be. You can see that the sum
converges using the first derivative approximation

log(1− an) ≈ −an .

This shows that the sum defining L converges like a geometric series. The
conclusion from this is that you want xn to be small enough to insure decrease
but not too much smaller than that.

Sufficient decrease conditions are conditions that guarantee that either xn →
∞ or xn converges and x∗ is a stationary point. The example above shows one
way that violating sufficient decrease conditions can lead to convergence to a
non-stationary point. Other violations can lead to non-convergence without
xn →∞. For example, you can see that sn = 2−an does this with f(x) = 1

2x
2.

In this example, sn = 2 makes x1 = −x0, then x2 = −x1 = x0, etc., which you
can call “bouncing”. Making sn slightly less than 2 has decrease of f but has
bouncing that does not go to zero as n→∞.

The details of sufficient decrease conditions can be complicated, but one
simple strategy involves the Armijo condition (approximate American/Spanish
pronunciation: “are meehoe”), which involves a sufficient decrease parameter α
with 0 ≤ α ≤ 1 (α = 1

2 and α = .1 are reasonable values)

f(x+ sp) ≤ f(x) + αs∇f(x) p . (8)

The quantity s∇f(x)p on the right is the predicted decrease of f , predicted
using the first order Taylor approximation of f that was used to derive gradient
descent. The Armijo condition is that the actual decrease of f should be within
a factor of α of the predicted decrease. This prevents the “bouncing” behavior
of the above example. A code based on the Armijo condition would replace (7)
with (8).

Unfortunately, the Armijo condition still allows step sizes that decrease to
zero too fast. One way to prevent that is the reverse Armijo condition

f(x+ 2sp) ≥ f(x) + 2αs∇f(x) p . (9)

The code can achieve this using a binary expansion search algorithm. If a step
satisfies the Armijo condition (8) but not the reverse condition (9), then replace
s with 2s. This still satisfies the Armijo condition, which is the only way not
to satisfy the reverse condition. If you like concrete mathematical analysis, you
might want to construct a proof of the convergence theorem for this: Suppose
the first and second derivatives of f are all bounded, and if sn satisfies the
Armijo and reverse Armijo conditions then either the limit x∗ exists and is a
stationary point, or xn →∞.

Conditioning

Gradient descent converges slowly for problems that are poorly conditioned.
We illustrate this using a quadratic model problem. A model problem is a

10

problem that we may not be interested in solving in practice but want to use to
understand the behavior of the algorithm. In this case, we take the model loss
function to be the pure quadratic function defined by a hessian matrix H:

f(x) =
1

2
xTHx . (10)

We assume that H is symmetric and positive definite. This f has gradient

∇f(x) = Hx .

With a fixed learning rate parameter, the iteration is

xn+1 = xn − sHxn = (I − sH)xn = Mxn , M = I − sH . (11)

The eigenvalues λk are positive because H is positive definite. We want to
analyze this linear iteration. The global min is x∗ = 0, so the question is
whether xn → 0 as n→∞, and, if so, how fast.

The matrix M is symmetric so it has orthonormal eigenvectors vk and eigen-
values mk. These satisfy Mvk = λkvk, with the normalizations ‖vk‖2 = 1 and
orthogonality conditions vTj vk = 0 if j 6= k. The eigenvectors of M are also a
good system of eigenvectors of H. The eigenvalues eigenvalues of M are related
to the eigenvalues of H by

mk = 1− sλk , Hvk = λkvk . (12)

The iterate xn has an representation in terms of eigenvectors vk and weights
ykn as

xn =
∑
k

yknvk .

the iteration (11) can be represented in the vk expansion of xn as

yk,n+1 = mkynk = (1− sλk)ynk .

Iterating this gives
yk,n = mn

k y0k = (1− sλk)n y0k . (13)

These formulas answer our first analysis question. xn → 0 as n → ∞ if and
only if the coefficients converge to zero, ynk → 0 as n→∞ for all k. From (13),
we see that this happens if and only if |mk| < 0 for all k. This is equivalent to

− 1 < 1− sλk < 1 , for all k . (14)

This condition is satisfied if s is small enough. Gradient descent with fixed step
size converges, for quadratic problems at least, if the step size is small enough.

We look at the formulas (13) more closely to find the rate of convergence.
Assuming the basic convergence criterion (14) is satisfied, all the coefficients ynk
converge to zero exponentially as n→∞. The convergence rate is determined by
the slowest rate, which is determined by the eigenvalue mk with largest absolute

11

value. The spectral gap3 is determined by the “worst” eigenvalue, which is the
one closest to 1 in absolute value:

ρ = 1−max
k
|mk| = 1−max

k
|1− sλk| . (15)

This definition implies that ‖mk| ≤ 1− ρ for all k, which implies that

|ynk| ≤ (1− ρ)
n |y0k| , for all n and k .

This implies the inequality

‖xn‖2 ≤ (1− ρ)
n ‖x0‖2 . (16)

This inequality is sharp which means that no better inequality of this form is
possible. That’s because you can take x0 − vk with |mk| = 1− ρ, in which case
convergence rate inequality (16) is an equality.

The best parameter s is the one that maximizes the spectral gap. Because
of the minus sign in (15), this is found by minimizing the quantity on the right

min
s

max
k
|1− sλk| . (17)

Once we have the s∗ that solves this minimization problem, we use it in (15) to
find the best spectral gap, ρ∗. For the minimization problem (17), since s > 0
and λk > 0 (for all k), the numbers 1−sλk are less than one. The number closest
to 1 is the one with the smallest λ, which we call λmin. You make 1 − sλmin

farther from 1 by making s larger. On the other end, if s is too large then we
will have 1 − sλmax < −1, which makes the corresponding |mmax| > 1, which
we cannot allow. We need to choose s so that sλmax > −1, and the larger the
gap between sλmax and −1, the better. This gap at the λmax end gets bigger
when s is smaller, while the gap at the λmin end gets bigger when s is larger.
The optimal s is the one where these gaps are the same size. Equating the these
gaps gives an equation for the best s:

1− (1− s∗λmin) = 1− s∗λmax − (−1)

The solution is

s∗ =
2

λmax + λmin
. (18)

The corresponding best spectral gap is found by using this s∗ in either the λmin

or λmax gap. The gap at λmin becomes

ρ∗ = s∗λmin =
2λmin

λmax + λmin
. (19)

The spectral gap formula (19) is understood more clearly in a form that
involves the condition number of H. This is

ρ∗ =
2

λmax

λmin
+ 1

.

3 The spectrum of a matrix is the set of eigenvalues of that matrix. The spectral “gap” is
the gap (distance) between the spectrum of M and the endpoints of the interval [−1, 1].

12

The ratio λmax

λmin
is the condition number of H in the 2−norm

λmax

λmin
= λmax λ

−1
min = ‖H‖2

∥∥H−1
∥∥

2
= κ(H) .

This,

ρ∗ =
2

κ(H) + 1
. (20)

A typical application involving the Laplace equation might have κ(H) ∼ 10,000.
For this κ, which is common, you can ignore the difference between κ and κ+ 1
in the denominator. The spectral gap is the inverse of the condition number
(well, twice the inverse of the condition number), which can be tiny.

What does this imply for optimization? You can put ρ∗ into the convergence
rate formula (16) to see how many iterations it takes to get a specified reduction
in ‖xn‖. The important case (for applications) has ρ∗ close to 1. In that case,
the approximate formula 1− ε = e−ε applies, and we get

‖xn‖ ∼ e−ρ∗n ‖x0‖ ∼ e−
2n
κ ‖x0‖ .

This predicts that if you take n = κ, then the error is reduced by a factor of
e−2 ≈ .14. For real applications, that could mean n = 10,000 iterations gives a
little less than one digit of accuracy – not very encouraging. Gradient descent
is not an efficient way to find accurate solutions for ill conditioned problems.

We will see below (sort of) that this analysis predicts the local convergence
of gradient descent once xn is close enough to x∗. For this, we take H to be
the hessian of the loss/objective function evaluated at x∗. We often say that
a general optimization problem is well or ill conditioned4 if H(x∗) is well or ill
conditioned as a matrix. This use of “conditioning” refers to the difficulty of
solving a problem, not the accuracy that you can get. You might call it a misuse
of the term “conditioning”, but we have to accept that “conditioning” is used
in both senses.

Geometry of conditioning

You can get a sense for the geometry of conditioning using d = 2. Then H has
two eigenvalues and eigenvectors

Hv1 = λ1v1 , Hv2 = λ2v2 , ‖v1‖2 = ‖v2‖2 = 1 , λ1 ≥ λ2 .

The function f(x) = xTHx has level curves f(x) = const that are elliptical. The
major axis of an ellipse (centered at the origin) is the line through the origin
that goes to the farthest point on the ellipse. The minor axis is the line that
goes to the nearest point. These ellipses have the same shape, so we consider
just the “unit” ellipse corresponding to the f = 1 contour

E =
{
x | f(x) = xTHx = 1

}
.

4 “Ill” means “sick” or “unhealthy” in American English, but in British English “ill” also
means “bad”, as in “ill will” (bad feelings) or “ill wind”. The terminology “well” and “ill”
conditioning comes from Britain.

13

The major and minor axes correspond to λ2 and λ2 respectively. one closest
point to the origin on E is

xmin =
1√
λ1

v1 , ‖xmin‖2 =
1√
λ1

.

This is on E because

f(xmin) =
1

λ1
vT1Hv1 =

1

λ
vT1λv1 = 1 .

The minor axis length of E is 1√
λ1

. Similarly, the major axis length is 1√
λ1

,

which is longer because λ2 ≤ λ1. The aspect ratio of E is the ratio of the longer
to the shorter length

aspect ratio =

1√
λ2

1√
λ1

=

√
λ1

λ2
=
√
κ(H) .

The best possible conditioning is κ = 1, which corresponds to E being a round
circle. When κ is large, the ellipse is much longer in one direction than the
other. It is long and thin. A well conditioned problem (for gradient descent
minimization) has round level lines. An ill conditioned problem has long thin
contour lines.

The geometry in higher dimensions (d > 2) is similar. The level line becomes
the level surface. The ellipse becomes an ellipsoid. The ratio of the farthest
to nearest point of E to the origin is the square root of the condition number.
The best possible condition number, κ = 1 corresponds to a round “spherical”
surface. An ill conditioned problem has “thin” contour surfaces. But for d > 2,
there are different shapes of ellipsoid corresponding to the same κ, because κ
is determined by λmax and λmin while the shape depends on the eigenvalues
between. Round level surfaces make for quick convergence of gradient descent
while thin level surfaces imply slow convergence.

Preconditioning

Most large scale practical gradient descent optimization calculations use some
form of preconditioning. Preconditioning is like finding a good initial guess. It is
problem specific. It can take a lot of your time and computer experimentation
to get right. It relies on heuristic or intuitive reasoning as much as theoretical
analysis. There is a trade-off between what’s theoretically best and what’s
practical or practical to know about the functions you’re trying to optimize.
The more of your time and problem specific information you use then better
you can make it work. There is a trade-off between effectiveness and generality.

Preconditioning in an optimization problem means changing variables to
make gradient descent converge faster. We discuss the case when the change of
variables is linear, but it does not have to be linear. A linear change of variables
takes the form of a linear substitution x = Ay, where A is an invertible d×d

14

matrix. We use g(y) to denote the given loss/objective function expressed in
terms of the y variables

g(y) = f(Ay) .

The minimum of g is the same as the minimum of f and the (local or global)
minimizers

x∗ = Ay∗ , y∗ = A−1x∗ .

The energy landscapes of f and g (convex or not, local minima or not) are
qualitatively the same.

A good preconditioner for the local convergence rate is one that lowers the
condition number of the hessian at x∗ or y∗. The hessian of g is calculated from
the hessian of f using the vector calculus chain rule. We use direct calcula-
tion with indices rather than matrix/vector calculations in order to be sure we
understand the mechanics:

∂g(y)

∂yj
=
∂f(Ay)

∂yj
=

d∑
l=1

∂f

∂xl

∂xl
∂yj

.

The change of variables x = A1y may be written out as

xl =

d∑
k=1

(
A−1

)
lk
yk .

This implies that
∂xl
∂yj

=
(
A−1

)
lj
.

Therefore,

∂g(y)

∂yj
=

d∑
l=1

∂f

∂xl

(
A−1

)
lj

The same reasoning5 may be applied to the functions ∂g(y)
∂yj

. You get

∂2g

∂yj∂yk
=

d∑
l=1

d∑
m=1

∂2f

∂xl∂xm

(
A−1

)
lj

(
A−1

)
mk

.

On the left are the elements of the hessian of g with respect to y variables. On
the right are elements of the hessian of f with respect to x variables.

We want to express the right side in terms of the matrices H and A. The
sum over m is recognized as belonging to the matrix product∑

m

∂2f

∂xl∂xm

(
A−1

)
mk

=
(
HA−1

)
lk
.

5 This is a little subtle and relies on the fact that the matrix A is independent of x.

15

The sum over l uses the first index of A−1 and the first index of H, which is
not part of the product matrices HA−1 or A−1H. This is fixed by using the
transpose of A−1, which is denoted6 A−T . Therefore,

∂2g

∂yj∂yk
=
∑
l

(
A−T

)
jl

(
HA−1

)
lk

=
(
A−THA−1

)
jk

.

This may be written in matrix form as

D2
yg = A−TD2

xf A
−1 .

We used D2 to denote the hessian matrix of second partial derivatives and the
subscripts y or x to say which variables we’re differentiating with respect to.

3 Iterations

Gradient descent methods are examples of iterations. Other examples are New-
ton’s method and the Gauss Newton method. There is a general way to tell
whether an iterative method has local convergence. Local convergence means
that if x0 is close enough to x∗, then xn → x∗ as n → ∞. Global convergence
means that xn → x∗ for any initial guess x0. Clearly global convergence is bet-
ter than local convergence. Unfortunately, there are many methods with local
but not global convergence. Such a method produces x∗ (as a limit) if x0 is well
chosen, but may produce nothing useful otherwise. The basin of attraction of
x∗ is the set of initial points x0 so that xn → x∗. If x∗ is locally stable, then
the basin of attraction of x∗ contains at least a small neighborhood of x∗. In
practice, this basin of attraction can be very small and hard to find.

Local convergence and local convergence rate may be understood using local
linearization. This is a general method that may apply to any iteration. It-
eration (in this context) means doing same thing to a collection of parameters
many times. More precisely, suppose there are d parameters arranged into a
vector x = (x1, · · · , xd). “Doing something” to x means “doing something”
to each component. That means finding yk = Fk(x). The components Fk(x)
form the components of a mapping, F (x) = (F1(x), · · · , Fd(x). Iteration with
F means using F to create a sequence of iterates

xn+1 = F (xn) . (21)

For example, simple gradient descent with a fixed learning rate has the form
(21) with F (x) = x− s∇f(x).

We say that x∗ is a fixed point of the iteration if F (x∗) = x∗. If you start
an iteration at a fixed point, then all the following iterates will be x∗. We
are interested in the local behavior of the iteration near a fixed point. A fixed
point is locally stable if it has a basin of attraction that includes all close enough
starting points. This means that there is an r > 0 so that if ‖x0 − x∗‖ < r, then

6 You can check that
(
A−1

)T
=

(
AT

)−1
, so it makes sense to write A−T for this.

16

xn → x∗ as n → ∞. Warning. Mathematicians call this property asymptotic
stability. Stability, for them is roughly the property that if x0 is close to x∗ then
the iterates stay close to x∗. The precise definition of that is not relevant here.

The local linearization of F is the first order Taylor approximation to F
about x∗. The d×d matrix of first partial derivatives is the jacobian of F and
is denoted in several ways, all of which we use,

J(x) = DF (x) = F ′(x); , Jjk(x) =
∂Fj(x)

∂xk
. (22)

In the language of perturbation theory, you approximate the change in Fj cor-
responding to changes ∆xk in the parameters using

∆Fj ≈
∂Fj(x)

∂x1
∆x1 + · · ·+ ∂Fj(x)

∂xd
∆xd .

In vector/matrix form, this approximation is

∆F ≈ DF ∆x . (23)

Row j of the jacobian corresponds to component j of F and column k corre-
sponds to component k of x, which is a way to remember the roles of j and k in
the elements of J in (22). The informal linearization formula (23) is a good way
to think about local convergence. But at some point we will want a more precise
version that uses an error bound from calculus. If all the second derivatives

∂2Fj
∂xk∂xl

are bounded, then

F (x+ ∆x) = F (x) + J(x)∆x+O
(
‖∆x‖2

)
. (24)

If ∆x is small, then J∆x is probably much larger than O
(
‖∆x‖2

)
. This is the

justification of the linear approximation (23).
The linear approximation (23) determines (in most cases) whether an a fixed

point x∗ is stable or unstable for an iteration. The non-linear iteration is locally
stable or unstable at x∗ if the linear iteration is stable or unstable:

∆xn+1 = J(x∗) ∆xn . (25)

For a linear iteration, stability or instability means that ∆xn → 0 as n → ∞
for all starting points Deltax0, or not. To see this, take

∆xn = xn − x∗ .

The linear iteration (25) is a consequence of the linear approximation to the

nonlinear iteration (24), if we take x = x∗ and ignore the error term O
(
‖∆x‖2

)
.

17

The stability or instability of the linear iteration (25) is determined by the
eigenvalues of J(x∗). These facts are explained in any good book on linear
algebra (Strang, Lax, ...). If λi are the eigenvalues of J(x∗), then the linear
iteration is stable if |λi| < 1 for all eigenvalues λi. If any eigenvalue has |λi| > 1
then the linear iteration is unstable. If |λi| ≤ 1 for all λi but there is some λi
with |λi| = 1, then the linear iteration is neutrally stable, meaning that there
is ∆x0 so that ∆xn 6→ 0 (∆xn does not converge to zero), and ‖∆xn‖ 6→ ∞
(∆x does not “blow up”). Neutral stability of the linearized iteration usually
(but not always) implies that x∗ is not locally stable for the nonlinear iteration.
There are examples that have a neutrally stable linearization and also local
stability for the nonlinear iteration, but you will need to look at a book on
dynamical systems to figure out how this can happen.

The linearization of a nonlinear iteration, if it is stable, has a spectral gap

ρ = 1−max |λi| .

This might look different from the spectral gap definition when talking about
gradient descent. The reason is that the linearization for gradient descent has a
jacobian that is the hessian of the objective function and therefore symmetric.
The eigenvalues λi of a symmetric matrix are real, and the eigenvectors may be
chosen to be an orthonormal basis. For a general J , the eigenvalues may not be
real, the eigenvectors probably are not orthogonal to each other, and there may
be no basis of eigenvectors, which is called Jordan structure. Look up “Jordan
block” in a good linear algebra book. If there is a basis of eigenvectors and a
positive spectral gap, then there is a C > 0 so that

‖∆xn‖ ≤ C(1− ρ)n ‖∆x0‖ . (26)

For gradient descent (with its symmetric jacobian matrix), this was true with
C = 1. If J is not symmetric, the C can be quite large. The spectral gap is
supposed to determine the convergence rate for the linear iteration and the local
convergence rate for the nonlinear iteration. But there are exceptions – which
numerical analysis experts know a lot about. Spectral gap analysis is usually
helpful, but not always.

4 Newton’s method

Newton’s method is an optimization method that uses second derivatives (the
hessian matrix) as well as the gradient of the objective/loss function. Newton’s
method is better than gradient descent in that it has much faster local conver-
gence and that it is affine invariant. It has disadvantages related to needing the
hessian matrix, H. It may be impractical to calculate H if the problem is too
big. For example, if d = one million, then H is a million by million matrix with
1
2d

2 = five hundred billion entries. It may or may not be practical to compute
and store a matrix of this size, depending on the problem and the patience of
the programmer. If the loss/objective function is defined in a complicated way,
it may be harder to calculate H than ∇f .

18

One of the ways to explain Newton’s method for optimization uses the local
quadratic model approximation.

Suppose x is the current iterate is x and we want to find a better point y.
In the language of Section 3, the Newton iteration is y = F (x). The Newton
iteration will be xn+1 = F (xn). We want to build F , using first and second
derivatives of f , so that xn → x∗ as quickly as possible. The local quadratic
model is

f(y) ≈ Qx(y) = f(x) + (∇f(x))
T

(y − x) +
1

2
(y − x)TH(x)(y − x) . (27)

We would like to choose y to minimize f(y), but this is impossible. Instead, we
choose y to minimize the quadratic approximation

y = arg min
z
Qx(z) . (28)

For this, we calculate the gradient of the quadratic approximation, which is

∇zQx(z) = ∇xf(x) +H(x)(z − x) .

The optimal y for (28) sets this gradient to zero and solves for y:

y = x−H(x)−1∇f(x) . (29)

This gives the basic Newton iteration

xn+1 = xn −H(xn)−1∇f(xn) . (30)

Local quadratic convergence

The local quadratic convergence of Newton’s method is rightfully famous. If
the iterations ever get close to x∗, then they converge to x∗ astonishingly fast.
You can understand this using the local linear approximation of the Newton
iteration (30). This has the form of a general iteration (21) with

F (x) = x−H(x)−1∇f(x) . (31)

The local linearization is the linear approximation to the nonlinear function (31)
about a point x∗ with ∇f(x∗) = 0, which is a stationary point for f . We use
the rules of differentiation to find

J(x) = DF = D (x) +D
(
H−1(x)∇f(x)

)
.

The first term on the right is the jacobian matrix of the identity function, which
is the identity matrix. In calculations, the (j, k) entry of Dx is ,

∂xj
∂xk

= δjk = the (j, k) entry of the identity matrix.

The jacobian of the other term, H−1(x)∇f(x) seems more complicated. For
one thing, it requires the derivative of the inverse of a matrix. In principle,

19

this can be found using matrix perturbation theory, but the answer might be
complicated. Another thing, H involves second derivatives of f , so its jacobian
should involve third derivatives. Finally, H(x), being a matrix, has two indices.
The jacobian asks for derivatives of each of these entries with respect to each of
the variables xk. That is an object with three indices.

This possibly fearsome calculation goes like this. The entries of p = H(x)−1∇f(x)
are

pj(x) =

d∑
l=1

(
H(x)−1

)
jl

∂f(x)

∂xl
.

The derivative calculation is easier using the “operator” notation for ∂xk for
partial derivatives. If R(x) is any function of x, the partial derivatives may be
denoted by

∂R(x)

∂xk
= ∂xkR(x) .

The (j, k) entry of the jacobian of this is (using the product rule of differentia-
tion)

∂pj(x)

∂xk
= ∂xk pj(x)

=

d∑
l=1

∂xk

[(
H(x)−1

)
jl
∂xlf(x)

]
=

d∑
l=1

∂xk

[(
H(x)−1

)
jl

]
∂xlf(x) +

d∑
l=1

(
H(x)−1

)
jl
∂xk [∂xlf(x)] .

(32)

The bad three index factor (indices j, k, l) is

∂xk

[(
H(x)−1

)
jl

]
.

A stationary point is, by definition, an x∗ with ∇f(x∗) = 0. Therefore, at x∗,
the these three index factors are multiplied by zero. Evaluated at x∗, the first
term of (32) is zero. The second term also simplifies in a simple yet possibly
surprising way. This is because

∂xk∂xlf = ∂xj
∂f

∂xl
=

∂2f

∂xk∂xk
= Hkl .

The second sum in (32) computes the elements of the matrix product H−1H =
I. Writing this in components may be confusing or not, depending on how you
like to understand things, but here it is:

d∑
l=1

(
H(x)−1

)
jl
∂xk [∂xlf(x)] =

d∑
l=1

(
H(x)−1

)
jl
H(x)kl = δjl .

20

This is true for any x, not just at x∗. Altogether, we have

DF (x∗) = I + 0− I = 0 . (33)

This calculation shows the local quadratic convergence of Newton’s method.
The definition (31) of the iteration function shows that any stationary point of
the objective/loss function f is a fixed point of the iteration map F . That is,
if ∇f(x) = 0 then F (x) = x. The linearization at such a fixed point is “trivial”
(DF (x∗) = 0), so only the error term remains:

F (x) = F (x∗) +DF (x∗)(x− x∗) +O
(
‖x− x∗‖2

)
F (x) = x∗ +O

(
‖x− x∗‖2

)
.

The Newton iteration is xn+1 = F (xn). The definition of “big Oh” is that there
is a distance r and a constant C so that

If ‖xn − x∗‖ ≤ r , then ‖xn+1 − x∗‖ ≤ C ‖xn − x∗‖2 . (34)

This is local quadratic convergence because the error at the next iterate is
quadratic in (i.e., the square of) the error at the current iterate. It is local
quadratic convergence because of the “locality” hypothesis ‖xnx∗‖ ≤ r. In
practice, local quadratic convergence implies that if the algorithm manages to
get into the region where quadratic convergence applies, then the answer will
be as accurate as possible in floating point arithmetic within just a few more
iterations, five at most.

People often say that local quadratic convergence means that the number of
“correct digits” doubles at each iteration. This comes from taking C = 1 and
neglecting the distinction between relative and absolute accuracy. Then k digits
of accuracy is ‖xn − x∗‖ ∼ 10−k. The quadratic convergence inequality (34)

then gives ‖xn+1 − x∗‖ ≤ ‖xn − x∗‖2 ∼ 10−2k, which is 2k digits of accuracy.
If you get an iterate with 2 digits of accuracy, then the next iterates have

(because
(
10−2

)2
= 10−4, etc.)

‖xn − x∗‖ ≤ 10−2

=⇒ ‖xn+1 − x∗‖ ≤ 10−4

=⇒ ‖xn+2 − x∗‖ ≤ 10−8

=⇒ ‖xn+3 − x∗‖ ≤ 10−16 = machine precision .

Three iterations past xn and you’re done. More realistically, if C = 100 = 102

(larger than C = 1 but not really large), and if ‖xn‖ ≤ 10−3, then the error
bounds become

‖xn − x∗‖ ≤ 10−3 =⇒ ‖xn+1 − x∗‖ ≤ 102 10−6 = 10−4

=⇒ ‖xn+2 − x∗‖ ≤ 102 10−8 = 10−6

=⇒ ‖xn+3 − x∗‖ ≤ 102 10−12 = 10−10

=⇒ ‖xn+4 − x∗‖ ≤ 102 10−20 = 10−18 = machine precision .

21

With C = 100, quadratic convergence is ten times harder to find (10−3 instead
of 10−2), but almost as effective once you find it (four iterations instead of
three).

Affine invariance

We saw that the local convergence rate for gradient descent depends on the
condition number of H(x∗) but the local convergence rate for Newton’s method
does not involve the Hessian at all. Newton

22

	Optimization
	Gradient descent iteration, unconstrained
	Iterations
	Newton's method

