
Scientific Computing, Fall 2022
http://www.math.nyu.edu/faculty/goodman/teaching/SciComp2022/index.html

Section 1

1 Introduction to the course

These are notes for a one semester course on Scientific Computing at the begin-
ning graduate level. The goal is to help students use mathematical, software,
and hardware resources to do numerical computations. Each section focuses on
a mathematical topic. Material on software and hardware is included, as long
as it can be illustrated with examples connected to the mathematical topic.
Scientific computing is a combination of mathematics and computer science.

Prerequisites

The hard prerequisites are linear algebra, multivariable calculus with an ap-
preciation of the role of inequalities and “big Oh” notation, and basic Python.
A course in probability (probability densities, PDF for multi-component ran-
dom variables, conditional and marginal probability) will make it much easier
to follow the sections on Monte Carlo and stochastic gradient descent. Newto-
nian mechanics (freshman physics) will be useful for understanding the sections
on dynamics and differential equations. We will make some appeals to mate-
rial typically in a class called something like “discrete math” or “analysis of
algorithms”.

2 Introduction to the Section

Thus course explains many things you can do with computer calculation. The
first section discusses what basic computations actually do.

The arithmetic in computer number crunching is not done exactly. Consider
the python commend z = x + y. The computer variables x and y correspond
to mathematical numbers x and y. The operation produces a computer variable
z with a mathematical value z. But computer floating point arithmetic is not
exact

z = x + y has roundoff error, so x+ y 6= z .

3 Relative accuracy, condition number

All (almost all) scientific computations are approximations. Quantifying error
in computation is necessary but surprisingly subtle. Simple approaches involv-
ing relative error and condition number are very useful, but have drawbacks.

1

More sophisticated treatments of error are cumbersome and still not completely
satisfactory.

There is a distinction between absolute and relative error. Suppose A is the
number being approximated and Â is the approximation. One example would
be A = π and Â = 3.142. We define absolute and relative errors to mean

Eabs = Â−A , Erel =
Â−A
A

. (1)

For example, the errors for the approximation of π = 3.14159265 · · · are

Eabs = 3.142− 3.14159265 = .000508

Erel =
3.142− 3.14159265

3.14159265
= .000162

Relative error may be more useful than absolute error if A is very large or small.
For example, an absolute error Eabs = 1 is large if A = 1 but a tenth of a percent
if A = 1000. The relative error is dimensionless, which means that the number
does not change if A is expressed in different units.

The condition number of a mathematical problem measures how sensitive
the answers is to the data. Suppose the data consists of one number, x, which
is perturbed to a nearby number x+∆x. The corresponding answer changes by
∆A = A(x+ ∆x)− A(x). The condition number measures the relative change
in the answer, related to the relative change in the data. The simple or absolute
ratio of changes is

∆A

∆x
≈ A′(x) .

The relative change, or ratio of relative changes, is (using the derivative approx-
imation ∆A ≈ A′(x)∆x)

∆A

A

∆x

x

≈ xA′(x)

A(x)
.

It is traditional to define condition number as the absolute value of the right
side, so a problem cannot have a negative condition number:

κ(x) =

∣∣∣∣xA′(x)

A(x)

∣∣∣∣ . (2)

4 Floating point arithmetic

It is impractical or impossible for the computer to do arithmetic operations (ad-
dition, multiplication, division) exactly. Instead, they are done, with a few ex-
ceptions, to within floating point precision. The floating point standard1 specifies

1Technically, it is IEEE standard number 754. The Institute for Electrical and Electronics
Engineers, the IEEE, issues standards for things to do with electricity, ranging from power

2

that a floating point operation should either produce an exception, or produce
error due only to rounding.

The floating point standard can be expressed in simple mathematical terms.
The floating point numbers (of a given precision) form a subset of the set of all
real numbers. We denote this set

F l ⊂ R .

Rounding a real number x means finding “the” floating point number x̂ ∈ F l
closest to x. This is also written as fl (x), to represent the “floating point” part
of x. That is

x̂ = fl (x) = arg min
y∈Fl

|y − x| . (3)

There are some real numbers x that have two closest numbers x̂± ∈ F l. The
detailed IEEE standard specifies how such ties may be resolved. The machine
precision, εmach, is a number that characterizes the relative error of rounding.
More precisely, there is a small positive number fmin and a large positive number
fmax so that

fmin ≤ |x| ≤ fmax =⇒ |x̂− x|
|x|

≤ εmach . (4)

The numbers x ∈ R with fmin ≤ |x| ≤ fmax are “inside the range of normal
floating point arithmetic”. The rounded number x̂ is said to be normalized.
The numbers εmach, fmin and fmax depend on the precision of the arithmetic.
Greater precision means smaller εmach, and also greater range, which means
that fmax is larger and fmin closer to zero. The table below lists the most
commonly used precisions.

precision bits/word type, in numpy εmach fmin fmin

double 64 np.float64 2−53 = 1.1 · 10−16 2−1022 = 10−123 21023 = 9 · 10307

single 32 np.float32 2−24 = 6 · 10−8 2−126 = 1.2 · 10−38 2127 = 1.7 · 1038

quad 128 np.float128 2−113 = 10−16 2−16382 = 10−123 216383 = 10123

half 16 np.float16 2−11 = 4.1 · 10−4 2−14 = 6.1 · 10−5 215 = 3.3 · 104

This is most of what a casual scientific computing person needs to know
about floating point arithmetic. Python uses 64 bit double precision floating
point by default. You need a reason to use something else. You might use 32 bit
single precision precision if you need less rounding error, which is rare but can
happen if some part of the computation is very ill conditioned. Quad precision
also has a greater normalized range, as you can see by comparing fmin and fmax

from the “double” and “quad” rows of the accuracy table.
A floating point number x ∈ F l is represented by the bits of a word of

computer memory. A double precision floating point number is represented by
a 64 bit word, and a single precision number is represented a 32 bit word. Half

transmission lines to computer software. The current IEEE floating point standard is 74 pages
of exhaustive detail. Most computing hardware (chips, GPUs, etc.) follows the floating point
standard closely, if not exactly.

3

precision and quad precision have 61 bit and 128 bit words respectively. For each
precision, there is one sign bit and some number of exponent bits and fraction
bits. Double precision has 11 exponent bits and 52 fraction bits. Altogether,
counting the sign bit, exponent bits, and fraction bits, a double precision floating
point number has 1 + 11 + 52 = 64 bits. The sign bit, like every other kind of
bit, is either 0 or 1. This is interpreted as ± (I don’t know whether 0 is + or
−, but 1 is the opposite sign from 0.)

The exponent of a floating point number is equal to the base 2 integer rep-
resented by the exponent bits, minus an exponent bias. The exponent bits
represent the integer formed by interpreting the bits as “binary digits” (which
is the origin of the word “bit”). For example, the 11 exponent bits of a double
precision floating point number represent the non-negative integer

b10b9b8 · · · b1b0 −→ b10 · 210 + b9 · 29 + b8 · 28 + · · ·+ b1 · 2 + b0

5 Recurrence relations

The theory of recurrence relations allows you to see precision being lost, and
ill-conditioning arising, not suddenly but gradually over a long sequence of com-
putations. There is nothing absolute such as trying to invert a singular matrix.
Instead, several quantities evolve during a computation, with one coming to
dominate the others. It takes more and more precision to find increasingly
small differences between quantities. The mathematical absolutes of solvability
or insolvability are replaced by gradually increasing difficulty of getting answers
as accurately as you need them.

A recurrence relation of length r is a formula that determines a new x from
from the r−1 most recent ones. Elements xk of the sequence are called iterates,
because recurrence relations could be called iterations or iteration relations. A
length r recurrence relation determines xk+1 from xk, xk−1 and down to xk−r+2.
For example, a three term recurrence relation (r = 3) determines xk+1 from xk
and xk−1. If the iterates xk have one component, then it is a scalar recurrence
relation. If xk has n components with n > 1 then it is a vector recurrence
relation. If the formula is the same for each k, then it is a homogeneous or
stationary recurrence relation. A recurrence relation is linear if xk+1 is a linear
function of the previous iterates. A scalar linear homogeneous recurrence, has
the form

xk+1 = a0xk + · · ·+ ar−2xk−r+2 =

r−2∑
j=0

ajxk−j . (5)

The second form on the right makes clear the structure in which j is the lag
and aj is the coefficient of lag j.

An important example is the Fibonacci recurrence

xk+1 = xk + xk−1 . (6)

This three term recurrence determines xk+1 from two lagged variables xk (lag
j = 0) and xk−1 (lag j = 1). If x0 = 1 and x1 = 1, the numbers in the resulting

4

sequence are called the Fibonacci numbers, f0 = 1, f1 = 1, f2 = 2, f3 = 3,
f4 = 5, f5 = 8, etc.

The Fibonacci relation (6) has a surprising origin. Fibonacci, the person,
was born in 1170 in Pisa (now part of Italy). He was a merchant and learned to
keep records using Roman numerals, a clumsy number system left over from the
long past Roman empire. Fibonacci travelled to Béjäıa (now in Algeria) and met
Arab merchants who were using a number system we now call Arabic. Compare
the “old” (Roman) to the “new” (Arabic) expression of some numbers.

Roman: XLV III XLIX L LI LII LIII LIV LV
Arabic: 48 49 50 51 52 53 54 55

Fibonacci wrote a book, in 1202, explaining Arabic numerals and arithmetic to
Italians. The Fibonacci recurrence and the sequence 1, 1, 2, 4, 5, 8, 13, 21, 34,
55, 89, 144, · · · were given just to illustrate how much easier the Arabic way is.
Here is 144 = 55 + 89, found the old way and the new way:

LV + LXXXIX = CXLIV


1

55
+ 89

144

 .

Fibonacci did not know how interesting this accidental sequence would turn out
to be.

The solution of a homogeneous scalar linear recurrence may be expressed in
terms of roots of the characteristic polynomial.

6 An example, computing an integral

An algorithm is stable if it gives accurate answers to well conditioned problems,
and unstable if it gives inaccurate answers to well conditioned problems. We will
not try to distinguish stable from unstable when solving ill conditioned problems
because no algorithm should give accurate results. These are not rigid binary
properties. Problems can have varying degrees of ill conditioning (unavoidable
loss of accuracy), and varying degrees of instability (possibly avoidable loss of
accuracy).

An algorithm may be unstable because it relies on solving an ill conditioned
sub-problem. Here is an example. The problem is to compute a one variable
integral

I =

∫ b

a

f(x) dx .

There are many simple algorithms that compute accurate approximations to
I as long as the integrand is smooth, which means f is several times differ-
entiable. More specifically, we consider algorithms that evaluate f at several
points xj then use an approximate formula for the integral in terms of those

5

values. Section 5 has a systematic discussion and comparison of some of these
methods.

It seems natural to approximate I by the integral of a polynomial chosen
to approximate f . We experiment with using the interpolating polynomial at
uniformly spaced points. Throughout the class we use ∆x to denote the distance
between points. In this case, xj+1 − xj = ∆x, the same ∆x for each j. We use
n such points in the interval [a, b] with x1 = a and xn = b. There are n − 1
interior intervals [xj , xj+1], so (n− 1)∆x = b− a. This leads to

xj = a+ (j − 1)∆x , ∆x =
b− a
n− 1

.

You can check that these definitions imply that xn = b. We write the values of
f at the sample points as fj = f(xj). The integration algorithm learns about
the integrand f by evaluating fj .

Let p(x) be a polynomial of degree d given in terms of its coefficients as

p(x) = cdx
d + · · ·+ c1x+ c0 . (7)

There are d+ 1 coefficients c0, · · · , cd defining a degree d polynomial. We say p
interpolates f at the points xj if

p(xj) = fj , j = 1, . . . , n . (8)

Polynomial interpolation means finding an interpolating polynomial that satisfies
these interpolation conditions.

One way to find the interpolating polynomial is to find the coefficients ck
by solving a system of linear equations. The equations are the interpolation
conditions (8). These may be expressed in terms of the coefficients ck

j = 1 : c0 + x1c1 + · · ·+ xd1cd = f1

...
...

j = n : c0 + xnc1 + · · ·+ xdncd = fn

These linear equations may be put in matrix/vector form as
1 x1 · · · xd1
1 x2 · · · xd2
...

... · · ·
...

1 xn xdn



c0
c1
...
cd

 =


f1

f2

...
fn

 .

This equation may be written abstractly as

V c = f .

The matrix and vectors involved are:

V =


1 x1 · · · xd1
1 x2 · · · xd2
...

... · · ·
...

1 xn xdn

 , c =


c0
c1
...
cd

 , f =


f1

f2

...
fn

 .

6

The matrix V is a Vandermonde matrix

7 Exercises

1.

2.

3. This exercise explores the effect of roundoff on evaluating sums. The
analysis will use Stirling’s “formula”, which is an approximation for n!

n! ≈
√

2π nne−n .

This approximation has good relative accuracy when n is large in the sense
that ∣∣∣√2π nne−n − n!

∣∣∣
n!

= O(1
n) .

It is common, if you’re in a hurry, to use simplified versions such as n! ≈
nne−n or even n! ≈ nn. What you can get away with depends on what
you’re trying to do.

(a) For a large x (either positive or negative, but not close to zero) show
that the largest (in magnitude) Taylor series term Tn = 1

n!x
n occurs

with n = x (or nearly, since n is an integer and x does not have to
be). One way to do this is to set |An| = |An+1| and solve for n. Then
show the magnitudes are increasing for smaller n and decreasing for
larger n. Another way is to use Sterling’s formula and maximize
using calculus. For this, you can get away with the nn version.

4. We want to evaluate f(x) = ex−1 to high relative accuracy when x is close
to zero. The goal is that if |x| < 1 and x is within the range of normalized
double precision floating point, then the relative accuracy satisfies∣∣∣f̂ − f ∣∣∣

|f |
≤ tol = 10−6 .

(a) Show that the condition number of the problem allows this accuracy
in double precision arithmetic.

(b) Design a hybrid algorithm that uses

f = np.exp(x)-1.

if |x| is larger than some threshold. For smaller x, it should use the
Taylor series

ex − 1 ≈ x+
1

2
x2 + · · ·+ 1

n!
xn .

7

Use the error approximation that replaces the tail of the Taylor series
with the first neglected term:∣∣∣∣ex − 1−

(
x+ · · ·+ 1

n!
xn
)∣∣∣∣ ≈ 1

(n+ 1)!
|x|n+1

.

Determine the smallest number of terms needed. Find a threshold to
minimize the number of terms needed.

5. Write an SDE to model

8

